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Abstract—Synchrophasors are sensors that sample power grids

and publish these measurements over a network to a number

of grid applications such as voltage monitoring, state estimation,

visualization, etc. The sampled data is QoS sensitive and must be

delivered reliably with minimal delays to the target applications.

However, during network overloads or grid emergencies when the

volume of data transmitted is high, it is important to gracefully

degrade performance and data stream delivery in an application-

specific manner.

We propose CPS-Net, a flexible 3-layered network architec-

ture that allows application-specified in-network aggregation of

synchrophasor data streams during overload. The lowest layer

provides basic path-specific QoS while the middle layer provides

real-time wide-area publish-subscribe capabilities integrated with

traffic engineering of data streams across multiple lower level

paths and trees. The top layer provides a distributed stream

processing infrastructure for application-specified aggregation

functions. During network overload, the lower layer triggers

the co-optimization of higher layers and application-specific

aggregation of data is performed. The user is presented with a

simple stream processing programming model and the details

of the network, placement and composition of operators are

abstracted away.

Initial simulation results, using a voltage stability monitoring

smart grid application, show that CPS-Net architecture can

gracefully degrade data streams for synchrophasor applications.

I. INTRODUCTION

Cyber-physical systems (CPS) combine sensing, networking
and remote computation in the context of a physical system.
In this paper, we focus on a class of wide-area, QoS sensitive
cyber-physical systems and are motivated by the case of
interconnecting synchrophasor data (publishers) with real-
time Smart Grid applications (subscribers). Synchrophasors
or Phasor Measurement Units (PMUs) are the new sensors
that sample the electricity grids at 30-60Hz and publish these
measurements as streams that need to be delivered reliably
and in real-time to a number of Synchrophasor applications.
A wide variety of synchrophasor applications have been
proposed and the QoS requirements of these applications
have been classified by the North American Synchrophasor
Initiative (NASPI) into a set of classes [1].

While building a network that satisfies the basic QoS
requirements is a well studied problem, the dimensions that
make these networks interesting are the fact that:

• Application requirements need to be mapped onto a real-
time wide-area publish-subscribe architecture requiring

QoS support beyond simple point-to-point QoS.
• During overloads or critical events when sampling rates

increase or more PMUs are active, it is important to
gracefully degrade performance and data stream delivery
in an application-specific manner.

Graceful degradation of performance and QoS for many-to-
many real-time, wide-area streams is hence the focus of this
paper. We propose CPS-Net, a flexible 3-layered architecture
that leverages the benefits of layering and point-to-point QoS,
while allowing application-specified in-network aggregation
of data streams during overload. The bottom layer provides
basic path-specific QoS. The middle layer provides real-
time wide-area publish-subscribe capabilities, integrated with
traffic engineering of data streams across multiple lower level
paths and trees. The top layer provides a distributed stream
processing infrastructure for application-specified aggregation
that helps in graceful degradation during network overload.

During underload, the top layer is quiescent, and all the
PMU data from publishers is sent to subscribers. But, during
network overload, there may not be sufficient capacity to
deliver all the PMU data. One response to overload would
be to randomly discard data: however this could degrade
performance in unpredictable ways. From video streaming
literature, we know that if information can be dropped in an
application-sensitive manner, then the quality of experience
for multimedia applications can be gracefully degraded as a
function of the level of overload. Analogously, we aim to
provide application-sensitive in-network aggregation functions
that could be used during overload periods to achieve graceful
degradation of synchrophasor applications. Specifically, the
lower layer of our three-layer architecture during overload
triggers the co-optimization of higher layers, and application-
specific filtering and/or aggregation of data is performed.

The subscribers, while subscribing to specific content, can
specify the data aggregation and filtering mechanisms that
they are willing to accept, types of data to which such
mechanisms can be applied to, and the timeframes during
which those mechanisms are acceptable. The application writer
would be best situated to express such aggregation and filtering
functions, but would need a convenient API to express them.
We propose to provide the application writer with a simple
declarative API, based upon a stream computing program-
ming model such as streamIt [2] or Spade and Infosphere
Streams [3]. The declarative view is expressed in the stream978-1-4244-8953-4/11/$26.00 c� 2011 IEEE



programming language while the details of the network, place-
ment and composition of operators are abstracted away, as part
of the distributed stream computing system.

Initial simulation results show that the CPS-Net architecture
can gracefully degrade data streams for real-time synchropha-
sor applications during network overload and this is illustrated
using a voltage monitoring smart grid application.

The rest of the paper is organized as follows. Section II
motivates the architecture of CPS-Net through a grid applica-
tion that would benefit from application specific in-network
aggregation invoked during network overload. Section III
describes the 3-layer architecture of CPS-Net. Section IV
presents a declarative model that allows users to define ap-
plication specific aggregation functions. Section V presents
experimental results and section VI reviews prior work. Sec-
tion VII concludes the paper with discussions and future work.

II. MOTIVATION

CPS-Net is suitable for systems that have the following
properties: (i) Large amounts of data flow from sensors to
multiple subscribers. For most of the time, data transmission
is periodic. But, under specific alarm conditions, there are
synchronous bursts. (ii) Data from multiple sensors can be
aggregated together or delayed. Aggregated or delayed data
will still contain meaningful and relevant information. (iii)
The applications can work with both raw and aggregated data
streams. (iv) The applications can gracefully degrade their
performance when the incoming data flow is quenched.

Many smart grid applications exhibit the above properties.
We will use Voltage Monitoring System, a common smart
grid application, to motivate CPS-Net. A voltage monitoring
system measures voltage stability which is a serious concern
for grid operators due to its importance in ensuring system
security and power quality. Loss of voltage stability, also
known as a voltage collapse, can either result from the inability
of the power system to supply reactive power or by an
excessive absorption of reactive power by the system.

Grid operators use a metric known as Voltage Stability Index

(VSI) to determine the probability of a voltage collapse and to
identify vulnerable buses (A bus is also known as a substation.
One can think of the grid as a graph with buses as nodes and
transmission lines as edges). VSI of bus i is defined as [4]:

V SIi =
∂Pi/∂δi�n

j=1j �=i BijVj
(1)

Where, n is number of buses in the system, Pi is the real
power injected at bus i, Vj is the magnitude of voltage at bus j,
δi is the phase angle of voltage at bus i and Bij’s are elements
of the network admittance matrix. Bij = 0 if no transmission
line connects bus i directly to bus j in the grid. The stability
index of a grid is calculated as the minimum of the stability
indices of all its buses and therefore depends on the most
vulnerable bus. A low value of VSI indicates instability while
a high value indicates stability. A grid is considered stable if
VSI > 0.5 while the normal operating range is larger than 0.8.
When VSI < 0.5, the grid experiences a voltage collapse.

A. Aggregation for Graceful Degradation

In a voltage monitoring system, PMUs measure and publish
streams of voltage parameters (magnitude, phase angle) of
buses within the grid. Applications subscribe to these streams
in order to compute the VSI’s of buses. During network over-
load, PMU streams traveling from the publishers toward a sub-
scriber can be aggregated at intermediate nodes to minimize
load. Rest of this section shows that the voltage monitoring
system, like a number of other smart grid applications, can
safely work with such aggregated data. We give a list of
aggregation functions that can be applied in-network during
network overload, thus gracefully degrading the quality of
VSI’s computed by the subscribers.

Data Prioritization Not all data from all PMUs are equally
important for computing the VSI. In particular, following
heuristics can be used to drop low priority data and reduce net-
work load: (i) Data from PMUs at generating substations could
be given a lower priority as they rarely have voltage problems.
(ii) Data from PMUs deployed at transmission/distribution
substations whose reported values are below their rated values
must be given higher priority because such a dip indicates
proximity to voltage collapse. Following steps can be used at
intermediate nodes for data prioritization:

1: Collect PMU voltage magnitudes Xt = [v1, v2, ..., vn] (in
per units) measured at a common time instant t.

2: Sort Xt in ascending order.
3: for i = 1 to n do

4: if Xi
t <= vth then

5: select Xi
t

6: end if

7: end for

where, vth is the voltage threshold that is usually set to 1.0.
The filter selects, for transmission, only data packets whose
values are below the safety threshold.

Data Dropping Generally voltage phasor measurements do
not change abruptly unless there are disturbances or faults
in the system. During normal operation, the state of the
system changes gradually, if at all. Therefore during overload,
PMU streams whose data varies minimally (indicating normal
conditions) can be dropped as follows:

1: Let Xt = [x1
t , x

2
2, ..., x

n
t ] and Xt−1 =

[x1
t−1, x

2
t−1, ..., x

n
t−1] be the data at time instants t

and t− 1 respectively
2: Check data similarity of two consecutive two time stamps
3: for i = 1 to n do

4: if abs(xi
t − xi

t−1) <= xi
th then

5: drop data xi
t

6: end if

7: end for

where, xi
th is a threshold. A rule of thumb is to use 0.005 per

unit for voltage and 0.5 degree for phase angles.

Data Clustering Several PMUs in the grid may report voltage
values that are numerically close to each other. These could
be clustered to reduce data volume as follows:



1: Let Xt = [x1, x2, ..., xn] be the data of time instant t. Let
k be the number of clusters.

2: Choose k random data points as initial cluster center µ
3: Calculate the distance, d(i, j) from the center of each

cluster to each data point
4: for i = 1 to k do

5: for j = 1 to n do

6: d(i, j) = (� xj − µi �)2
7: end for

8: end for

9: Assign each data point, xj to the cluster i where d(i, j)
is minimal

10: Compute mean center of each cluster µi for all clusters
11: Repeat Steps 3-10 until all the data points are assigned to

their nearest cluster centers.

Partial Computations VSI computations can be performed
in a distributed manner since VSI of a bus depends only on the
measurements at that bus and those buses directly connected
to it. Therefore instead of forwarding raw PMU streams, nodes
can participate in computations and only forward partially
computed results. With usual notation, Eq. (2) shows that VSI
of bus i can be estimated using partial summations that can
be computed at different intermediate nodes of the network:

1
V SIi

=

n�

j=1,j �=i,j∈A

BijVj

∂Pi/∂δi
+

n�

j=1,j �=i,j �∈A

BijVj

∂Pi/∂δi
(2)

Fig. 1. Graceful degradation: Impact of in-network aggregations on the
voltage stability index (VSI) computed at subscribers.

Figure 1 shows the results of performing application specific
in-network aggregation when VSI of a critical bus in the
grid was computed using both raw and clustered data (details
of simulation setup are available in section V). VSI of the
bus is shown under different operating conditions when the
grid is overloaded by up to about 20%. Aggregation in these
experiments reduced network traffic by as much as 40%. It
is clear from the figure that in-network aggregation impacts
VSI computation only by a negligible factor and therefore can
safely be used to monitor the grid. Depending on the smart
grid application, a number of different application-specific
aggregation functions can be applied in-network to reduce
network load and gracefully degrade application performance.

III. SYSTEM ARCHITECTURE

In this section we propose an adaptive architecture for smart
grid applications. The proposed system architecture consists of
the following three layers above a best-effort IP Network.

• Application Layer / Stream Processing Layer is the
topmost layer that is responsible for specifying smart
grid application requirements (e.g., QoS, Security, etc.),
stream aggregation and distributed stream computations
possible for a given application.

• Publish-subscribe overlay is the middle layer that dis-
seminates data streams from one or more sources (e.g.,
sensors) to one or more subscribers with certain QoS level
guarantees such as minimum end-to-end latency and data
rate by leveraging underlying network level resources.

• Data flow layer is the bottom layer that handles IP
level flow reservations and interacts with the publish-
subscribe overlay to reserve suitable paths for the flows
corresponding to the data streams with certain objective
parameters such as bounded end-to-end latency, data rate
and minimum energy expenditure, etc.

To provide necessary QoS to the smart grid applications,
the three layers coordinate as follows. Smart grid applications
subscribe for types of data they are interested in. While they
register, they also specify their set of QoS requirements and
the set of aggregation and distributed computing functions
that they can tolerate. During normal network (underload)
conditions, the middle layer ensures that the necessary QoS is
provided to the application flows by leveraging flow based
reservation mechanisms available in the Data Flow Layer.
During network overload conditions, a trigger propagates from
the Data Flow Layer to the upper layers. If the overload cannot
be handled by the middle layer, it propagates the trigger further
upward to the Streams Processing Layer, which triggers the
aggregation and distributed computing functions to adapt to the
external conditions (network congestion, higher energy prices,
etc). The following sections explain the role of each individual
layer in detail.
Data Flow Layer IP networks, based on a best-effort model,
require auxiliary flow reservation mechanisms such as IntServ
(a fine-grained approach that provides QoS to individual
application or flow) or DiffServ (a coarse-grained approach
that provides QoS to a large class of data or aggregated traffic),
to ensure timeliness, reliability and availability in data delivery.

In our architecture, under network underload conditions,
flows are reserved at IP layer with adequate resources to
guarantee application requirements specified by the middle
layer. In overload conditions, the flow reservation service
raises an exception to the upper layer i.e. the middle layer.
Publish-Subscribe Layer The middle layer of our architec-
ture consists of a publish-subscribe overlay that sets up data
streams between the publisher of information (sensors) and the
subscribers interested in that data (smart grid applications).
The publish-subscribe communication paradigm provides a
loosely coupled interaction model that is best-suited for large
scale distributed systems such as smart grids [5]. Typically,



subscribers express their interest in an event or a topic and
are subsequently notified of any event generated by an inde-
pendent publisher, which matches the registered interest. The
events are asynchronously propagated in the network and there
is a full decoupling in time and space between the publisher
and the subscriber.

Publish-subscribe systems do not provide QoS guarantees
inherently, which is a critical requirement for smart grid
applications. As a result, an auxiliary mechanism is required
for a publish-subscribe middleware to provide QoS guarantees
such as end-to-end latency, data availability etc. We use QoS-
aware publish-subscribe systems such as Harmony [6] that
employs a multi-hop overlay of brokers to select overlay
paths that meet application latency requirements, on a per
topic basis, while also maximizing the successful delivery
of each topic. The publish-subscribe overlay, under network
underload conditions, selects the best possible path from the
Data Flow Layer to establish an overlay path that satisfies the
application’s QoS requirements. During overload conditions,
when the overlay receives the trigger from the Data Flow
Layer, it first tries to adapt to the overload by adjusting existing
overlay paths or using multiple paths. If such an adaptation
is not possible then it sends a trigger to the upper Streams
Processing Layer.
Streams Processing Layer This layer has three functions:
(i) It exposes a programming interface for smart grid applica-
tion development where it can take the following parameters
as inputs: type of data streams the application needs, QoS
requirements of streams, and the network functions that can
be employed for graceful degradation of applications in terms
of data transfer requirements. We have proposed a Declarative
Subscription model (described next in section IV) for exposing
such a programming interface for application development.
(ii) It registers the application requirements with the under-
lying publish-subscribe overlay layer. (iii) It configures the
underlying overlay network to invoke aggregate functions
on intermediate nodes to achieve graceful degradation of
application performance.

IV. DECLARATIVE SUBSCRIPTION MODEL

CPS-Net exposes a programming interface that allows grid
applications to subscribe to streams published by monitoring
devices and build stream computing applications using stream
computing platforms such as Spade, StreamIt, etc. Users can
build applications that run either locally at a node or harness
the potential of network stream computation.

For instance, a common grid application is Voltage Moni-
toring (section II) which requires voltage streams from several
different PMUs. A user can write a hierarchical voltage
monitoring application using Spade language which eventually
gets expressed as a data-flow graph. The application can then
run either locally at a node or in a distributed manner across
the network in which case nodes function as stream operators.
Furthermore, the result of the application, a stream of voltage
stability indices is also publishable and can be subscribed to
by other applications. As a consequence, a library of common

grid applications can be built that subscribers can tap into and
help reduce traffic and computational redundancies.

CPS-Net provides an interface that helps programmers
specify QoS requirements of bandwidth and latency for their
applications as well as aggregation functions invoked during
overload for graceful degradation.

A. Publish and Subscribe

Any substation, sensor, or any stream application can
publish streams by specifying attributes such as sampling
frequency, bandwidth, syntax of data items, and information
about the stream.

PID = PublishStream( Frequency 30Hz,
dataItem <timestamp, voltage>,
bandwidth <100bytes, 200bytes>,
Info "Voltage stream of PMU 23" );

where we have suffixed parameters with their type for ease
of understanding. The above function publishes a PMU stream
containing data items that hold timestamp and voltage values
of sizes 100 and 200 bytes respectively, at a frequency of
30Hz. A call to the above function registers the stream and
gives it a unique ID that can be used by the subscribers. Not all
streams can specify a hard constraint on the rate at which they
output data in advance. For instance, stream applications can
be triggered by alarm conditions in the grid and may increase
the rate at which they output data. Similarly sensor devices
may react to conditions in the grid and increase their sampling
frequency. To accommodate these requirements, the publish-
subscribe and data-flow layers monitor the load and the stream
rates to effectively meet bandwidth and latency constraints of
published streams.

A stream can be subscribed to by a stream computing
application as

Stream S = SubscribeStream( PublisherID PID,
dataItem <timestamp, voltage>, latency 10ms);

The dataItem is specified by the subscribers as well so
that they may subscribe to a part of the published stream. To
support the above, the publish-subscribe layer interacts with
the data-flow layer and sets up a data forwarding path between
the publisher and the subscriber with a 10ms latency bound.

B. Data Aggregation Operators

CPS-Net allows users to attach aggregation functions to
streams. These are functions that are applied in-network during
overload and allow applications to gracefully degrade their
performance. During overload, there will not be sufficient
capacity to deliver all PMU data and therefore streams would
need to either loose data elements or reach the subscriber
with an unacceptable latency. This can lead to performance
degradation in unpredictable ways. To allow for graceful
degradation, the network supports two forms of aggregation:
(i) Marginal aggregation of individual streams, (ii) Joint ag-
gregation of data items across multiple streams subscribed to
by an application. Marginal aggregation can be used by an
application when it has subscribed to a raw stream and can still
benefit by receiving averages or medians of data items over



consecutive time windows during overload. Joint aggregation
can be used when an application subscribes to multiple streams
and aggregation of time-aligned data across different streams
may be acceptable to the application. Examples of joint ag-
gregation functions are data dropping, data prioritization, and
data clustering functions discussed in the context of voltage
monitoring in section II. To support this functionality, users
are allowed to group streams into sets and attach aggregation
functions to these as follows:

AttachAggregationOperator(
StreamSet G1,...,StreamSet Gn, AlgorithmList L);

The AlgorithmList L contains an ordered list of calls to
aggregation algorithms, each of which can be invoked to
achieve a different level of aggregation. Algorithms further
down the list provide stronger aggregation. Using the above
function, applications attach aggregation functions to sets of
streams and intermediate nodes would support in-network ag-
gregations whenever streams belonging to those sets cross the
node. For instance, consider a voltage monitoring application
that subscribes to three PMU streams X, Y, and Z. Let us
assume that it accepts joint aggregation across streams Y
and Z using a K-Means clustering algorithm and marginal
aggregation on stream X using a window-averaging algorithm
WinAvg. K-Means and WinAvg are essentially regular stream
algorithms that could be user-defined or part of a streams
library. K-Means is defined to accept a set of streams as input
along with a parameter that specifies the number of clusters.
Fewer clusters imply stronger aggregation. On the other hand,
WinAvg is defined to accept a single stream as input along with
a window size parameter. Larger window size implies stronger
aggregation. The following call will then attach aggregation
functions to streams:

AttachAggregationOperator([X],
[WinAvg(4), WinAvg(8)] );
AttachAggregationOperator([Y, Z],
[K-Means(8), K-Means(4), K-Means(2)] );

As a consequence, depending on network load, in-network
aggregation of streams Y, Z will occur by using K-Means
algorithm with parameters 8, 4, or 2. Similarly aggregation
of X would occur using WinAvg algorithm with parameters 4
or 8. Although in the above example, same algorithms were
used in the AlgorithmList, different algorithms may be used
to achieve different levels of aggregation. In order to support
the above in-network aggregation service, during overload, the
application and publish-subscribe layers interact to perform
two tasks: (i) A forwarding node N1 is located on the path
from publisher of X to the subscribing application and the
appropriate aggregation function invoked on node N1 (ii) A
forwarding branch point N2 on paths from publishers of Y
and Z to the subscriber is located, which forwards both the
streams and the aggregation function is invoked on node N2.

V. EXPERIMENTS

In this section we study the impact of different in-network
aggregation functions on the voltage monitoring application.

Fig. 2. A small IEEE 14 Bus Test System containing 14 buses/substations
connected by 15 transmission lines. Experiments use a larger 300 bus system.

We simulated the benchmark IEEE 300-bus test system [7] (A
small 14 bus system is shown in Fig. 2). The system has 300
buses/substations, 304 transmission lines, 107 transformers
and 69 generating stations. It has three geographical zones.
Zone 1 consists of 157 substations, zones 2 and 3 consist of
80 and 63 substations respectively.

Each bus/substation has a PMU that generates a stream of
samples (in IEEE C37.118 format) at a rate of 120Hz. Each
sample contains voltage and current phasors, line flows, and
system frequency information. PMUs report their streams to
respective local Phasor Data Concentrator (PDC) nodes. That
is, PMUs in Zone 1 report measurements to PDC1, PMUs
in Zone 2 to PDC2 and PMUs in Zone 3 to PDC3. These
PDCs in turn forward the measurements to a central super PDC
(SPDC) that hosts the voltage stability monitoring application.
We allow in-network aggregation functions at each of the 3
PDC nodes in the network.

In order to verify the simulation setup and correctness of the
monitoring scheme we gradually overloaded the grid from its
normal load (23525 Megawatts) to its maximum load (24250
Megawatts). These figures and normal load conditions at each
substation are available in [7]. Using load conditions in [7]
as a starting point, we gradually overloaded the grid until its
maximum, using a step size of 10 Megawatts. After each step,
the voltage phasors for the new load are recomputed using the
standard Fast Decoupled Power Flow method [8]. This is an
iterative method that requires a termination criteria. We used
a power convergence limit of 10−3 per unit.

As illustrated in Figure 3, the voltage stability indices of
critical buses/substations decrease correctly in response to
overloading. The figure shows that the bottom two curves
corresponding to buses 178 and 179 have low stability indices
at the normal loading. However, their stability indices do
not change with increase in load as both substations have
generators that always maintains constant voltage irrespective
of increase or decrease of load. On the other hand, buses
280-289 are most affected by overload and can be marked as
critical buses for triggering preventive control. Since bus 282
is the most critical bus, we plot its VSI in the next experiment.

We evaluate the impact of in-network aggregation of PMU
streams on the accuracy of VSI calculations using aggre-
gation algorithms described in section II. Figure 4 shows



Fig. 3. Falling Voltage Stability Indices of 10 buses of IEEE 300 bus system
in response to grid overload. Bus 282 has the lowest stability index.

Fig. 4. Voltage Stability Index of bus 282 computed using a number of
different in-network aggregation algorithms.

the computed VSI for bus 282 under different operating
conditions when the grid is overloaded. We can see that the
aggregation functions alter the VSI only by a small factor. The
VSI estimate computed using various aggregation algorithms
remains close to the VSI computed using raw PMU streams
and in general all the aggregation algorithms perform well.

Figure 5 compares the different aggregation algorithms and
plots the error in estimated VSI’s averaged across all 300
buses in the grid. Overall, all aggregation algorithms perform
well and the errors vary between 0-4%. One can observe that
partial computation method perform best compared to other
aggregation functions. This is not surprising given that dis-
tributed computations do not introduce any error. The error in
partial computations results from loss of time synchronization
between measurements. Error for the data dropping algorithm
is also low and remains below 1%. On the other hand, error
for data prioritization increases linearly with load. Lastly, the
error for data clustering is high, but it decreases with overload.

Figure 6 shows the percentage reduction in traffic volume
with different in-network aggregation algorithms. The figure
shows that in general 40-50% data reduction is possible by
using aggregation algorithms designed for voltage monitoring
application. In case of data prioritization, the possibility of
reduction in traffic gradually decreases at higher loading as
most of the substations suffer from voltage problems with
increased overload. For data dropping algorithm, reduction in

Fig. 5. Errors in Voltage Stability Index averaged over 300 buses with
different in-network aggregation algorithms.

Fig. 6. Reduction in traffic volume with different in-network aggregation
algorithms.

traffic gradually decreases from 50-40% as voltage phasors
change significantly with increase in load. Similarly, clustering
(with 334 clusters) results in about 44% reduction of traffic
while partial computations (with 3 PDC nodes) results in the
largest reduction of about 50%.

The above experiments clearly demonstrate that certain
cyber-physical applications such as voltage monitoring can
safely work with in-network aggregated data. Thus this prop-
erty can be exploited to reduce traffic volume during network
overload and gracefully degrade application performance.

VI. RELATED WORK

The work most closely related to ours is GridStat [9], a
middleware framework that provides QoS constrained data
communications for wide area power grid operations. GridStat
supports condensation functions deployed on status routers
that look similar to the aggregation functions in our work.
However, there are three subtle differences. Firstly, in GridStat
the aggregation functions are specified by the application de-
signer to migrate application logic to the middleware layer by
taking advantage of the common event patterns. On the hand,
in CPS-Net, in-network aggregations are triggered dynami-
cally based on conditions such as the network load. Secondly,
since CPS-Net uses a complete stream computing platform, a
rich set of application specific aggregation functions become
available. GridStat supports relatively simpler functions im-



plemented by the application developer through the calculator
module. Thirdly, while the focus of GridStat condensation
functions is on optimal use of network resources, CPS-Net
allows graceful degradation of application performance though
application-sensitive aggregation functions.

There has also been a considerable amount of work in
the field of sensor network aggregation [10], [11], [12],
[13]. However the focus of these works is on the efficient
in-network computation and reducing communication costs,
thereby maximizing network lifetime. On the other hand, we
focus on aggregating data to minimize load and gracefully
degrade performance of time-critical grid applications.

Rest of this section reviews prior work related to QoS,
declarative networks, smart grid networking, and stream com-
puting.

QoS QoS in networking is a well-studied topic. The early
evolution of network QoS is surveyed in Aurrecoechea et
al. [14] covering the progress from Parekh-Gallagher model of
shaping and fair queuing as a model for end-to-end bandwidth
and latency guarantees through techniques like leaky bucket,
weighted fair queuing, effective capacity for admission control,
and IETF IntServ architectures to realize the Parekh-Gallagher
model. In the second half of the 90’s, the unification of ideas
from frame-relay, ATM and IP networks in the form of multi-
protocol label switching [15], and differentiated services [16]
allowed QoS to take qualitative forms (eg: gold, silver, bronze
services) to support business considerations, and the mecha-
nisms to support aggregate flows and per-hop behaviors rather
than individual flow-level reservations. These advances paved
the way for virtual private networking (VPN) that combined
QoS, security features, and routing to establish IP as a unified
layer for private networks. The Hose model [17] for VPNs
provides a convenient ”hose” abstraction for customers with
associated capacity guarantees. This capacity can be used for
traffic between termination points of customer’s VPN (possibly
hundreds of locations). The technical challenge that was solved
was how to provision capacity at the underlying MPLS layer
which tends to be point-to-point in nature.

In summary, QoS in networking has advanced considerably
to be able to offer sophisticated private networking services
on top of which middleware infrastructures can operate. These
architectures have been developed in the context of operators
who support multiple customers. A key difference in the
private networks for cyber-physical systems is that these
tend to be built as separate infrastructures from the Internet,
and to service the need of one customer, or a small set of
closely related customers. Therefore it is important to consider
economies and synergies across the network layer QoS and
higher layer requirements to extract maximal efficiencies.

In the context of publish-subscribe systems, IndiQos sys-
tem [18] was one of the first to study classical QoS parameters
such as latency, bandwidth, availability, jitter, and loss ratio.
Yang et al. in [6] apply a number of techniques such as
proactive and reactive overlay path routing to select paths
that satisfy application specified QoS constraints in terms of

latency. However, in these systems, the QoS-related parameters
are decoupled from the information being exchanged. On the
other hand, in CPS-Net, we take advantage of the properties
of exchanged information to provide the requested QoS under
current network conditions.

Declarative Networks The main focus of work on declarative
networks has been on declarative specification of routing
and network protocols. However in CPS-Net, our focus is
on using a declarative paradigm that helps grid applications
specify in-network aggregation functions that allow applica-
tions to gracefully degrade their performance during network
overload. Huebsch et al [19] describe PIER, a massively
distributed Internet scale query processor where the idea is
to relax traditional database consistency constraints and use
a distributed hash table based routing substrate for scalable
distributed query processing. Loo et al. [20], [21] describe
their work in the declarative specification and implementation
of overlays as well as routing protocols using developed
declarative languages such as overlog and NDLog respectively.
In [22], Calvert et al. describe the design and implementation
of Concast, a programmable network service geared towards
multipoint to point channels such as multicast feedback appli-
cations. The receiving application could specify computations
to be performed on the set of sent datagrams before the
resultant packet is actually delivered to the receiver.

Smart Grid Networking Developing networking architec-
tures for smart grids is an active area of research with most
architectures designed assuming an IP like substrate. These
architectures also typically assume a private network based
on Internet standards that are owned by the utilities, with the
flexibility to add functionalities that are required to meet the
demanding requirements of smartgrid applications in terms
of timeliness and reliability. Tomsovic et al. [23] provide
a high level overview of the current power grid and the
changing landscape that necessitates wide area communication
infrastructures for the power grid. The North American Syn-
chrophasor Initiative (NASPI) proposed a distributed Publish-
Subscribe Architecture, NASPInet, for supporting PMU appli-
cations that is composed of PMUs, Phasor Data Concentrators
(PDCs) for aggregating data from multiple PMUs and Phasor
Gateways (PGWs) for interfacing enterprise PMU applications
with the smart grid network. The authors in [24] study the
latency and bandwidth requirements of NASPInet dataflows
under a variety of network architectures and security solutions.

Stream Computing Another related body of work is stream
computing where the goal is to compute continous queries over
data streams [25], [26], [27]. In [28], the authors introduce
an adaptive query processing mechanism called eddy which
dynamically changes the order of operators in a query plan
based on the availability of resources. In [29], the authors
present the design of the Borealis Stream computing platform
that supports dynamic revision of query results and updates to
the running query itself, along with a combined server-sensor
optimization engine. Tatbul et al. in [30] present a scheme
for probabilistically dropping windows involved in aggregate



queries, when the input rate is larger than the available system
resources. Most of these systems focus on optimizing the
quality and scalability of the stream computing system itself,
whereas we focus on applying the stream computing paradigm
to network flows to reduce network overload and satisfy
application performance requirements.

VII. DISCUSSION AND FUTURE WORK

This paper has presented CPS-Net, a three-layer architecture
for a specific class of wide-area real-time cyber-physical sys-
tems. The architecture supports application-sensitive graceful
degradation of performance and QoS for many-to-many real-
time, wide-area data streams and is applied in the context of
synchrophasor networks for smart grid applications.

As the examples given in the paper (e.g. VSI) indicate,
there are a variety of application-specific aggregation methods
as well as policies for specifying aggregation. Such policies
could be a function of transient network overload, or based
upon other factors such as price of power, or spatio-temporal
and administrative considerations. CPS-Net needs to be ex-
tended to robustly incorporate some of these considerations in
specific application domains. For instance, one open problem
to consider is if different applications (consumers of sensing
data) specify aggregation of data in different ways, how would
a network-level operator combine these requirements, and
handle conflicts, while meeting network-capacity constraints?

Each of the topics: distributed streaming, wide-area real-
time publish-subscribe, and QoS in networking have been
studied in their respective fields. However, since cyber-
physical systems will lead to the deployment of new privately
and economically operated information infrastructures, it is
crucial to extract synergies between these layers, while care-
fully managing the increase in complexity that may impact
reliability and robustness. We intend to explore these tradeoffs
in future work as we build CPS-Net using industry-strength
hardware / software platforms.
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