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Abstract—Although variable block-size motion estimation 
provides significant video quality and coding efficiency 
improvement, it requires much higher computational complexity 
compared with fixed block size motion estimation. The reason is 
that the current motion estimation algorithms are mainly 
designed for fixed block size. Current variable block-size motion 
estimation implementation simply applies these existing motion 
estimation algorithms independently for different block sizes to 
find the best block size and the corresponding motion vector. 
Substantial computation is wasted because distortion data reuse 
among motion searches of different block sizes is not considered. 
In this paper, a motion estimation algorithm intrinsically 
designed for variable block-size video coding is presented. The 
proposed multiple block-size search (MBSS) algorithm unifies the 
motion searches for different block sizes into a single searching 
process instead of independently performing the search for each 
block size. In this unified search, the suboptimal motion vectors 
for different block sizes are used to determine the next search 
steps. Its prediction quality is comparable with that obtained by 
performing motion search for different block sizes independently 
while the computational load is substantially reduced. 
Experimental results show that the prediction quality of MBSS is 
similar to full search. 

Block matching, motion estimation, video coding, search 
pattern, directional search. 

I.  INTRODUCTION 
In fixed block size motion estimation (FBSME) algorithms, 

a video frame is divided into non-overlapping block of equal 
size. The best-matched block to the current coding block is 
determined within a predefined search window from reference 
frames. In the latest video coding standards such as 
H.264/AVC [1], variable block size motion estimation 
(VBSME) is adopted to improve coding quality and efficiency 
significantly. However, the computational complexity required 
by VBSME is much higher than that of FBSME.  In 
H.264/AVC, tree-structured block sizes are employed.  Each 
16×16 macroblock (MB) can be coded in 16×16, 16×8, 8×16, 
or 8×8 block modes.  An 8×8 block may be further divided into 
8×4, 4×8, or 4×4 sub-blocks. There are totally 41 sub-blocks as 
shown in Fig. 1. In general, large block sizes are suitable for 
homogenous area with slow motions while smaller block sizes 
are preferred for area with complex motions. By using VBSME, 
motion search will be performed for each of the 41 sub-block 
sizes.  An optimum motion vector (MV) and the corresponding 

 
Figure 1.  Macroblock partitioning in H.264. 

optimum sub-block mode will be found among all different 
sub-block size searches. Three VBSME algorithms -- full 
search (FS), fast full search (FFS), and unsymmetrical-cross 
multi-hexagon-grid search (UMHexagonS) [2] -- are adopted in 
H.264 reference software (JM9.6) [3]. In FS, motion estimation 
for the 41 sub-blocks are performed independently [4]. 
Exhaustive search is performed for each sub-block in the 
search window. As there are seven block size modes as shown 
in Fig.1, about seven times the computational complexity of FS 
on fixed 16×16 block size is required. FFS is implemented to 
decrease the computational complexity of FS. In FFS, the sum 
of absolute differences (SADs) of the 4×4 sub-blocks are stored 
and the SADs of larger sub-blocks are obtained by summing up 
these stored SADs of smaller sub-blocks.  By reuse of 
distortion data, FFS reduces the computation complexity of 
VBSME. UMHexagonS [2, 5] utilizes starting search point 
prediction, early termination, and multiple search patterns to 
further speedup the motion search of VBSME. 

Two approaches are commonly adopted by fast VBSME 
algorithms. In the first approach, more efficient search patterns 
or adaptive patterns are proposed to speedup the motion search 
for each sub-block in VBSME.  For example, cross diamond 
search (CDS) [6] utilizes the cross-center biased MV 
distribution.  UMHexagonS makes use of the assumption that 
the movement in the horizontal direction is much heavier than 
that in the vertical direction for natural video sequences. 
Accordingly, more search points are applied in horizontal 
direction than in vertical direction in its uneven multi-hexagon-
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grid search pattern [2]. Although the algorithms using this 
approach successfully reduce the computation complexity of 
motion search of each sub-block and thus speedup the overall 
FBSME process to a certain extent, the MV correlations 
between different block modes are not utilized. 

Another approach utilizes the MV correlations between 
different block modes. The MVs of some motion searched sub-
blocks are used to predict the MVs of other sub-blocks. Then, 
motion search is skipped for some of the sub-blocks or simpler 
search patterns in a smaller search window can be used.  For 
example, in [7], the MVs of the larger sub-blocks are merged 
from the MVs of the smaller sub-blocks using a threshold 
related to the quantization parameter.  The algorithm in [8] first 
applies diamond search to each of the sixteen 4×4 sub-block.  
MVs obtained for the 4x4 sub-blocks are used to calculate the 
initial MVs of larger sub-blocks. These initial MVs of larger 
sub-blocks are further refined using large or small diamond 
search patterns. This approach utilizes the MV correlations 
among different block modes. However, each sub-block has its 
own search path and the distortion data of a sub-block motion 
search is not always usable in another sub-block motion search. 
Thus, substantial computation may be wasted. 

To maximize distortion data reuse, a multiple block-size 
search (MBSS) algorithm is proposed in this paper. The 
algorithm unifies the motion searches for different block sizes 
into a single motion search process. Full distortion data reuse 
can be achieved and computational complexity is thus reduced 
substantially. A novel stopping criterion and filled search 
pattern are used to ensure that all the 41 MVs are pointing to a 
local or global distortion minimum during convergence. 

II. MULTIPLE BLOCK-SIZE SEARCH ALGORITHM 

MBSS employs a single search window with multiple 
search paths for all sub-blocks.  For each search point, the 
sixteen 4×4 SADs of the 4×4 sub-blocks are first calculated 
and stored (Fig. 2). The SADs of the remaining 25 sub-blocks 
(4×8, 8×8, 16×8, etc in Fig. 1) for the same search point are 
obtained by summing up the SADs of smaller sub-blocks as 
shown in Fig. 3. A compact square search pattern with a novel 
stopping criterion is used in MBSS.  At the beginning, the 
center of the search window is considered as a search center. 
The searching starts with center of the square search pattern 
positioned at the search center (Fig. 4). For each search point 
in the pattern, the SADs of the 41 sub-blocks are found as 
described before. The minimum distortion points for all sub-
blocks are determined. The searching then continues by 
locating the next search centers which are the minimum 
distortion points located at the boundary of the searched region. 
The searched region refers to all the previously searched points. 
Then, the square search pattern is applied at each next search 
center. The positions of the 41 minimum distortion points are 
updated accordingly. Based on the updated minimum distortion 
points, new next search centers are found. This process repeats 
until there are no more next search centers. That means the 
motion search converges and the minimum distortion points for 
all sub-blocks are located. As the MVs of different block types 
are enclosed by at least eight searched points with higher SADs, 
they are guaranteed to be pointing to global or local minimum 

4x4 SAD

 

Figure 2.  Sixteen 4×4 SADs are first calculated when one search point is 
searched. 
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Figure 3.  SADs of larger sub-blocks are obtained by summing up the SADs 
of smaller sub-blocks.  
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Figure 4.  Initial search pattern. 

distortion points.  

Since there may be more than one next search center in the 
intermediate search steps, MBSS is in effect a multiple paths 
searching similar to multi-path search (MPS) algorithm [9] 
which is a modification of the block-based gradient descent 
search (BBGDS) [10]. Thus, MBSS is also a multiple path 
search algorithm with better prediction quality than BBGDS as 
it can reduce the chance of being trapped in a local minimum 
by considering multiple descending gradient paths. 
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Figure 5.  (a) MBSS with five next search centers. (b) Positioning the search 
pattern over one of the next search centers. (c) Searched region after 4 square 
pattern positioning. (d) MBSS convergence - all minimum distortion points 

are enclosed inside the searched region. 

The MBSS algorithm is summarized as follows. 

Step 1: Position the square search pattern at the search 
window center.  Search all points inside the pattern for 
minimum distortion points of all sub-blocks.   

Step 2:  Set the minimum distortion points located at the 
boundary of the searched region as the set of next 
search centers. If the next search centers set is empty, 
go to Step 4. Otherwise go to Step 3.  

Step 3: Position the square search pattern over the points in 
the next search centers set one-by-one. Search the 
additional points covered by the patterns. Update the 
minimum distortion points if lower distortion points 
are found. Empty the next search centers set and then 
go to Step 2. 

Step 4: The algorithm converges and the 41 MVs are 
determined. 

Fig. 5 shows a MBSS example. After Step 1 & 2, there are 
five next search centers as shown in Fig. 5a. The square search 
pattern is positioned over the next search center at the lower 
left corner of the searched region in Fig. 5b. After four times 
square pattern positioning, the searched region contains seven 
locations for the 41 minimum distortion points and three of 
them are next search centers as shown in Fig. 5c. The 
remaining four minimum distortion point locations are 
enclosed inside the searched region, i.e. not at the boundary. In  

Fig. 5d, MBSS algorithm terminates with all the minimum 
distortion point locations enclosed inside the searched region. 
The searching order for the next search centers is not important. 
Different searching orders such as giving higher priority to the 
next search centers pointed at by MVs of larger sub-blocks, or 
vice versa, provide similar performance 

III. EXPERIMENTAL RESULTS 
Experiments are conducted using the H.264 reference 

software JM9.6 [3]. The experimental setup are IPPPIPPP… 
frame structure, CAVLC, Hadamard transform, 1 reference 
frame, and +/-16 pixels search range. The test sequences are 
Foreman, Coastguard, Akiyo, Container, Stefan, and News. 
They are in size CIF (352x288). 100 frames of each sequence 
are used. The sub-pel motion search in H.264 reference 
software is disabled so that the experimental results can clearly 
reflect the performances of the algorithms. 

A.  Search Window Center of MBSS 
In H.264, the predicted MV of each sub-block is calculated 

by its adjacent sub-blocks and is to determine the search 
window center for that sub-block.  Thus, it is possible to have 
41 different search window centers. In MBSS, a unified motion 
search using a single search window center is performed for all 
sub-blocks. A simple approach is to use the predicted MV of 
one of the block mode as the search window center. 
Experiments are performed to find the percentages of the same 
predicted MVs between different block modes, using the full 
search in H.264 reference software.  

Table I to V give the percentages of predicted MVs of 
different block modes that are the same as the predicted MVs 
of 16×16, 16×8, 8×16, 8×8, and 4×4 block modes respectively. 
In Table II, ‘16×8a’ and ‘16×8b’ refer to the upper and lower 
16×8 blocks respectively. In Table III, ‘8×16a’ and ‘8×16b’ 
refer to the left and the right 8×16 blocks respectively. It is 
observed that a high percentage of predicted MVs of different 
block modes are the same as the predicted MVs of 16×16 block 
mode. Therefore, the predicted MV of the 16×16 block mode is 
used as the single search window center in MBSS. 

B. Performance Comparison with Other VBSME Algorithms 
MBSS algorithm is compared with full search (FS), fast full 

search (FFS), diamond search (DS) [11], and UMHexagonS in 
JM9.6.   The average  PSNR (dB) and bit-rate (kbits/s) are used 
for video quality evaluation. The computational complexity is 



 

                                      
 

TABLE  I 
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE  

PREDICTED MVS OF THE 16×16 BLOCK MODE 

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman - 41.6% 69.3% 52.8% 46.3% 55.7% 49.5% 49.9% 47.9%

Coastguard - 40.8% 65.8% 56.8% 51.8% 52.7% 46.3% 45.0% 41.5%
Akiyo - 87.1% 93.1% 88.6% 88.3% 89.7% 85.8% 84.9% 84.4%

Container - 88.5% 94.9% 91.5% 92.8% 90.8% 86.9% 86.5% 85.7%
Stefan - 42.8% 74.2% 59.7% 53.9% 61.3% 54.9% 56.0% 52.8%
News - 81.7% 89.4% 85.0% 83.3% 84.9% 81.4% 80.1% 79.5%  

TABLE  II 
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE  

PREDICTED MVS OF ONE OF THE 16×8 BLOCK MODE 

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman 41.6% - 33.1% 70.1% 22.5% 36.7% 46.1% 29.5% 30.1%

Coastguard 40.8% - 31.3% 53.7% 24.9% 37.9% 43.6% 28.9% 29.6%
Akiyo 87.1% - 83.1% 94.3% 79.9% 83.6% 84.2% 78.3% 78.5%

Container 88.5% - 84.8% 94.4% 83.0% 85.1% 85.0% 80.2% 80.5%
Stefan 42.8% - 35.9% 61.8% 29.7% 42.9% 50.1% 37.2% 37.7%
News 81.7% - 77.5% 90.2% 73.5% 77.3% 79.1% 72.6% 72.7%  

TABLE  III 
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE  

PREDICTED MVS OF ONE OF THE 8×16 BLOCK MODE 

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8 4x4
Foreman 52.8% 70.1% 40.2% - 24.5% 41.3% 49.4% 33.7% 34.1%

Coastguard 56.8% 53.7% 39.7% - 27.2% 41.3% 45.4% 32.4% 32.3%
Akiyo 88.6% 94.3% 84.2% - 80.6% 84.3% 84.6% 78.9% 79.2%

Container 91.5% 94.4% 87.6% - 84.8% 86.9% 86.2% 81.8% 82.0%
Stefan 59.7% 61.8% 46.2% - 31.0% 47.7% 52.6% 41.1% 40.6%
News 85.0% 90.2% 79.6% - 74.8% 78.9% 80.2% 73.9% 74.1%  

TABLE  IV 
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE  

PREDICTED MVS OF ONE OF THE 8×8 BLOCK MODE 

16x16 16x8 a 16x8 b 8x16 a 8x16 b
other
8x8s 8x4 4x8 4x4

Foreman 43.3% 35.8% 44.1% 38.0% 28.7% 56.9% 58.8% 52.8% 51.1%
Coastguard 37.6% 34.2% 33.3% 34.2% 28.7% 49.0% 52.9% 45.9% 43.2%

Akiyo 83.8% 80.8% 83.6% 81.1% 78.3% 87.0% 86.0% 83.8% 83.5%
Container 84.3% 81.8% 83.5% 82.7% 80.6% 87.7% 86.8% 84.6% 84.2%

Stefan 50.4% 42.7% 49.1% 43.5% 38.9% 62.1% 63.5% 61.1% 58.5%
News 78.6% 73.7% 78.8% 75.0% 72.5% 83.1% 82.7% 80.2% 79.7%  

TABLE  V 
PERCENTAGES OF PREDICTED MVS BEING THE SAME AS THE  

PREDICTED MVS OF ONE OF THE 4×4 BLOCK MODE 

16x16 16x8 a 16x8 b 8x16 a 8x16 b 8x8 8x4 4x8
other
4x4s

Foreman 33.5% 23.4% 36.1% 24.4% 26.8% 43.3% 37.5% 46.7% 46.0%
Coastguard 72.3% 67.0% 72.6% 68.0% 68.7% 75.5% 72.0% 76.1% 75.8%

Akiyo 76.7% 72.3% 76.8% 72.6% 73.2% 79.0% 75.3% 79.7% 79.1%
Container 77.7% 74.9% 77.2% 75.2% 75.3% 80.1% 76.9% 79.9% 79.5%

Stefan 41.4% 34.6% 41.1% 33.6% 36.0% 50.0% 46.1% 50.7% 50.9%
News 27.4% 23.9% 25.0% 23.3% 23.1% 33.5% 30.3% 34.5% 34.8%  

measured in the total motion estimation time of the H.264 
reference software. Table VI and VII show the performance 
comparison among the different algorithms for various 
sequences. It can be seen that MBSS is the fastest algorithm. 
For sequences with small motions, i.e. Akiyo, News and 
Container, it has 16.96%, 22.79%, and 26.27% speedup over 
UMHexagonS respectively. For sequences with large or more 
complex motions, i.e. Foreman, Coastguard, and Stefan, 
MBSS gives a substantial speedup over UMHexagonS from 
35.72% to 48.36%. With regard to the video coding quality, 
MBSS provides similar PSNR as UMHexagonS does.  

IV. CONCLUSION 

A new fast VBSME algorithm MBSS, which can achieve full 
distortion data reuse, is proposed. MBSS unifies the motion 
searches of different block modes into a single motion search 
process. Experiments show that MBSS has coding quality close 
to full search and is 17% to 50% faster than UMHexagonS. 

TABLE  VI 
PERFORMANCE COMPARISON BETWEEN FS, FFS, DS, UMHEXAGONS, AND 

MBSS USING FOREMAN, COASTGUARD, AND AKIYO 
 

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

FS 36.69 877.49 370.63 34.45 1896.58 373.88 40.00 404.33 371.86

FFS 36.69 887.75 47.92 34.44 1899.63 46.61 40.00 405.50 47.91

DS 36.64 898.39 17.28 34.44 1894.41 17.26 39.97 404.59 17.33

UMHexagonS 36.68 878.75 14.07 34.44 1892.34 17.43 39.99 404.38 10.27

MBSS 36.65 894.45 9.04 34.45 1896.41 9.00 39.97 404.58 8.53

Bitrate
changes over
UMHexagonS

Speedup over
UMHexagonS

35.72% 48.36% 16.96%

Foreman Coastguard Akiyo

1.79% 0.22% 0.05%

 
TABLE  VII 

PERFORMANCE COMPARISON BETWEEN FS, FFS, DS, UMHEXAGONS, AND 
MBSS USING CONTAINER, STEFAN, AND NEWS 

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

PSNR
(dB)

bitrate
(kbits/s)

run time
(sec)

FS 36.50 849.04 372.36 35.22 2550.76 490.68 38.35 698.41 373.35

FFS 36.49 852.82 47.79 35.22 2558.04 47.66 38.35 699.79 48.86

DS 36.49 849.05 16.56 35.21 2570.62 17.44 38.34 699.39 16.77

UMHexagonS 36.49 851.35 11.54 35.21 2553.82 15.92 38.35 697.99 11.16

MBSS 36.49 849.06 8.51 35.20 2580.87 9.25 38.34 699.32 8.62

Bitrate
changes over
UMHexagonS

Speedup over
UMHexagonS

26.27% 41.89% 22.79%

Stefan NewsContainer

-0.27% 1.06% 0.19%
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