

978-1-4244-4657-5/09/$25.00 ©2009 IEEE ICICS 2009

Multiple Block-Size Search Algorithm
for Fast Block Motion Estimation

Ka-Ho Ng, Lai-Man Po, Ka-Man Wong,
and Chi-Wang Ting

Department of Electronic Engineering,
City University of Hong Kong,

Hong Kong SAR, China

Kwok-Wai Cheung

Department of Computer Science,
Chu Hai College of Higher Education,

Hong Kong SAR, China

Abstract—Although variable block-size motion estimation
provides significant video quality and coding efficiency
improvement, it requires much higher computational complexity
compared with fixed block size motion estimation. The reason is
that the current motion estimation algorithms are mainly
designed for fixed block size. Current variable block-size motion
estimation implementation simply applies these existing motion
estimation algorithms independently for different block sizes to
find the best block size and the corresponding motion vector.
Substantial computation is wasted because distortion data reuse
among motion searches of different block sizes is not considered.
In this paper, a motion estimation algorithm intrinsically
designed for variable block-size video coding is presented. The
proposed multiple block-size search (MBSS) algorithm unifies the
motion searches for different block sizes into a single searching
process instead of independently performing the search for each
block size. In this unified search, the suboptimal motion vectors
for different block sizes are used to determine the next search
steps. Its prediction quality is comparable with that obtained by
performing motion search for different block sizes independently
while the computational load is substantially reduced.
Experimental results show that the prediction quality of MBSS is
similar to full search.

Block matching, motion estimation, video coding, search
pattern, directional search.

I. INTRODUCTION
In fixed block size motion estimation (FBSME) algorithms,

a video frame is divided into non-overlapping block of equal
size. The best-matched block to the current coding block is
determined within a predefined search window from reference
frames. In the latest video coding standards such as
H.264/AVC [1], variable block size motion estimation
(VBSME) is adopted to improve coding quality and efficiency
significantly. However, the computational complexity required
by VBSME is much higher than that of FBSME. In
H.264/AVC, tree-structured block sizes are employed. Each
16×16 macroblock (MB) can be coded in 16×16, 16×8, 8×16,
or 8×8 block modes. An 8×8 block may be further divided into
8×4, 4×8, or 4×4 sub-blocks. There are totally 41 sub-blocks as
shown in Fig. 1. In general, large block sizes are suitable for
homogenous area with slow motions while smaller block sizes
are preferred for area with complex motions. By using VBSME,
motion search will be performed for each of the 41 sub-block
sizes. An optimum motion vector (MV) and the corresponding

Figure 1. Macroblock partitioning in H.264.

optimum sub-block mode will be found among all different
sub-block size searches. Three VBSME algorithms -- full
search (FS), fast full search (FFS), and unsymmetrical-cross
multi-hexagon-grid search (UMHexagonS) [2] -- are adopted in
H.264 reference software (JM9.6) [3]. In FS, motion estimation
for the 41 sub-blocks are performed independently [4].
Exhaustive search is performed for each sub-block in the
search window. As there are seven block size modes as shown
in Fig.1, about seven times the computational complexity of FS
on fixed 16×16 block size is required. FFS is implemented to
decrease the computational complexity of FS. In FFS, the sum
of absolute differences (SADs) of the 4×4 sub-blocks are stored
and the SADs of larger sub-blocks are obtained by summing up
these stored SADs of smaller sub-blocks. By reuse of
distortion data, FFS reduces the computation complexity of
VBSME. UMHexagonS [2, 5] utilizes starting search point
prediction, early termination, and multiple search patterns to
further speedup the motion search of VBSME.

Two approaches are commonly adopted by fast VBSME
algorithms. In the first approach, more efficient search patterns
or adaptive patterns are proposed to speedup the motion search
for each sub-block in VBSME. For example, cross diamond
search (CDS) [6] utilizes the cross-center biased MV
distribution. UMHexagonS makes use of the assumption that
the movement in the horizontal direction is much heavier than
that in the vertical direction for natural video sequences.
Accordingly, more search points are applied in horizontal
direction than in vertical direction in its uneven multi-hexagon-

30 31 32 33

34 35

26 27 28 29

38 39 40 41

36 37

18 19

20 21

22 23

24 25

10 11 12 13

14 15 16 17

3

1

2

4 5

6 7

8 9

16x16 16x8 8x16 8x8

4x8 8x4 4x4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357370652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

grid search pattern [2]. Although the algorithms using this
approach successfully reduce the computation complexity of
motion search of each sub-block and thus speedup the overall
FBSME process to a certain extent, the MV correlations
between different block modes are not utilized.

Another approach utilizes the MV correlations between
different block modes. The MVs of some motion searched sub-
blocks are used to predict the MVs of other sub-blocks. Then,
motion search is skipped for some of the sub-blocks or simpler
search patterns in a smaller search window can be used. For
example, in [7], the MVs of the larger sub-blocks are merged
from the MVs of the smaller sub-blocks using a threshold
related to the quantization parameter. The algorithm in [8] first
applies diamond search to each of the sixteen 4×4 sub-block.
MVs obtained for the 4x4 sub-blocks are used to calculate the
initial MVs of larger sub-blocks. These initial MVs of larger
sub-blocks are further refined using large or small diamond
search patterns. This approach utilizes the MV correlations
among different block modes. However, each sub-block has its
own search path and the distortion data of a sub-block motion
search is not always usable in another sub-block motion search.
Thus, substantial computation may be wasted.

To maximize distortion data reuse, a multiple block-size
search (MBSS) algorithm is proposed in this paper. The
algorithm unifies the motion searches for different block sizes
into a single motion search process. Full distortion data reuse
can be achieved and computational complexity is thus reduced
substantially. A novel stopping criterion and filled search
pattern are used to ensure that all the 41 MVs are pointing to a
local or global distortion minimum during convergence.

II. MULTIPLE BLOCK-SIZE SEARCH ALGORITHM

MBSS employs a single search window with multiple
search paths for all sub-blocks. For each search point, the
sixteen 4×4 SADs of the 4×4 sub-blocks are first calculated
and stored (Fig. 2). The SADs of the remaining 25 sub-blocks
(4×8, 8×8, 16×8, etc in Fig. 1) for the same search point are
obtained by summing up the SADs of smaller sub-blocks as
shown in Fig. 3. A compact square search pattern with a novel
stopping criterion is used in MBSS. At the beginning, the
center of the search window is considered as a search center.
The searching starts with center of the square search pattern
positioned at the search center (Fig. 4). For each search point
in the pattern, the SADs of the 41 sub-blocks are found as
described before. The minimum distortion points for all sub-
blocks are determined. The searching then continues by
locating the next search centers which are the minimum
distortion points located at the boundary of the searched region.
The searched region refers to all the previously searched points.
Then, the square search pattern is applied at each next search
center. The positions of the 41 minimum distortion points are
updated accordingly. Based on the updated minimum distortion
points, new next search centers are found. This process repeats
until there are no more next search centers. That means the
motion search converges and the minimum distortion points for
all sub-blocks are located. As the MVs of different block types
are enclosed by at least eight searched points with higher SADs,
they are guaranteed to be pointing to global or local minimum

4x4 SAD

Figure 2. Sixteen 4×4 SADs are first calculated when one search point is
searched.

8x8 SAD

16x8 SAD

16x16 SAD

8x16 SAD

8x4 SAD

4x8 SAD

4x4 SAD

Figure 3. SADs of larger sub-blocks are obtained by summing up the SADs
of smaller sub-blocks.

1

1

1

1

1

1

1

1

1

Figure 4. Initial search pattern.

distortion points.

Since there may be more than one next search center in the
intermediate search steps, MBSS is in effect a multiple paths
searching similar to multi-path search (MPS) algorithm [9]
which is a modification of the block-based gradient descent
search (BBGDS) [10]. Thus, MBSS is also a multiple path
search algorithm with better prediction quality than BBGDS as
it can reduce the chance of being trapped in a local minimum
by considering multiple descending gradient paths.

1

2

11

1

1 1

1

1

1 1 1

1

1

1

1

1

22 2

1 1

2

2 1

1

1

1

1

1

1

2

1

2

2 1

3

3

3 3 3

2

4 4

4

(a) (b) (c)

1

1

3

Next search center

Searched point

1

2

1

1

1

1

2

1

2

2 1

3

3

3 3

2

4 4

4

5 55

6 66

7

7

7

8

8 8 8

(d)

Figure 5. (a) MBSS with five next search centers. (b) Positioning the search
pattern over one of the next search centers. (c) Searched region after 4 square
pattern positioning. (d) MBSS convergence - all minimum distortion points

are enclosed inside the searched region.

The MBSS algorithm is summarized as follows.

Step 1: Position the square search pattern at the search
window center. Search all points inside the pattern for
minimum distortion points of all sub-blocks.

Step 2: Set the minimum distortion points located at the
boundary of the searched region as the set of next
search centers. If the next search centers set is empty,
go to Step 4. Otherwise go to Step 3.

Step 3: Position the square search pattern over the points in
the next search centers set one-by-one. Search the
additional points covered by the patterns. Update the
minimum distortion points if lower distortion points
are found. Empty the next search centers set and then
go to Step 2.

Step 4: The algorithm converges and the 41 MVs are
determined.

Fig. 5 shows a MBSS example. After Step 1 & 2, there are
five next search centers as shown in Fig. 5a. The square search
pattern is positioned over the next search center at the lower
left corner of the searched region in Fig. 5b. After four times
square pattern positioning, the searched region contains seven
locations for the 41 minimum distortion points and three of
them are next search centers as shown in Fig. 5c. The
remaining four minimum distortion point locations are
enclosed inside the searched region, i.e. not at the boundary. In

Fig. 5d, MBSS algorithm terminates with all the minimum
distortion point locations enclosed inside the searched region.
The searching order for the next search centers is not important.
Different searching orders such as giving higher priority to the
next search centers pointed at by MVs of larger sub-blocks, or
vice versa, provide similar performance

III. EXPERIMENTAL RESULTS
Experiments are conducted using the H.264 reference

software JM9.6 [3]. The experimental setup are IPPPIPPP…
frame structure, CAVLC, Hadamard transform, 1 reference
frame, and +/-16 pixels search range. The test sequences are
Foreman, Coastguard, Akiyo, Container, Stefan, and News.
They are in size CIF (352x288). 100 frames of each sequence
are used. The sub-pel motion search in H.264 reference
software is disabled so that the experimental results can clearly
reflect the performances of the algorithms.

A. Search Window Center of MBSS
In H.264, the predicted MV of each sub-block is calculated

by its adjacent sub-blocks and is to determine the search
window center for that sub-block. Thus, it is possible to have
41 different search window centers. In MBSS, a unified motion
search using a single search window center is performed for all
sub-blocks. A simple approach is to use the predicted MV of
one of the block mode as the search window center.
Experiments are performed to find the percentages of the same
predicted MVs between different block modes, using the full
search in H.264 reference software.

Table I to V give the percentages of predicted MVs of
different block modes that are the same as the predicted MVs
of 16×16, 16×8, 8×16, 8×8, and 4×4 block modes respectively.
In Table II, ‘16×8a’ and ‘16×8b’ refer to the upper and lower
16×8 blocks respectively. In Table III, ‘8×16a’ and ‘8×16b’
refer to the left and the right 8×16 blocks respectively. It is
observed that a high percentage of predicted MVs of different
block modes are the same as the predicted MVs of 16×16 block
mode. Therefore, the predicted MV of the 16×16 block mode is
used as the single search window center in MBSS.

B. Performance Comparison with Other VBSME Algorithms
MBSS algorithm is compared with full search (FS), fast full

search (FFS), diamond search (DS) [11], and UMHexagonS in
JM9.6. The average PSNR (dB) and bit-rate (kbits/s) are used
for video quality evaluation. The computational complexity is

TABLE I
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE

PREDICTED MVS OF THE 16×16 BLOCK MODE

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman - 41.6% 69.3% 52.8% 46.3% 55.7% 49.5% 49.9% 47.9%

Coastguard - 40.8% 65.8% 56.8% 51.8% 52.7% 46.3% 45.0% 41.5%
Akiyo - 87.1% 93.1% 88.6% 88.3% 89.7% 85.8% 84.9% 84.4%

Container - 88.5% 94.9% 91.5% 92.8% 90.8% 86.9% 86.5% 85.7%
Stefan - 42.8% 74.2% 59.7% 53.9% 61.3% 54.9% 56.0% 52.8%
News - 81.7% 89.4% 85.0% 83.3% 84.9% 81.4% 80.1% 79.5%

TABLE II
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE

PREDICTED MVS OF ONE OF THE 16×8 BLOCK MODE

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman 41.6% - 33.1% 70.1% 22.5% 36.7% 46.1% 29.5% 30.1%

Coastguard 40.8% - 31.3% 53.7% 24.9% 37.9% 43.6% 28.9% 29.6%
Akiyo 87.1% - 83.1% 94.3% 79.9% 83.6% 84.2% 78.3% 78.5%

Container 88.5% - 84.8% 94.4% 83.0% 85.1% 85.0% 80.2% 80.5%
Stefan 42.8% - 35.9% 61.8% 29.7% 42.9% 50.1% 37.2% 37.7%
News 81.7% - 77.5% 90.2% 73.5% 77.3% 79.1% 72.6% 72.7%

TABLE III
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE

PREDICTED MVS OF ONE OF THE 8×16 BLOCK MODE

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman 52.8% 70.1% 40.2% - 24.5% 41.3% 49.4% 33.7% 34.1%

Coastguard 56.8% 53.7% 39.7% - 27.2% 41.3% 45.4% 32.4% 32.3%
Akiyo 88.6% 94.3% 84.2% - 80.6% 84.3% 84.6% 78.9% 79.2%

Container 91.5% 94.4% 87.6% - 84.8% 86.9% 86.2% 81.8% 82.0%
Stefan 59.7% 61.8% 46.2% - 31.0% 47.7% 52.6% 41.1% 40.6%
News 85.0% 90.2% 79.6% - 74.8% 78.9% 80.2% 73.9% 74.1%

TABLE IV
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE

PREDICTED MVS OF ONE OF THE 8×8 BLOCK MODE

16x16 16x8 a 16x8 b 8x16 a 8x16 b
other
8x8s 8x4 4x8 4x4

Foreman 43.3% 35.8% 44.1% 38.0% 28.7% 56.9% 58.8% 52.8% 51.1%
Coastguard 37.6% 34.2% 33.3% 34.2% 28.7% 49.0% 52.9% 45.9% 43.2%

Akiyo 83.8% 80.8% 83.6% 81.1% 78.3% 87.0% 86.0% 83.8% 83.5%
Container 84.3% 81.8% 83.5% 82.7% 80.6% 87.7% 86.8% 84.6% 84.2%

Stefan 50.4% 42.7% 49.1% 43.5% 38.9% 62.1% 63.5% 61.1% 58.5%
News 78.6% 73.7% 78.8% 75.0% 72.5% 83.1% 82.7% 80.2% 79.7%

TABLE V
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE

PREDICTED MVS OF ONE OF THE 4×4 BLOCK MODE

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8
other
4x4s

Foreman 33.5% 23.4% 36.1% 24.4% 26.8% 43.3% 37.5% 46.7% 46.0%
Coastguard 72.3% 67.0% 72.6% 68.0% 68.7% 75.5% 72.0% 76.1% 75.8%

Akiyo 76.7% 72.3% 76.8% 72.6% 73.2% 79.0% 75.3% 79.7% 79.1%
Container 77.7% 74.9% 77.2% 75.2% 75.3% 80.1% 76.9% 79.9% 79.5%

Stefan 41.4% 34.6% 41.1% 33.6% 36.0% 50.0% 46.1% 50.7% 50.9%
News 27.4% 23.9% 25.0% 23.3% 23.1% 33.5% 30.3% 34.5% 34.8%

measured in the total motion estimation time of the H.264
reference software. Table VI and VII show the performance
comparison among the different algorithms for various
sequences. It can be seen that MBSS is the fastest algorithm.
For sequences with small motions, i.e. Akiyo, News and
Container, it has 16.96%, 22.79%, and 26.27% speedup over
UMHexagonS respectively. For sequences with large or more
complex motions, i.e. Foreman, Coastguard, and Stefan,
MBSS gives a substantial speedup over UMHexagonS from
35.72% to 48.36%. With regard to the video coding quality,
MBSS provides similar PSNR as UMHexagonS does.

IV. CONCLUSION

A new fast VBSME algorithm MBSS, which can achieve full
distortion data reuse, is proposed. MBSS unifies the motion
searches of different block modes into a single motion search
process. Experiments show that MBSS has coding quality close
to full search and is 17% to 50% faster than UMHexagonS.

TABLE VI
PERFORMANCE COMPARISON BETWEEN FS, FFS, DS, UMHEXAGONS, AND

MBSS USING FOREMAN, COASTGUARD, AND AKIYO

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

FS 36.69 877.49 370.63 34.45 1896.58 373.88 40.00 404.33 371.86

FFS 36.69 887.75 47.92 34.44 1899.63 46.61 40.00 405.50 47.91

DS 36.64 898.39 17.28 34.44 1894.41 17.26 39.97 404.59 17.33

UMHexagonS 36.68 878.75 14.07 34.44 1892.34 17.43 39.99 404.38 10.27

MBSS 36.65 894.45 9.04 34.45 1896.41 9.00 39.97 404.58 8.53

Bitrate
changes over
UMHexagonS

Speedup over
UMHexagonS

35.72% 48.36% 16.96%

Foreman Coastguard Akiyo

1.79% 0.22% 0.05%

TABLE VII

PERFORMANCE COMPARISON BETWEEN FS, FFS, DS, UMHEXAGONS, AND
MBSS USING CONTAINER, STEFAN, AND NEWS

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

FS 36.50 849.04 372.36 35.22 2550.76 490.68 38.35 698.41 373.35

FFS 36.49 852.82 47.79 35.22 2558.04 47.66 38.35 699.79 48.86

DS 36.49 849.05 16.56 35.21 2570.62 17.44 38.34 699.39 16.77

UMHexagonS 36.49 851.35 11.54 35.21 2553.82 15.92 38.35 697.99 11.16

MBSS 36.49 849.06 8.51 35.20 2580.87 9.25 38.34 699.32 8.62

Bitrate
changes over
UMHexagonS

Speedup over
UMHexagonS

26.27% 41.89% 22.79%

Stefan NewsContainer

-0.27% 1.06% 0.19%

REFERENCES
[1] ITU-T_SG16_Q.6 and ISO/IEC_JTC1/SC29/WG11, "Advanced video

coding for generic audiovisual services," ITU-T Recommendation H.264 |
ISO/IEC International Standard ISO/IEC 14496-10, May 2003.

[2] Z. B. Chen, P. Zhou, and Y. He, "Fast Integer Pel and Fractional Pel
Motion Estimation for JVT," in JVT-F017, 6th Meeting: Awaji, Island,
Japan, 5-13 December, 2002.

[3] "Joint Video Team (JVT) reference software version 9.6 [Online].
Available: http://iphome.hhi.de/suehring/tml/download/old_jm/."

[4] Y. Song, Z. Liu, T. Ikenaga, and S. Goto, "Ultra Low-Complexity Fast
Variable Block Size Motion Estimation Algorithm in H.264/AVC," in
IEEE International Conference on Multimedia and Expo, 2007, pp. 376-
379.

[5] Z. B. Chen, P. Zhou, and Y. He, "Fast motion estimation for JVT," in
JVT-G016, 7th Meeting: Pattaya II, Thailand, 7-14 March, 2003.

[6] C. H. Cheung and L. M. Po, "A novel cross-diamond search algorithm for
fast block motion estimation," IEEE Trans. on Circuits and Systems for
Video Technology, vol. 12, pp. 1168-177, Dec. 2002.

[7] Y. K. Tu, J. F. Yang, Y. N. Shen, and M. T. Sun, "Fast variable-size block
motion estimation using merging procedure with an adaptive threshold,"
in Proceedings of ICME, Baltimore, USA, 2003, pp. 789-92.

[8] Z. Yang, J. Bu, C. Chen, and X. Li, "Fast predictive variable-block-size
motion estimation for H.264/AVC," in Proceedings of ICME, 2005, p. 4.

[9] S. Goel and M. A. Bayoumi, "Multi-path search algorithm for block-
based motion estimation," in Proceedings of IEEE International
Conference on Image Processing, Atlanta, USA, 2006, pp. 2373-2376.

[10] L. K. Liu and E. Feig, "A block-based gradient descent search algorithm
for block motion estimation in video coding," IEEE Trans. on Circuits
and Systems for Video Technology, vol. 6, pp. 419-422, Aug 1996.

[11] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, "A novel
unrestricted center-biased diamond search algorithm for block motion
estimation," IEEE Trans. on Circuits and Systems for Video Technology,
vol. 8, pp. 369-377, Aug. 1998.

