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Abstract

The indifference valuation problem in incomplete binomial models is analyzed. The model is more general
than the ones studied so far, because the stochastic factor, which generates the market incompleteness, may
affect the transition propabilities and/or the values of the traded asset as well as the claim’s payoff. Two
pricing algorithms are constructed which use, respectively, the minimal martingale and the minimal entropy
measures. We study in detail the interplay among the different kinds of market incompleteness, the pricing
measures and the price functionals. The dependence of the prices on the choice of the trading horizon is
discussed. The family of "almost complete" (reduced) binomial models is also studied. It is shown that the
two measures and the associated price functionals coincide, and that the effects of the horizon choice dissipate.

1. Introduction

This paper is a contribution to indifference valuation in incomplete binomial models under
exponential preferences. Market incompleteness stems from the presence of a stochastic factor
which may affect the transition probabilities of the traded asset or/and its values. It may also
affect the payoff of the claim in consideration. The model is, thus, more general than all binomial
models considered so far in exponential indifference valuation (see, among others, [1], [18] and
[29]).

The aim is to construct valuation algorithms for the indifference prices and provide a detailed
study of their properties and structure. We construct two such algorithms. They are both iter-
ative and resemble the ones introduced in [29] and [18]. However, all existing pricing schemes
are applicable only when the stochastic factor affects exclusively the claim’s payoff. When the
factor affects the dynamics and/or the values of the traded asset, the situation is much more
complex, for internal market incompleteness emerges which needs to be priced together with
the one coming from the claim’s payoff. The algorithms herein exhibit how the pricing of both
kinds of incompleteness is carried out and the interplay among the incompleteness, the pricing
measures and the price functionals.

In both algorithms, the indifference price is calculated via iterative valuation schemes which
are applied backwards in time, starting at the claim’s maturity. The schemes have local and
dynamic properties. Dynamically, the associated pricing functionals are similar in that, at each
time interval, the price is computed via the single-step pricing operators, applied to the end
of the period payoff. The latter turns out to be the indifference price at the next time step,
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yielding prices consistent across times. Locally, valuation is executed in two steps, in analogy
to the single-period counterpart (see (3.4)). In the first sub-step, the end of the period payoff
is altered via a non-linear functional and the conditioning on the information generated by an
appropriately chosen filtration. The new intermediate payoff is in turn, priced by expectation.

There are important differences between the algorithms, both with respect to the pricing
measures and the form of the non-linear price functionals. The first algorithm uses the mini-
mal martingale measure. This measure has the intuitively pleasing property of preserving the
conditional distribution of the stochastic factor, given the stock price, in terms of its historical
counterpart. However, the form of the associated pricing functional has no apparent natural
structure. The situation is reversed in the second algorithm which uses the minimal entropy
measure. We show that the density of this measure has no intuitively pleasing form, in contrast
to the relevant functional which does.

The forms of the non-linear pricing functionals motivate us to investigate two important
questions. Firstly, we study whether these functionals provide a natural extension to the classical
static certainty equivalent pricing rule. We show that both price functionals fail to provide such
connection. Secondly, we study how the indifference prices are affected by the choice of the
trading horizon, the point at which the underlying exponential utility is pre-specified. We show
that prices are significantly affected by the horizon choice and provide this "horizon disparity"
in closed form.

Lastly, we investigate how the above results simplify when the model reduces to the one that
has been studied so far, i.e. when the stochastic factor affects solely the claim’s payoff. We call
such a model reduced. We show that, as expected, there is a unique pricing measure, for the
nested model is now complete. We also show that the price functionals become identical. A
direct and important consequence of these simplifications is that the indifference prices are now
independent on the choice of the trading horizon.

Besides our findings on indifference prices, we also provide results for the minimal martingale
and the minimal entropy measures. Both these measures have been extensively analyzed by a
number of authors and for more general market settings. However, our model-specific results
are, to the best of our knowledge, new and provide interesting perspectives on the structure and
relation of these two martingale measures. We compute the densities in closed form. We also
construct, through an iterative scheme, the so-called aggregate minimal entropy process which
plays a central role in the representation of the value function process and the indifference price,
as well as the "quantification" of market incompleteness.

We were motivated to consider this binomial framework and study the problems at hand for
various reasons. Firstly, indifference valuation has by now become one of the central theoretical
pricing methodologies in incomplete markets1. It is based on fundamental economic principles
which are universally applicable, independently of both the individual utility function and the
market model. However, the underlying maximal expected utility problems are so complex that
it is very difficult to extract any information about the form of the prices, let alone to even prove
existence and uniqueness of solutions to these problems (see, among others, [13], [14], [24] and
[32]).

More transparent results for indifference prices have been obtained when risk preferences are
exponential. Indeed, for this class of utilities, certain additive scaling properties with respect
to the wealth argument facilitate the solution of the underlying optimization problems and,
in turn, the construction of exponential indifference prices. There is a plethora of results for
continuous-time models, derived either using duality theory or PDE techniques for Markovian
models (see, among others, [4], [13], [9], [17] and [23]). In some simple cases - specifically, when
the nested model is complete - indifference prices can be constructed explicitly ([18]).

1For a concise exposition of the theory of indifference prices, we refer the reader to the recent book [2].
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Obtaining explicit representations for indifference prices is desirable, for it helps us to carry
out sensitivity analysis, compare prices and hedging policies for different market opportunity
sets, different trading horizons, etc. In continuous-time models such studies are lacking, mainly
because explicit solutions are either not available or can be found only for very simple incomplete
models in which, however, the essential effects of market incompleteness are not present. The
work herein, albeit in a simplified framework, contributes considerably in this direction. The
binomial model we consider is tractable while allowing for internal market incompleteness. To our
knowledge, this is the only setup in which indifference prices can be calculated so transparently,
despite the stochasticity of the market opportunity set. In addition, the model allows us to
investigate, among others, the structural properties of the price in terms of the two measures,
decompose the price in hedgeable and non-hedgeable parts, explicitly quantify the effects of
varying trading horizons, etc.

Despite their theoretical foundation and tractability for specific utilities and market models,
the applicability of indifference prices has been so far very limited, if any. There are several
reasons for this. Firstly, it is difficult to determine the "utility function" of a certain activity,
a desk or, in general, a firm. While there have been some results in this direction in the areas
of Decision Analysis, Real Options and Insurance, where the concept of perfect replication is
not central, utility specification has not been addressed satisfactorily, if at all, in the area of
derivatives. Secondly, determining the indifference price requires solving the underlying expected
utility models for general utility functions. There are many challenges for this. From one hand,
solving these problems requires knowledge of the mean rate of return of the traded securities. The
estimation issues for this input are well known. On the other hand, as it was mentioned earlier,
these stochastic optimization problems are typically fully non-linear and degenerate and, for this,
no general theory can be applied, even in order to establish the mere existence and uniqueness of
their solution. This poses, in turn, many difficulties for the numerical computation of the latter
(see, for example, [32]).

An interesting direction of research would be to compare the indifference prices herein to
other prices which are obtained by alternative criteria based, for example, on linear pricing rules
that use one of the (many) martingale measures. We initiate this line by comparing our results
to the ones in [9] and [11].

Lastly, we mention that the next task is the specification of the associated (indifference)
hedging strategies. These are naturally defined as the difference between the optimal investment
policies with and without the claim at hand. However, constructing this pair of policies is
rather difficult, given the complexity of the underlying expected utility problems. In addition,
two challenging questions arise. Firstly, is there an analogue of a "payoff decomposition" in
terms of its indifference price, indifference hedge and a residual term? Secondly, what is the
role of the latter and, in particular, what is its indifference price as seen as a claim? Both
question could be potentially important in practical applications where indifference prices and
indifference decomposition could be used for higher order approximations. These questions have
been addressed in simple continuous-time models (see, for example, [17]) but not in more complex
incomplete models.

The paper is organized as follows. In section 2, we introduce the incomplete (non-reduced)
model and provide results on the two pricing measures and the exponential value function
process. In section 3, we construct the valuation algorithms and discuss their properties. We
also investigate the analogies of the price functionals with the static certainty equivalent and
their dependence on the point at which risk preferences are (pre)set. In section 4 we analyze the
reduced binomial models. We conclude with section 5 where we provide numerical results.
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2. The model and auxiliary results on the pricing measures

In a trading horizon, [0, T ] , two securities are available for trading, a riskless bond and a risky
stock. The time T is arbitrary but fixed. The bond offers zero interest rate. The values of the
stock, denoted by St, t = 0, 1, ..., T , satisfy St > 0 and are given by

ξt+1 = St+1
St
, ξt+1 = ξdt+1, ξ

u
t+1 with 0 < ξdt+1 < 1 < ξut+1. (2.1)

Incompleteness is generated by a non-traded factor, denoted by Yt, t = 0, 1, ..., T, whose levels
satisfy Yt 6= 0 and are given by

ηt+1 = Yt+1
Yt
, ηt+1 = ηdt+1, η

u
t+1 with 0 < ηdt+1 < η

u
t+1. (2.2)

We, then, view {(St, Yt) : t = 0, 1, ...} as a two-dimensional stochastic process defined on the
probability space (Ω,F , (Ft) ,P). The filtration Ft is generated by the random variables Si and
Yi, or, equivalently, by ξi and ηi, for i = 0, 1, ..., T . We, also, consider the filtration FSt generated
only by Si, for i = 0, 1, ..., T . The real (historical) probability measure on Ω and F is denoted
by P.

We assume that the values ξdt+1, ξ
u
t+1 of the Ft+1−measurable random variable ξt+1 satisfy

ξdt+1 ∈ Ft and ξut+1 ∈ Ft . (2.3)

An investor starts at t = 0, 1, ..., T with initial endowment Xt = x ∈ R and trades between
the stock and the bond, following self-financing strategies. The number of shares held in his
portfolio over the time period [i− 1, i), i = t+ 1, t+ 2, ..., T, is denoted by αi. It is throughout
assumed that αi ∈ Fi−1. The individual’s aggregate wealth is, then, given by

Xs = x+
s∑

i=t+1
αi 4 Si, (2.4)

where 4Si = Si − Si−1 and s = t+ 1, ..., T.
The performance of the implemented investment strategies is measured via an expected ex-

ponential utility criterion applied to the terminal wealth that these portfolios generate. The
maximal expected utility (value function) is, then, given by the solution of the stochastic opti-
mization problem

Vt (x) = sup
αt+1,...,αT

EP
(
−e−γXT |Ft

)
, (2.5)

t = 0, 1, ..., T with γ > 0 and XT as in (2.4), Xt = x. This process has been extensively analyzed
for general market settings (see, for example, [4], [7], [13] and [23]).

The goal is to carry out a detailed study of the indifference prices under the preference criterion
(2.5). We stress that the model we consider is quite more general than the binomial models that
have been, so far, analyzed in the context of indifference valuation2; see, among others, [5], [18],
[29] and [30]. Indeed, in these works, the nested model is complete, with the non-traded factor
affecting only the claim’s payoff but not the transition probability or the values of the traded
asset. In such "almost complete" models, considerable simplifications take place. We revisit these
cases in section 5.

In the extended framework herein, additional pricing features emerge due to the internal
market incompleteness. For their study, we will employ the minimal martingale and the minimal
entropy measures. As the analysis will show, these measures turn out to be natural pricing in-
gredients, for they clearly expose how this incompleteness is processed by indifference valuation.

2While preparing the final version of this manuscript, the recent paper [16] was brought to the attention of
the authors. Therein, the utility is of power type and the model more general than the one considered herein.
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We start with some key properties for their densities of the minimal martingale and the
minimal entropy measures and a parity result between them. To our knowledge, for the binomial
model at hand, these results are new.

To this end, we let QT be the set of martingale measures restricted on FT . With a slight
abuse of notation, we denote by Q its generic element.

We introduce, for t = 0, 1, ..., T, the sets
At = {ω : ξt (ω) = ξut } and Bt = {ω : ηt (ω) = ηut } . (2.6)

Note that for all Q,Q′ ∈ QT ,
Q (At |Ft−1 ) = Q′ (At |Ft−1 ) . (2.7)

Definition 2.1. Let ξt, t = 0, 1, .., T, be as in (2.1) and consider the risk neutral probabilities

qt = 1− ξdt
ξut − ξdt

.

The local entropy process ht, t = 1, ..., T, is defined by

ht = qt ln
qt

P (At |Ft−1 )
+ (1− qt) ln 1− qt

1− P (At |Ft−1 )
, (2.8)

where At as in (2.6), P is the historical probability measure and Ft is the filtration generated
by the random variables Si and Yi, for i = 0, 1, ..., T .

Lemma 2.2. The local entropy process ht is Ft-predictable, i.e., for t = 1, ..., T, ht ∈ Ft−1.
Moreover, for all Q ∈ QT ,

ht = Q (At |Ft−1 ) ln Q (At |Ft−1 )
P (At |Ft−1 )

+ (1−Q (At |Ft−1 )) ln 1−Q (At |Ft−1 )
1− P (At |Ft−1 )

.

We recall the elementary fact

Q(ξt+1, ..., ξT , ηt+1, ..., ηT |Ft ) =
T−1∏
s=t

Q (ξs+1, ηs+1 |Fs ) ,

which gives the useful simplification

ln Q(ξt+1, ..., ξT , ηt+1, ..., ηT |Ft )
P(ξt+1, ..., ξT , ηt+1, ..., ηT |Ft )

=
T−1∑
s=t

ln Q (ξs+1, ηs+1 |Fs )
P (ξs+1, ηs+1 |Fs )

. (2.9)

2.1. The minimal martingale measure

The minimal martingale measure, Qmm (· |Ft ) , t = 1, ..., T, is defined on FT as the minimizer
of Hmmt,T , where

Hmmt,T (Q (· |Ft ) | P (· |Ft )) = EP

(
− ln Q (· |Ft )

P (· |Ft )
|Ft
)
,

for t = 1, ..., T and Q ∈ QT , i.e.
Hmmt,T (Qmm (· |Ft ) | P (· |Ft )) = min

Q∈QT
Hmmt,T (Q (· |Ft ) | P (· |Ft )) . (2.10)

It was introduced in [6] (see, also among others, [25], [26], [28] and [15]).
The next result highlights an important property of the minimal martingale measure. Specif-

ically, it shows that under this measure, the conditional distribution of the non-traded factor
process, given the stock price, is preserved in relation to its historical counterpart3.

3For the single period case, see [18].
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Proposition 2.3. The minimal martingale measure has the property

Qmm
(
Yt| Ft−1 ∨ FSt

)
= P

(
Yt| Ft−1 ∨ FSt

)
, (2.11)

for t = 1, ..., T, or, equivalently,
Qmm (AtBt| Ft−1)

P (AtBt| Ft−1)
= Qmm (AtBct | Ft−1)

P (AtBct | Ft−1)
= Qmm (At| Ft−1)

P (At| Ft−1)
(2.12)

and
Qmm (ActBt| Ft−1)

P (ActBt| Ft−1)
= Qmm (ActBct | Ft−1)

P (ActBct | Ft−1)
= Qmm (Act | Ft−1)

P (Act | Ft−1)
,

with the sets At, Bt as in (2.6).

Proof. Since the rest of the proof follows along similar arguments, we only show that
Qmm (AtBt| Ft−1)

P (AtBt| Ft−1)
= Qmm (At| Ft−1)

P (At| Ft−1)
. (2.13)

We use induction. At t = T,

EP

(
− ln Q (ξT , ηT |FT−1 )

P (ξT , ηT |FT−1 )
|FT−1

)
= −P (ATBT | FT−1) ln Q (ATBT | FT−1)

P (ATBT | FT−1)

−P (AcTBT | FT−1) ln Q (AcTBT | FT−1)
P (AcTBT | FT−1)

−P (ATBcT | FT−1) ln Q (AT | FT−1)−Q (ATBT | FT−1)
P (ATBcT | FT−1)

−P (AcTBcT | FT−1) ln Q (AcT | FT−1)−Q (AcTBT | FT−1)
P (AcTBcT | FT−1)

,

and direct differentiation yields the claimed equality. Next, we assume that (2.13) holds for
t+ 1, .., T and show its validity for t. We have

EP

(
− ln Q ( ·| Ft)

P ( ·| Ft)

∣∣∣∣Ft)

= −EP

 ln

 T−1∏
i=t+1

Q (ξi+1, ηi+1| Fi)
P (ξi+1, ηi+1| Fi)

∣∣∣∣∣∣Ft
− EP

(
ln Q (ξt+1, ηt+1| Ft)

P (ξt+1, ηt+1| Ft)

∣∣∣∣Ft) .
Combining the single-period arguments used to establish (2.13) for t = T and the fact that the
second term above depends only on Q (ξt+1ηt+1| Ft), we easily conclude. �

The above property can be, also, deduced from existing results on the minimal martingale
measure. As an example, we consider its explicit characterization as derived in [26]. Therein, it
is shown that

dQmm

dP

∣∣∣∣
FT

=
T∏
t=1

1− λt (St − St−1)
1− λt (mt −mt−1)

, (2.14)

where
λt = mt −mt−1

EP
(

(St − St−1)2
∣∣∣Ft−1

)
and mt −mt−1 = EP (St − St−1| Ft−1) , m0 = 0 (see, also, [15]).

We, then, easily obtain the following result.

Corollary 2.4. The representations (2.11) and (2.14) are equivalent.
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Proof. We only show that (2.11) implies (2.14). Using (2.12) and (2.9) we have

dQmm

dP

∣∣∣∣
FT

=
T∏
i=1

Qmm (ξi| Fi−1)
P (ξi| Fi−1)

.

Let ∆St = St − St−1 and ∆At = mt −mt−1. Because

Qmm (ξi| Fi−1)
P (ξi| Fi−1)

=


1−ξdi

P( ξi=ξui |Fi−1)(ξui −ξdi )
, ξi = ξui ,

ξui −1
(1−P( ξi=ξui |Fi−1))(ξui −ξdi )

, ξi = ξdi ,

it remains to show that the ratio 1−λt∆St
1−λt∆mt equals the right-hand side of the above equality. Direct

calculations yield that

1− λt∆St
1− λt∆At

=
EP
(

(∆St)2
∣∣∣Ft−1

)
− (∆St) (∆mt)

EP
(

(∆St)2
∣∣∣Ft−1

)
− (∆mt)2 .

On the other hand,
EP
(

(∆St)2
∣∣∣Ft−1

)
− (∆mt)2

= P(ξt = ξut | Ft−1)(1− P(ξt = ξut | Ft−1))(ξut − ξdt )2.

Moreover, on the sets At and Act we have

EP
(

(∆St)2
∣∣∣Ft−1

)
− (∆St) (∆mt)

=


(1− P(ξt = ξut | Ft−1))(ξdt − ξut )(ξdt − 1), ξt = ξut ,

P(ξt = ξut | Ft−1)(ξut − ξdt )(ξut − 1), ξt = ξdt .
Combining the above we easily conclude. �

2.2. The minimal entropy measure

The minimal entropy measure, Qme (· |Ft ) , is defined on FT as the minimizer of Hmet,T , where

Hmet,T (Q (· |Ft ) | P (· |Ft )) = EQ

(
ln Q (· |Ft )

P (· |Ft )
|Ft
)
,

for t = 1, ..., T, and Q ∈ QT , i.e.,
Hmet,T (Qme (· |Ft ) | P (· |Ft )) = min

Q∈QT
Hmet,T (Q (· |Ft ) | P (· |Ft )) . (2.15)

We refer the reader to [7] (see, also, [4], [8], [13] and [23]) for its properties and the role of
this measure in stochastic optimization problems of exponential utility.

To facilitate the presentation, we will be using the condensed notation
Hmet,T = Hmet,T (Qme (· |Ft ) | P (· |Ft )) (2.16)

and referring to Hmet,T as the minimal aggregate entropy.

Next, we provide an explicit representation for the minimal entropy measure which, to the
best of our knowledge, is new. The construction is based on an iterative procedure which
yields the conditional distribution Qme

(
Yt| Ft−1 ∨ FSt

)
in terms of its historical counterpart

P
(
Yt| Ft−1 ∨ FSt

)
and the conditional on Ft−1 minimal aggregate entropy Hmet−1,T . The latter

term is constructed through an independent iterative procedure which involves the minimal

7
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martingale measure. To ease the presentation, we present the construction of Hmet,T separately
(see Proposition 9).

We stress that the arguments below are recursive but not tautological because the construction
of Qme (AtBt| Ft−1) (and similarly for the sets AtBct , ActBt and ActBct ) involves the values of Hmet,T
and not Hmet−1,T .

Proposition 2.5. The minimal entropy measure satisfies, for t = 1, ..., T,

Qme (AtBt| Ft−1)
Qme (At| Ft−1)

=
P(AtBt|Ft−1)

P(At|Ft−1) e
−Hme,uut,T

P(AtBt|Ft−1)
P(At|Ft−1) e

−Hme,uut,T + P(AtBct |Ft−1)
P(At|Ft−1) e

−Hme,udt,T

, (2.17)

Qme (AtBct | Ft−1)
Qme (At| Ft−1)

=
P(AtBct |Ft−1)

P(At|Ft−1) e
−Hme,udt,T

P(AtBt|Ft−1)
P(At|Ft−1) e

−Hme,uut,T + P(AtBct |Ft−1)
P(At|Ft−1) e

−Hme,udt,T

,

Qme (ActBt| Ft−1)
Qme (Act | Ft−1)

=

P(ActBt|Ft−1)
P(Act |Ft−1) e

−Hme,dut,T

P(ActBt|Ft−1)
P(Act |Ft−1) e

−Hme,dut,T + P(ActBct |Ft−1)
P(Act |Ft−1) e

−Hme,ddt,T

and

Qme (ActBct | Ft−1)
Qme (Act | Ft−1)

=

P(ActBct |Ft−1)
P(Act |Ft−1) e

−Hme,ddt,T

P(ActBt|Ft−1)
P(Act |Ft−1) e

−Hme,dut,T + P(ActBct |Ft−1)
P(Act |Ft−1) e

−Hme,ddt,T

,

where At, Bt are as in (2.6) and Hme,uut,T ,Hme,udt,T ,Hme,dut,T ,Hme,ddt,T are the values of the Ft−measurable
random variable Hmet,T , (cf. (2.16)), conditional on Ft−1. The explicit form of Hmet,T is given in
Proposition 9.

Proof. We only show (2.17) since the rest can be proved along similar arguments. We first
observe that

EQ

(
ln Q (· |Ft−1 )

P (· |Ft−1 )
|Ft−1

)
= EQ

(
ln Q (ξt, ηt |Ft−1 )

P (ξt, ηt |Ft−1 )
|Ft−1

)

+EQ

EQ

 ln

 T∏
i=t+1

Q (ξi, ηi |Fi−1 )
P (ξi, ηi |Fi−1 )

∣∣∣∣∣∣Ft
∣∣∣∣∣∣Ft−1

 .
Recalling the definition of the minimal entropy measure (cf. (2.15)), the first term needs to
be minimized over Q (ξt, ηt |Ft−1 ); in the second term, we first need to minimize the nested
conditional expectation over Q (ξi, ηi |Fi−1 ) , i = t+ 1, ..., T, and, in turn, the outer expectation
over Q (ξt, ηt |Ft−1 ). Using (2.15), we deduce that it suffices to calculate

min
Q(ξtηt|Ft−1 )

(
EQ

(
ln Q (ξt, ηt |Ft−1 )

P (ξt, ηt |Ft−1 )
|Ft−1

)
+ EQ

(
Hmet,T

∣∣∣Ft−1
))
.

Expanding yields

EQ

(
ln Q (ξt, ηt |Ft−1 )

P (ξt, ηt |Ft−1 )
|Ft−1

)
+ EQ

(
Hmet,T

∣∣∣Ft−1
)

= Q (AtBt| Ft−1) ln Q (AtBt| Ft−1)
P (AtBt| Ft−1)

+ Q (ActBt| FT−1) ln Q (ActBt| Ft−1)
P (ActBct | Ft−1)

+ (Q (At| Ft−1)−Q (AtBt| Ft−1)) ln Q (At| Ft−1)−Q (AtBt| Ft−1)
P (AtBct | Ft−1)

+ (Q (Act | Ft−1)−Q (ActBt| Ft−1)) ln Q (Act | Ft−1)−Q (ActBt| Ft−1)
P (ActBct | Ft−1)

+Q (AtBt| Ft−1)Hme,uut,T + (Q (At| Ft−1)−Q (AtBt| Ft−1))Hme,udt,T

8
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+Q
(
AdtBt

∣∣∣Ft−1
)
Hme,dut,T + (Q (Act | Ft−1)−Q (ActBt| Ft−1))Hme,ddt,T .

Differentiating with respect to Q (AtBt| Ft−1) and rearranging terms yields that at the optimum

ln Qme (AtBt| Ft−1)
P (AtBt| Ft−1)

− ln Qme (At| Ft−1)−Qme (AtBt| Ft−1)
P (AtBct | Ft−1)

+Hme,uut,T −Hme,udt,T = 0,
and we conclude. �

Remark 2.6. To preserve the analogy with formulae (2.13) and (2.12), we provide an alternative
to (2.17) representation. For t = 1, ..., T, we have

Qme (AtBt| Ft−1)
P (AtBt| Ft−1)

= Qme (At| Ft−1) e−H
me,uu
t,T

P (AtBt| Ft−1) e−H
me,uu
t,T + P (AtBct | Ft−1) e−H

me,ud
t,T

(2.18)

Qme (AtBct | Ft−1)
P (AtBct | Ft−1)

= Qme (At| Ft−1) e−H
me,ud
t,T

P (AtBt| Ft−1) e−H
me,uu
t,T + P (AtBct | Ft−1) e−H

me,ud
t,T

Qme (ActBt| Ft−1)
P (ActBt| Ft−1)

= Qme (Act | Ft−1) e−H
me,du
t,T

P (ActBt| Ft−1) e−H
me,du
t,T + P (ActBct | Ft−1) e−H

me,dd
t,T

and
Qme (ActBct | Ft−1)

P (ActBct | Ft−1)
= Qme (Act | Ft−1) e−H

me,dd
t,T

P (ActBt| Ft−1) e−H
me,du
t,T + P (ActBct | Ft−1) e−H

me,dd
t,T

.

Remark 2.7. Notice that if Hme,uut,T = Hme,udt,T equality (2.18) reduces to (2.12). This observation
will play a key role in the analysis of the reduced binomial model (see Proposition 34 herein).

We continue with an explicit construction of the minimal aggregate entropy Hmet,T . We, first,
introduce the following nonlinear entropic functionals.
Definition 2.8. Let Z be a random variable on (Ω,F ,P). For s = 0, 1, ..., T −1, t = s+ 1, ..., T
and Q ∈ QT , define the single- and multi-step entropic nonlinear functionals

J (s,s+1)
Q (Z) = EQ

(
lnEQ

(
eZ
∣∣∣Fs ∨ FSs+1

)
|Fs

)
(2.19)

and
J (s,t)

Q (Z) = J (s,s+1)
Q

(
J (s+1,s+2)

Q

(
...J (t−1,t)

Q (Z)
))
. (2.20)

Herein, Fs and FSs are the filtrations generated, respectively, by (Si, Yi) and Si for i = 1, ..., s.
We are now ready to provide the iterative algorithm for the minimal aggregate entropy. Notice

that the involved measure is the minimal martingale one, given in Proposition 3.
Proposition 2.9. The minimal aggregate entropy is given by

HmeT,T = 0 and HmeT−1,T = hT (2.21)
and, for t = 0, 1, ..., T − 2, by the iterative schemes

Hmet,T = ht+1 − J (t,t+1)
Qmm

(
−Hmet+1,T

)
(2.22)

and

Hmet,T = −J (t,T )
Qmm

− T∑
i=t+1

hi

 . (2.23)

Herein ht+1 is defined in (2.8), and J (t,t+1)
Qmm and J (t,T )

Qmm are given, respectively, in (2.19) and
(2.20) with the measure Qmm being used.

9
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Proof. The first equality in (2.21) is immediate while the second one follows from the definition
of HmeT−1,T and hT . We now establish (2.22) for t = 0, 1, ..., T − 2, i.e., that

Hmet,T = ht+1 − EQmm
(
lnEQmm

(
e−H

me
t+1,T

∣∣∣Ft ∨ FSt+1

)
|Ft
)
. (2.24)

We have
Hmet,T = EQme

(
ln Qme (ξt+1, ηt+1| Ft)

P (ξt+1, ηt+1 |Ft )
|Ft
)

+EQme

EQme

 ln
T∏
i=t+2

Qme (ξi, ηi| Fi−1)
P (ξi, ηi |Fi−1 )

∣∣∣∣∣∣Ft+1

 |Ft


= EQme

(
ln Qme (ξt+1, ηt+1| Ft)

P (ξt+1, ηt+1 |Ft )

∣∣∣∣Ft)+ EQme
(
Hmet+1,T |Ft

)
,

where we used the definition of the aggregate minimal entropy (cf. (2.16)). We introduce the
random variables

Zut = P (At+1Bt+1| Ft)
P (At+1 |Ft )

e−H
me,uu
t+1,T +

P
(
At+1B

c
t+1
∣∣Ft)

P (At+1 |Ft )
e−H

me,ud
t+1,T

and
Zdt =

P
(
Act+1Bt+1

∣∣Ft)
P
(
Act+1 |Ft

) e−Hme,dut+1,T +
P
(
Act+1B

c
t+1
∣∣Ft)

P
(
Act+1 |Ft

) e−Hme,ddt+1,T ,

whereHme,uut+1,T ,H
me,ud
t+1,T ,H

me,du
t+1,T , andHme,ddt+1,T are the values of the Ft+1-measurable random variable

Hmet+1,T conditional on Ft.
>From Proposition 5, we have

Hmet,T = Qme (At+1Bt+1| Ft) ln
(

Qme (At+1| Ft) e−H
me,uu
t+1,T

P (At+1| Ft)Zut

)

+Qme
(
At+1B

c
t+1
∣∣Ft) ln

Qme (At+1| Ft) e−H
me,ud
t+1,T

P (At+1| Ft)Zut


+Qme

(
Act+1Bt+1

∣∣Ft) ln

Qme
(
Act+1

∣∣Ft) e−Hme,dut+1,T

P
(
Act+1

∣∣Ft)Zdt


+Qme
(
Act+1B

c
t+1
∣∣Ft) ln

Qme
(
Act+1

∣∣Ft) e−Hme,ddt+1,T

P
(
Act+1

∣∣Ft)Zdt
+ EQme

(
Hmet+1,T

∣∣∣FT−2
)
.

Further simplification and rearrangement of terms yield

Hmet,T = −Hme,uut−1,T Qme (At+1Bt+1| Ft)−Hme,udt−1,TQme
(
At+1B

c
t+1
∣∣Ft)

−Hme,dut−1,TQme
(
Act+1Bt+1

∣∣Ft)−Hme,ddt−1,TQme
(
Act+1B

c
t+1
∣∣Ft)

+Qme (At+1| Ft)
(

ln Qme (At+1| Ft)
P (At+1| Ft)

− lnZut
)

+Qme
(
Act+1

∣∣Ft)
(

ln
Qme

(
Act+1

∣∣Ft)
P
(
Act+1

∣∣Ft) − lnZdt

)
+ EQme

(
Hmet−1,T

∣∣∣Ft)
= Qme (At+1| Ft) ln Qme (At+1| Ft)

P (At+1| Ft)

+ (1−Qme (At+1| Ft)) ln 1−Qme (At+1| Ft)
1− P (At+1| Ft)

10
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−Qme (At+1| Ft) lnZut −Qme
(
Act+1

∣∣Ft) lnZdt .
Using (2.8) we obtain

Hmet,T = ht+1 −Qme (At+1| Ft) lnZut −Qme
(
Act+1

∣∣Ft) lnZdt . (2.25)
Observe, however, that because of (2.11),

Zut = EQmm
(
e−H

me
t+1,T

∣∣∣Ft ∨At+1
)

and
Zdt = EQmm

(
e−H

me
t+1,T

∣∣∣Ft ∨Act+1

)
.

The above and (2.7) yield

Qme (At+1| Ft) lnZut + Qme
(
Act+1

∣∣Ft) lnZdt

= EQmm
(

lnEQmm
(
e−H

me
t+1,T

∣∣∣Ft ∨ FSt+1

)∣∣∣Ft) ,
and (2.22) follows.

Assertion (2.23) follows from (2.22) and Lemma 2. �

The following process, yielding the sum of the aggregate entropies, turns out to be useful in
establishing parity relations between the two measures.

Corollary 2.10. For s = 1, .., T , define
Ms,T = Σsi=1hi +Hmes,T . (2.26)

Then, Ms,T ∈ Fs and for t = s+ 1, ..., T,

Ms,T = −J (s,t)
Qmm (−Mt,T ) (2.27)

with J (s,t)
Qmm given in (2.20).

Proof. We first show (2.27) for s = t−1. Using the measurability of h (see Lemma 2), we rewrite
(2.22) as

Σt−1
i=1hi +H

me
t−1,T = Σt−1

i=1hi + ht − J
(t−1,t)
Qmm

(
−Hmet,T

)
= −J (t−1,t)

Qmm
(
−Σti=1hi −Hmet,T

)
, (2.28)

and (2.27) follows. Using similar arguments, we deduce

Mt−2,T = −J (t−2,t−1)
Qmm (−Mt−1,T ) . (2.29)

Combining (2.20), (2.28) and (2.29), we obtain (2.27) for s = t − 2. For s < t − 2, we proceed
similarly. �

2.3. A parity result between the minimal martingale and the minimal entropy mea-
sures

In the previous two sections we obtained representations for the densities of the minimal mar-
tingale and minimal entropy measures. It is easy to see, by comparing (2.11) to (2.17) and using
(2.21), that these measures coincide only at expiration,

Qmm
(
YT | FT−1 ∨ FST

)
= Qme

(
YT | FT−1 ∨ FST

)
. (2.30)

The fact that they differ at previous times, however, has important consequences on the up-
coming representations under these measures of both the exponential value functions and the
related indifference prices. Understanding how these two measures are related to each other is
helpful in exploring the specific features of the pricing algorithms.

11
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>From the computational point of view, it turns out that the connection between the two
measures is most transparent through the minimal aggregate entropy, Hmet,T , when computed
under Qmm ( ·| Ft) and Qme ( ·| Ft) , respectively. We explore this next. We start by investigating
the connection between the nonlinear entropic functionals J (t,t+1)

Qmm and J (t,t+1)
Qme , and their multi-

step analogues J (t,s)
Qmm and J (t,s)

Qme (see Definition 8).

Proposition 2.11. Let s = 0, ..., T − 1, and Z ∈ Fs+1. Let also Hmes+1,T , J (s,s+1)
Qmm and Ms,T be

as in (2.16), (2.19) and (2.26), respectively. Then,

J (s,s+1)
Qme (Z) = J (s,s+1)

Qmm
(
Z −Hmes+1,T

)
− J (s,s+1)

Qmm
(
−Hmes+1,T

)
(2.31)

= J (s,s+1)
Qmm (Z −Ms+1,T ) +Ms,T . (2.32)

Moreover, for Z ∈ Ft, and t = s+ 1, .., T,

J (s,t)
Qme (Z) = J (s,t)

Qmm (Z −Mt,T ) +Ms,T . (2.33)

Proof. Note that (2.32) follows easily from (2.31) as we can see using the measurability of the
local entropy (see Lemma 2) and Corollary 2.10. For this, we only show (2.31) and (2.33). We
start with the former. From the definition of J (s,s+1)

Qmm (cf. (2.19)) and using (2.7) and (2.13), we
have

J (s,s+1)
Qmm (Z)

= Qmm (As+1| Fs) ln
(

Qmm (As+1Bs+1| Fs)
Qmm (As+1| Fs)

eZ
uu +

Qmm
(
As+1B

c
s+1
∣∣Fs)

Qmm (As+1| Fs)
eZ
ud

)

+Qmm
(
Acs+1

∣∣Fs) ln
(

Qmm
(
Acs+1Bs+1

∣∣Fs)
Qmm

(
Acs+1

∣∣Fs) eZ
du +

Qmm
(
Acs+1B

c
s+1
∣∣Fs)

Qmm
(
Acs+1

∣∣Fs) eZ
dd

)

= Qme (As+1| Fs) ln
(

P (As+1Bs+1| Fs)
P (As+1| Fs)

eZ
uu +

P
(
As+1B

c
s+1
∣∣Fs)

P (As+1| Fs)
eZ
ud

)

+Qme
(
Acs+1

∣∣Fs) ln
(

P
(
Acs+1Bs+1

∣∣Fs)
P
(
Acs+1

∣∣Fs) eZ
du +

P
(
Acs+1B

c
s+1
∣∣Fs)

P
(
Acs+1

∣∣Fs) eZ
dd

)
where Zuu, Zud, Zdu, Zdd are the values of the random variable Z conditional on Ft. Propositions
3 and 5, then, yield

J (s,s+1)
Qmm (Z) = Qme (As+1| Fs) ln

(Qme (As+1Bs+1| Fs)
Qme (As+1| Fs)

eZ
uu+Hme,uus+1,T ×

×
(

P (As+1Bs+1| Fs)
P (As+1| Fs)

e−H
me,uu
s+1,T +

P
(
As+1B

c
s+1
∣∣Fs)

P (As+1| Fs)
e−H

me,ud
s+1,T

)

+
Qme

(
As+1B

c
s+1
∣∣Fs)

Qme (As+1| Fs)
eZ
ud+Hme,uds+1,T×

×
(

P (As+1Bs+1| Fs)
P (As+1| Fs)

e−H
me,uu
s+1,T +

P
(
As+1B

c
s+1
∣∣Fs)

P (As+1| Fs)
e−H

me,ud
s+1,T

))

+Qme
(
Acs+1

∣∣Fs) ln
(

Qme
(
Acs+1Bs+1

∣∣Fs)
Qme

(
Acs+1

∣∣Fs) eZ
du+Hme,dus+1,T ×

×
(

P
(
Acs+1Bs+1

∣∣Fs)
P
(
Acs+1

∣∣Fs) e−H
me,du
s+1,T +

P
(
Acs+1B

c
s+1
∣∣Fs)

P
(
Acs+1

∣∣Fs) e−H
me,dd
s+1,T

)

+
Qme

(
Acs+1B

c
s+1
∣∣Fs)

Qme
(
Acs+1

∣∣Fs) eZ
dd+Hme,dds+1,T×

12
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×
(

P
(
Acs+1Bs+1

∣∣Fs)
P
(
Acs+1

∣∣Fs) e−H
me,du
s+1,T +

P
(
Acs+1B

c
s+1
∣∣Fs)

P
(
Acs+1

∣∣Fs) e−H
me,dd
s+1,T

))
.

Therefore,

J (s,s+1)
Qmm (Z) = Qme (As+1| Fs) ln

(Qme (As+1Bs+1| Fs)
Qme (As+1| Fs)

eZ
uu+Hme,uus+1,T

+
Qme

(
As+1B

c
s+1
∣∣Fs)

Qme (As+1| Fs)
eZ
ud+Hme,uds+1,T

)

+Qme
(
Acs+1

∣∣Fs) ln
(

Qme
(
Acs+1Bs+1

∣∣Fs)
Qme

(
Acs+1

∣∣Fs) eZ
du+Hme,dus+1,T

+
Qme

(
Acs+1B

c
s+1
∣∣Fs)

Qme
(
Acs+1

∣∣Fs) eZ
dd+Hme,dds+1,T

)

+Qme (As+1| Fs) ln
(

P (As+1Bs+1| Fs)
P (As+1| Fs)

e−H
me,uu
s+1,T +

P
(
As+1B

c
s+1
∣∣Fs)

P (As+1| Fs)
e−H

me,ud
s+1,T

)

+Qme
(
Acs+1

∣∣Fs) ln
(

P
(
Acs+1Bs+1

∣∣Fs)
P
(
Acs+1

∣∣Fs) e−H
me,du
s+1,T +

P
(
Acs+1B

c
s+1
∣∣Fs)

P
(
Acs+1

∣∣Fs) e−H
me,dd
s+1,T

)
,

and (2.31) follows.
To prove (2.33), we first note that it is equivalent to

J (s,t)
Qme (Z)

= J (s,t)
Qmm

Z −Hmet,T − t∑
i=s+2

hi

− J (s,t)
Qmm

−Hmet,T − t∑
i=s+2

hi

 . (2.34)

This follows from Lemma 2 and Corollary 2.10. Next, we show the above equality (2.34). For
s = t− 1, it was shown in (2.31). For s = t− 2, we observe

J (t−2,t)
Qme (Z) = J (t−2,t−1)

Qme
(
J (t−1,t)

Qme (Z)
)

= J (t−2,t−1)
Qmm

(
J (t−1,t)

Qme (Z)−Hmet−1,T

)
− J (t−2,t−1)

Qmm
(
−Hmet−1,T

)
= J (t−2,t−1)

Qmm
(
J (t−1,t)

Qme (Z)− ht + J (t−1,t)
Qmm

(
−Hmet,T

))
− J (t−2,t−1)

Qmm
(
−Hmet−1,T

)
= −J (t−2,t−1)

Qmm
(
J (t−1,t)

Qmm
(
Z −Hmet,T

)
− ht

)
− J (t−2,t−1)

Qmm
(
−Hmet−1,T

)
= J (t−2,t)

Qmm
(
Z −Hmet,T − ht

)
− J (t−2,t−1)

Qmm
(
−Hmet−1,T

)
= J (t−2,t)

Qmm
(
Z −Hmet,T − ht

)
− J (t−2,t−1)

Qmm
(
−ht + J (t−1,t)

Qmm
(
−Hmet,T

))
= J (t−2,t)

Qmm
(
Z −Hmet,T − ht

)
− J (t−2,t)

Qmm
(
−ht −Hmet,T

)
,

where we used (2.31) for times t and t − 1, and the recursive formula (2.22) for the minimal
aggregate entropy. To establish (2.34) for s < t − 2, we work by induction. The arguments are
lengthy but routine and are, thus, omitted. �

A consequence of the above findings is the following result.

Corollary 2.12. For t = 0, 1, .., T, let Hmet,T be the minimal aggregate entropy and J (t,t+1)
Qme ,J

(t,t+1)
Qmm

be as in (2.19) with Q = Qme,Qmm. Then,

J (t,t+1)
Qme

(
Hmet+1,T

)
= −J (t,t+1)

Qmm
(
−Hmet+1,T

)
. (2.35)
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The next result yields an explicit one-step representation of the minimal aggregate entropy
in terms of the non-linear functional J (t,t+1)

Q , evaluated at Q = Qme. The assertion follows from
(2.22) and (2.35).
Proposition 2.13. The minimal aggregate entropy Hmet,T (cf. (2.16)) is given by the iterative
scheme

HmeT,T = 0 and HmeT−1,T = hT
and

Hmet,T = ht+1 + J (t,t+1)
Qme

(
Hmet+1,T

)
, t = 0, 1, ..., T − 2, (2.36)

with ht+1 and J (t,t+1)
Qme defined, respectively, in (2.8) and (2.19).

Proceeding iteratively in (2.36) and using Lemma 2 we obtain the (multi-step) representation
of the minimal aggregate entropy in terms of the minimal entropy measure. Combining it with
(2.23), we obtain the following parity result.
Theorem 2.14. For t = 0, 1, ..., T, let Qmm ( ·| Ft) and Qme ( ·| Ft) be, respectively, the minimal
martingale and the minimal entropy measure, Hmet,T the minimal aggregate entropy and hi, i =
t+ 1, ..., T, the local entropy. Then,

Hmet,T = −J (t,T )
Qmm

− T∑
i=t+1

hi

 = J (t,T )
Qme

 T∑
i=t+1

hi

 , (2.37)

where J (t,T )
Qmm and J (t,T )

Qme are given in (2.20) for Q = Qmm,Qme.
The reader is invited to compare the above parity representations with the ones proved in

[31] for the case of a diffusion model with stochastic volatility.
Remark 2.15. It is worth commenting on some distinct features of the minimal martingale and
the minimal entropy measures. Firstly, we recall that the density of the former (see (2.11)) has
the intuitively pleasing property of preserving the conditional distribution of the non-traded
factor, given the stock price, in terms of its historical counterpart. In essence, this property
states that the unhedgeable risks, given the hedgeable ones, are viewed in the same manner
under P and Qmm.

The minimal entropy measure, however, albeit its predominant role in exponential utility
maximization, appears to be lacking an intuitively pleasing structure, as the formulae in Propo-
sition 5 show. Secondly, we observe the dependence of this measure on the horizon choice, T, as
reflected by the T−dependent values Hmet,T in (2.17). In Section 4, we will see how the indifference
prices inherit, in turn, this dependence. Note, however, that the minimal martingale measure
does not depend on the specific horizon choice as (2.11) shows.

We finish with representation results for the value function process Vt (x) , defined in (2.5).
The first formula is well known (see, for example, [4], [13] and [23]) while formulae (2.39) and
(2.40) are, to the best of our knowledge, new. They follow from Theorem 14.
Proposition 2.16. The value function process Vt (x) is given, for x ∈ R and t = 0, 1, ..., T, by

Vt (x) = −e−γx−H
me
t,T (2.38)

= − exp

−γx− J (t,T )
Qme

 T∑
i=t+1

hi

 (2.39)

= − exp

−γx+ J (t,T )
Qmm

− T∑
i=t+1

hi

 , (2.40)

with ht as in (2.8), and J (t,T )
Q defined in (2.20), for Q = Qmm,Qme.
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3. Indifference valuation algorithms

In this section, we review the notion of indifference price and provide two iterative algorithms
for its construction. The claim to be priced is written at time t0 on both the traded stock and
the non-traded factor. For simplicity, we assume that t0 = 0. The claim matures at t = 1, ..., T,
yielding payoff Ct, represented as an Ft-measurable random variable. We are interested in com-
puting its indifference price in reference to the exponential criterion (2.5). For the moment, we
price a single claim and present the results on the multi-claim case afterwards. For convenience,
we eliminate the "exponential" terminology. We recall the familiar definition of indifference price
(see, for example, [4] and [23]).

Definition 3.1. Consider a claim, written at time t0 = 0 and yielding at t payoff Ct ∈ Ft,
t = 0, 1, ..., T . Let Vt (x) be the value function process (2.5). The claim’s indifference price is
defined as the amount νs(Ct), s = 0, 1, ..., t, for which

Vs(x− νs(Ct)) = sup
αs+1,...,αt

EP (Vt (Xt − Ct) |Fs ) , (3.1)

for all initial wealth levels Xs = x ∈ R.

We remark that the alignment of the expiry of the claim with the time at which the value
function process is calculated in the right hand side of the pricing condition (3.1) is chosen for
mere convenience. Indeed, the above definition can be directly extended to times beyond the
claim’s maturity in that (3.1) can be replaced by

Vs (Xs − νs (Ct)) = sup
αs+1,...,αt′

EP (Vt′ (Xt′ − Ct)| Fs) , (3.2)

for t′ = t+1, ..., T −1, T. This follows easily from (3.1), the dynamic programming principle and
the fact that Ct ∈ Ft′ . Observe, however, that this cannot be done for times t′ exceeding T .

Next, we review the price representation obtained for the single-period case in [18] (see, also,
[19]). Therein, the claim’s indifference price is represented as a non-linear expectation of its
payoff, providing the incomplete market analogue of the linear arbitrage-free pricing rule. We
refer the reader to these papers for a detailed discussion on the nature and properties of the
pricing formula. For indifference prices in single-period models for utilities different than the
exponential, see [5].

Proposition 3.2. (Single-period model) Let Q be the martingale measure under which the con-
ditional distribution of the non-traded factor, given the traded asset, is preserved with respect to
the historical measure P, i.e.,

Q(YT |ST ) = P(YT |ST ). (3.3)
Let CT = C(ST , YT ) be the claim to be priced under exponential preferences with risk aversion
coefficient γ. Then, its indifference price, ν0 (CT ) , is given by

ν0(CT ) = EQ(CT ) = EQ

(1
γ

lnEQ
(
eγCT |ST

))
. (3.4)

As the above result shows, the underlying indifference pricing blocks are the non-linear ex-
pectation EQ and the pricing measure Q. For the multi-period case, we need to build their
appropriate multi-period analogues. We stress that due to the inherent nonlinearities of the
problem, together with the fact that the model at hand is non-reduced (i.e., the nested model
is not complete), it is not at all clear how these analogues should be constructed. Notice, for
example, that property (3.3) is satisfied by both the minimal martingale and minimal entropy
measures, Qmm and Qme, but only at expiration (see (2.30)). For times before T − 1, the two
measures differ and property (3.3) is held by Qmm, and not Qme, which is the natural martingale
measure in exponential utility maximization. This important difference motivates us to look for
algorithmic price representations under each of these two measures.
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Next, we introduce two non-linear functionals. In the sequel, they will be evaluated on Qmm
and Qme for the construction of the pricing algorithms.

Definition 3.3. Let T > 0 and Z be a random variable in (Ω,F , P). For s = 0, 1, ..., T − 1,
t = s+ 1, ..., T and Q ∈ QT , define the single- and multi-step functionals

E(s,s+1)
Q (Z) = 1

γ
EQ

(
lnEQ

(
eγZ

∣∣∣Fs ∨ FSs+1

)
|Fs

)
(3.5)

and
E(s,t)

Q (Z) = E(s,s+1)
Q

(
...E(t−1,t)

Q (Z)
)
. (3.6)

We caution the reader that, for t > s+ 1,

E(s,t)
Q (Z) 6= 1

γ
EQ

(
lnEQ

(
eγZ

∣∣∣Fs ∨ FSt ) |Fs) .
Definition 3.4. Let Z be a random variable in (Ω,F , P). For s = 0, 1, ..., T−1 and t = s+1, ..., T ,
define the nonlinear single- and multi-step price functionals P(s,s+1)

Qmm and P(t,s)
Qmm by

P(s,s+1)
Qmm (Z) = E(s,s+1)

Qmm

(
Z − 1
γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
−1
γ
Hmes+1,T

)
(3.7)

and
P(s,t)

Qmm (Z) = P(s,s+1)
Qmm

(
...P(t−1,t)

Qmm (Z)
)
, (3.8)

with E(s,s+1)
Qmm given in (3.5) for Q = Qmm.

The following lemma provides the explicit form of the multi-step functional P(s,t)
Qmm .

Lemma 3.5. Let Z be a random variable in (Ω,F ,P). Then, for s < t− 1,

P(s,t)
Qmm (Z)

= E(s,t)
Qmm

Z − 1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

− E(s,t)
Qmm

−1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

 . (3.9)

Proof. We establish (3.9) only for s = t − 2 since the rest of the proof follows along similar
arguments. We need to show that

P(t−2,t)
Qmm (Z) = E(t−2,t)

Qmm

(
Z − 1
γ
Hmet,T −

1
γ
ht

)
− E(t−2,t)

Qmm

(
−1
γ
Hmet,T −

1
γ
ht

)
. (3.10)

Using (3.7) and (3.8), we write

P(t−2,t)
Qmm (Z) = P(t−2,t−1)

Qmm
(
P(t−1,t)

Qmm (Z)
)

= E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Z − 1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)
(3.11)

−E(t−2,t−1)
Qmm

(
−1
γ
Hmet−1,T

)
.

On the other hand, (2.36) yields

−1
γ
Hmet−1,T = −1

γ
ht + E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
and the second term in (3.11) becomes

−E(t−2,t−1)
Qmm

(
−1
γ
Hmet−1,T

)
= −E(t−2,t−1)

Qmm

(
−1
γ
ht + E(t−1,t)

Qmm

(
−1
γ
Hmet,T

))
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= −E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
−1
γ
ht −

1
γ
Hmet,T

))
,

where we used the measurability properties of ht. Similarly, the first term in (3.11) becomes

E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Z − 1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Z − 1
γ
Hmet,T

)
−E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
ht + E(t−1,t)

Qmm

(
−1
γ
Hmet,T

))
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Z − 1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Z − 1
γ
Hmet,T −

1
γ
ht

))
.

Combining the above, (3.10) follows. �

We are now ready to provide the pricing algorithms for the indifference price. The first al-
gorithm uses the minimal martingale measure and the pricing functionals P(s,s+1)

Qmm and P(s,t)
Qmm

(cf. (3.7) and (3.8)) while the second one uses the minimal entropy measure and the pricing
functionals E(s,s+1)

Qme and E(s,t)
Qme (cf. (3.5) and (3.6)).

To ease the presentation, we first state the main theorems and, then, provide their proofs and
discussion.

Theorem 3.6. Consider a claim written at t0 = 0 and expiring at t yielding payoff Ct ∈ Ft.
For t = 1, ..., T and s = 0, 1, ..., t− 1, the following statements are true:

i) The indifference price νs(Ct), defined in (3.1), is given by the algorithm
νt (Ct) = Ct, (3.12)

νs (Ct) = P(s,s+1)
Qmm (νs+1 (Ct)) , (3.13)

where P(s,s+1)
Qmm is the single-step pricing functional defined in (3.7).

ii) The indifference price νs(Ct) ∈ Fs is given by

νs(Ct) = P(s,t)
Qmm (Ct) (3.14)

= E(s,t)
Qmm

Ct − 1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

− E(s,t)
Qmm

−1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

 , (3.15)

with the multi-step price functionals P(s,t)
Qmm and E(s,t)

Qmm defined, respectively, in (3.8) and (3.6)
for Q = Qmm.

iii) The pricing algorithm is consistent across time in that, for 0 ≤ s ≤ s′ ≤ t, the semigroup
property

νs (Ct) = P(s,s′)
Qmm (P(s′,t)

Qmm (Ct)) = P(s,s′)
Qmm (νs′ (Ct)) = νs(P(s′,t)

Qmm(Ct)) (3.16)
holds.

Theorem 3.7. Consider a claim written at t0 = 0 and expiring at t yielding payoff Ct ∈ Ft.
For t = 1, ..., T and s = 0, 1, ..., t− 1, the following statements are true:

i) The indifference price νs(Ct), defined in (3.1), is given by the algorithm
νt (Ct) = Ct,

νs (Ct) = E(s,s+1)
Qme (νs+1 (Ct)) , (3.17)

where E(s,s+1)
Qme is the single-step price functional defined in (3.5) for Q = Qme.
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ii) The indifference price process is given by

νs(Ct) = E(s,t)
Qme (Ct) , (3.18)

with the multi-step price functional E(s,t)
Qme defined in (3.6) for Q = Qme.

iii) The pricing algorithm is consistent across time in that, for 0 ≤ s ≤ s′ ≤ t, the semigroup
property

νs (Ct) = E(s,s′)
Qme (E(s′,t)

Qme (Ct)) = E(s,s′)
Qme (νs′ (Ct)) = νs(E(s′,t)

Qme (Ct)) (3.19)
holds.

We proceed with the following auxiliary result.

Lemma 3.8. Let s = 0, 1, ..., T − 1, E(s,s+1)
Qmm be defined in (3.5) for Q = Qmm and Z ∈ Fs+1.

Then,

sup
αs+1
EP
(
−e−γ(Xs+1−Z)|Fs

)
= −e

−γ
(
Xs−E(s,s+1)

Qmm (Z)
)
−hs+1

, (3.20)

with hs as in (2.8).

Proof. With As+1 as in (2.6) we have

sup
αs+1
EP
(
−e−γ(Xs+1−Z)|Fs

)
= −e−γXs

(
P(As+1|Fs)e−γαs+1Ss(ξus+1−1)EP

(
eγZ |Fs ∨As+1

)
+(1− P(As+1|Fs))e−γαs+1Ss(ξds+1−1)EP

(
eγZ |Fs ∨Acs+1

))
.

Differentiating with respect to αs+1 yields that the optimum occurs at

αs+1 = 1
γSs

(
ξus+1 − ξds+1

) ln

 EP
(
eγZ |Fs ∨As+1

)
P(As+1|Fs)

(
ξus+1 − 1

)
EP
(
eγZ |Fs ∨Acs+1

)
(1− P(As+1|Fs))

(
1− ξds+1

)
 .

Using the form of the density of the minimal martingale measure (see (2.11)) we obtain

sup
αs+1
EP
(
−e−γ(Xs+1−Z)|Fs

)
= − exp

(
−γXs + Qmm(As+1|Fs) lnEP

(
eγZ |Fs ∨As+1

)
+ (1−Qmm(As+1|Fs)) lnEP

(
eγZ |Fs ∨Acs+1

))
×

×
( P(As+1|Fs)

Qmm(As+1|Fs)

)Qmm(As+1|Fs) ( 1− P(As+1|Fs)
1−Qmm(As+1|Fs)

)1−Qmm(As+1|Fs)
.

Using once again the form of the density of the minimal martingale measure (2.11) and the
definition of E(s,s+1)

Qmm (cf. (3.5)), (3.20) follows. �

We are now ready to prove Theorem 3.6.

Proof. i) Equality (3.12) is immediate. We prove (3.13) for s = t− 1. From (2.38) we have
sup
αt
EP (Vt (Xt − Ct)| Ft−1)

= sup
αt
EP

(
−e−γ

(
Xt−

(
Ct− 1

γ
Hmet,T

))∣∣∣∣Ft−1

)
.

Using Lemma 3.8 for s = t− 1 and Z = Ct − 1
γH
me
t,T , we get

sup
αt
EP (Vt (Xt − Ct)| Ft−1) = −e

−γ
(
Xt−1−E(t−1,t)

Qmm
(
Ct− 1

γ
Hmet,T

))
−ht
.
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Combining the above with (3.1) and formula (2.38) for Vt−1, we deduce

νt−1 (Ct) = E(t−1,t)
Qmm

(
Ct −

1
γ
Hmet,T

)
+ 1
γ
Hmet−1,T −

1
γ
ht

= E(t−1,t)
Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
, (3.21)

where we used (2.22) for Hmet−1,T .
For s = t− 2, we have

sup
αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= sup
αt−1,αt

EP

(
−e−γ

(
Xt−2+αt−1(St−1−St−2)+αt(St−St−1)−

(
Ct− 1

γ
Hmet,T

))∣∣∣∣Ft−2

)
= sup
αt−1
EP
(
e−γ(Xt−2+αt−1(St−1−St−2))

× sup
αt
EP

(
−e−γ

(
αt(St−St−1)−

(
Ct− 1

γ
Hmet,T

))∣∣∣∣Ft−1

)∣∣∣∣Ft−2

)
.

Using Lemma 3.8 for s = t− 1 and Z = Ct − 1
γH
me
t,T , and (2.22) and (3.21) we deduce

sup
αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= sup
αt−1
EP

(
e
−γ
(
Xt−2+αt−1(St−1−St−2)−E(t−1,t)

Qmm
(
Ct− 1

γ
Hmet,T

))
−ht
∣∣∣∣∣Ft−2

)

= sup
αt−1
EP

(
e
−γ
(
Xt−2+αt−1(St−1−St−2)−

(
νt−1(Ct)+E(t−1,t)

Qmm
(
− 1
γ
Hmet,T

)
− 1
γ
ht

))∣∣∣∣∣Ft−2

)

= sup
αt−1
EP

(
e
−γ
(
Xt−2+αt−1(St−1−St−2)−

(
νt−1(Ct)− 1

γ
Hmet−1,T

))∣∣∣∣Ft−2

)
.

Using Lemma 3.8 once again, this time for s = t− 2 and Z = νt−1(Ct)− 1
γH
me
t−1,T , we obtain

sup
αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= −e
−γ
(
Xt−2−E(t−2,t−1)

Qmm
(
νt−1(Ct)− 1

γ
Hmet−1,T

))
−ht−1

. (3.22)
On the other hand, (2.38) yields,

Vt−2 (Xt−2 − νt−2(Ct)) = −e−γ(Xt−2−νt−2(Ct))−Hmet−2,T .

Comparing the above to (3.22), using the definition of the indifference price (3.1) and formula
(2.22), we deduce

νt−2(Ct) = E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)
− 1
γ
ht−1 + 1

γ
Hmet−2,T

= E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)
− E(t−2,t−1)

Qmm

(
−1
γ
Hmet−1,T

)
, (3.23)

and we conclude. For s = 0, ..., t− 3, (3.13) follows along similar arguments.
ii) In view of property (3.9), assertions (3.14) and (3.15) are equivalent. We only show (3.15).

For s = t− 1, (3.15) follows trivially. To show (3.15) for s = t− 2, we work as follows. We first
observe that (2.22) together with the measurability properties of the local entropy process ht
yield

E(t−2,t−1)
Qmm

(
−1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t)

Qmm

(
−1
γ
Hmet,T −

1
γ
ht

)
.
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On the other hand, using (3.13) for νt−1(Ct) and (2.22), we deduce

E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
+E(t−1,t)

Qmm

(
−1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

))
= E(t−2,t)

Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

)
.

Combining the above with (3.23) yields

νt−2(Ct) = E(t−2,t)
Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

)
− E(t−2,t)

Qmm

(
−1
γ
Hmet,T −

1
γ
ht

)
,

and we deduce (3.15). For s = 0, ..., t− 3, we work similarly.
The semigroup property (3.16) follows easily. �

We continue with the proof of Theorem 3.7.

Proof. We only need to establish that

E(s,s+1)
Qme (νs+1 (Ct))

= E(s,s+1)
Qmm

(
νs+1 (Ct)−

Hmes+1,T
γ

)
− E(s,s+1)

Qmm

(
−
Hmes+1,T
γ

)
,

since all assertions of the theorem would follow by straightforward arguments.
To this end, let Z = γνs+1 (Ct)−Hmes+1,T . Then (2.31) yields

J (s,s+1)
Qmm

(
γνs+1 (Ct)−Hmes+1,T

)
= J (s,s+1)

Qme (γνs+1 (Ct)) + J (s,s+1)
Qmm

(
−Hmes+1,T

)
and, in turn,

1
γ
J (s,s+1)

Qmm
(
γνs+1 (Ct)−Hmes+1,T

)
= 1
γ
J (s,s+1)

Qme (γνs+1 (Ct)) + 1
γ
J (s,s+1)

Qmm
(
−Hmes+1,T

)
.

We easily conclude. �

Discussion on the pricing algorithms: The indifference price is calculated via the iterative
pricing schemes (3.13) and (3.17), applied backwards in time, starting at the claim’s maturity.
The schemes have local and dynamic properties.

Dynamically, the pricing functionals P(s,t)
Qmm and E(s,t)

Qme are similar. Specifically, at each time
interval, say (s, s+1), the price νs(Ct) is computed via the single-step pricing operators, P(s,s+1)

Qmm

and E(s,s+1)
Qme , applied to the end of the period payoff. The latter turns out to be the indifference

price, νs+1(Ct), yielding prices consistent across time.
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Locally, however, the pricing roles of P(s,s+1)
Qmm and E(s,s+1)

Qme are very different both in structure
and the associated measures. We start with the latter price functional since it has the simpler
of the two forms. Valuation is executed in two steps, in analogy to the single-period counterpart
(3.4). In the first sub-step, the end of the period payoff, νs+1(Ct), is altered via a non-linear
functional and the conditioning on the information generated by Fs ∨ FSs+1. The new payoff,

ν̃s+1(Ct) = 1
γ

lnEQme
(
eγνs+1(Ct)

∣∣∣Fs ∨ FSs+1

)
(3.24)

emerges which is, in turn, priced by expectation. The indifference price is, then, given by

νs(Ct) = EQme(ν̃s+1(Ct) |Fs ). (3.25)

While structure-wise the price functional E(s,s+1)
Qme has a simple and intuitive form, the employed

measure Qme does not, as it can be seen from (2.17).
The situation is reversed in the first algorithm. Specifically, the pricing functional P(s,s+1)

Qmm
has no transparent form while the used measure, Qmm, has the intuitively pleasing property
(2.11). Indeed, P(s,s+1)

Qmm incorporates the minimal aggregate entropy 1
γH
me
s+1,T in a "palindromic"

manner. Namely, at each time step, the end of the period payoff νs+1 (Ct) is reduced by 1
γH
me
s+1,T

and priced, yielding the indifference price

ν1
s+1 = E(s,s+1)

Qmm

(
νs+1 (Ct)−

1
γ
Hmes+1,T

)
.

In turn, the payoff

ν2
s+1 = −E(s,s+1)

Qmm

(
−1
γ
Hmes+1,T

)
is added. Both quantities ν1

s+1 and ν2
s+1 are calculated via the two-step procedure similar to the

one described in (3.24) and (3.25). Notice that due to the non-linear character of the indifference
price, the entropic liability − 1

γH
me
s+1,T could not be factored out. This is a direct effect of the

internal market incompleteness in the model herein.
Therefore,

νs(Ct) = P(s,s+1)
Qmm (νs+1 (Ct))

= E(s,s+1)
Qmm

(
νs+1 (Ct)−

1
γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
−1
γ
Hmes+1,T

)

6= E(s,s+1)
Qmm (νs+1 (Ct)) .

The following results follow easily from the above pricing algorithms.

Corollary 3.9. Let the payoff Ct be of the form

Ct = Yt + Zt

with Yt ∈ Ft and Zt being such that there exist Zs ∈ FSs and αi ∈ FSi−1, i = s+ 1, ..., t, satisfying
Zt = Zs + Σti=s+1αi∆Si, a.e. Then,

νs (Ct) = νs (Yt + Zt) = νs (Yt) + Zs

= P(s,t)
Qmm (Yt) + EQmm

(
Zt| FSs

)
= E(s,t)

Qme (Yt) + EQme
(
Zt| FSs

)
.
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3.1. Multiple claims

We provide the pricing algorithms for the multi-claim case. For convenience, we assume that in
the interval [0, n+ 1] with n+1 ≤ T, we price a collection of n+2 claims, C0, C1, ..., Cj , ...Cn+1,
with each generic claim maturing at time j, j = 0, 1, ..., n+ 1 and yielding payoff Cj ∈ Fj . The
result follows easily from the earlier and, for this, we do not provide its proof.

Theorem 3.10. Consider a collection of n + 2 claims, written at t0 = 0, yielding payoffs
Cj ∈ Fj , with j = 0, 1, ..., n+ 1. The following statements hold:

i) The indifference price νs(Σn+1
j=sCj), is given, for s = 0, 1, ..., n+1, by the iterative algorithm

νn+1 (Cn+1) = Cn+1,

νs(Cs + Σn+1
j=s+1Cj) = Cs + P(s,s+1)

Qmm (Cs+1 + νs+1(Σn+1
j=s+2Cj))

= Cs + E(s,s+1)
Qme (Cs+1 + νs+1(Σn+1

j=s+2Cj)),

with P(s,s+1)
Qmm and E(s,s+1)

Qme as in (3.7) and (3.5).
ii) The indifference price process νs(Cs + Σn+1

j=s+1Cj) ∈ Fs and satisfies, for s = 0, 1, ..., n+ 1,

νs(Cs + Σn+1
j=s+1Cj)

= Cs + P(s,s+1)
Qmm

(
Cs+1 + P(s+1,s+2)

Qmm
(
Cs+2 + ...P(n−1,n)

Qmm
(
Cn + P(n,n+1)

Qmm (Cn+1)
)))

= Cs + E(s,s+1)
Qme

(
Cs+1 + E(s+1,s+2)

Qme
(
Cs+2 + ...E(n−1,n)

Qme
(
Cn + E(n,n+1)

Qme (Cn+1)
)))
.

3.2. The static certainty equivalent and the indifference price

The definition of indifference price motivates us to ask whether there is a natural connection
between the dynamic price νs (Ct) and the static certainty equivalent pricing rule. The latter is
given, say for a random variable Z, by

C (Z) = −u−1EP (u (−Z)) , (3.26)

with u being an increasing and concave utility function. Notice that this pricing rule is defined
in the absence of any trading activity.

Is the indifference price the dynamic analogue of the above static pricing rule? We will see
that, surprisingly, it is not!

To this end, we first introduce the auxiliary process V −1
s (x), s = 0, 1, ..., T , denoting the

spatial inverse of the value function process (2.5), given by

V −1
s (x) = − ln (−x)

γ
−
Hmes,T
γ
, x ∈ R−. (3.27)

Inspecting (3.26), we are motivated to define the following process, which we will be referring
to as the conditional certainty equivalent.

Definition 3.11. Let Z be a random variable in (Ω,F ,P) and Vs (x) and V −1
s (x) , s = 0, 1, ..., T,

be, respectively, the value function process and its inverse (cf. (2.5) and (3.27)). For Q ∈ QT ,
define the conditional certainty equivalent C(s,s+1)

Q (Z) by

C(s,s+1)
Q (Z) = −V −1

s+1

(
EQ

(
Vs+1 (−Z)| Fs ∨ FSs+1

))
. (3.28)

The following lemma follows from direct arguments.
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Lemma 3.12. Let the conditional certainty equivalent C(s,s+1)
Q , s = 0, 1, ..., T, be defined in

(3.28), and Qmm and Qme be the minimal martingale and minimal entropy measures. Then,

C(s,s+1)
Qmm (0) 6= 0 and C(s,s+1)

Qmm (Z) 6= C(s,s+1)
Qme (Z) .

Moreover,
C(s,s+1)

Qme

(
Z + 1
γ
Hmes+1,T

)
6= C(s,s+1)

Qme (Z) + C(s,s+1)
Qme

(1
γ
Hmes+1,T

)
with Z ∈ (Ω,F ,P) .

We note that there are particular cases when the above inequalities become equalities. These
cases are discussed in Proposition 4.4 and Theorem 4.5.

We are now ready to explore the analogies of the indifference price and the static certainty
equivalent.

Proposition 3.13. Let νs+1 (Ct) be the indifference price of the claim at time s = 0, 1, ..., t. Let
also C(s,s+1)

Qmm and C(s,s+1)
Qme be as in (3.28) for Q = Qmm,Qme and P(s,s+1)

Qmm and E(s,s+1)
Qme be as in

(3.7) and (3.5). Then, for s = 0, 1, ..., T ,

P(s,s+1)
Qmm (νs+1 (Ct)) = EQmm

(
C(s,s+1)

Qmm (νs+1 (Ct))
∣∣∣Fs)− EQmm

(
C(s,s+1)

Qmm (0)
∣∣∣Fs) . (3.29)

Similarly,
E(s,s+1)

Qme (νs+1 (Ct)) = EQme

(
C(s,s+1)

Qme

(
νs+1 (Ct) + 1

γ
Hmes+1,T

)∣∣∣∣Fs) (3.30)

−EQme

(
C(s,s+1)

Qme

(1
γ
Hmes+1,T

)∣∣∣∣Fs) .
Proof. To prove (3.29), we use Definition 3.11 to obtain

EQmm
(
C(s,s+1)

Qmm (νs+1 (Ct))
∣∣∣Fs)

= EQmm

( 1
γ

lnEQmm
(
eγνs+1(Ct)−Hmes+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
+ EQmm

( 1
γ
Hmes+1,T

∣∣∣∣Fs) (3.31)

= E(s,s+1)
Qmm

(
νs+1 (Ct)−

1
γ
Hmes+1,T

)
+ EQmm

( 1
γ
Hmes+1,T

∣∣∣∣Fs) .
For Z = 0, we have

EQmm
(
C(s,s+1)

Qmm (0)
∣∣∣Fs) = E(s,s+1)

Qmm
(
− 1
γH
me
s+1,T

)
+ EQmm

(
1
γH
me
s+1,T

∣∣∣Fs) . (3.32)

Subtracting (3.32) from (3.31) and using (3.7) yields (3.29).
To prove (3.30), we work similarly. To this end, we have

EQme

(
C(s,s+1)

Qme

(
νs+1 (Ct) + 1

γ
Hmes+1,T

)∣∣∣∣Fs)
= EQme

( 1
γ

lnEQmm

(
e
γ
(
Z+ 1

γ
Hmes+1,T

)
−Hmes+1,T

∣∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
+EQme

( 1
γ
Hmes+1,T

∣∣∣∣Fs)
= EQme

( 1
γ

lnEQmm
(
eγνs+1(Ct)

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)+ EQme

( 1
γ
Hmes+1,T

∣∣∣∣Fs)
= E(s,s+1)

Qme (Z) + EQme

( 1
γ
Hmes+1,T

∣∣∣∣Fs) .
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We also have
EQme

(
C(s,s+1)

Qme

(1
γ
Hmes+1,T

)∣∣∣∣Fs) = EQme

( 1
γ
Hmes+1,T

∣∣∣∣Fs) .
Subtracting the above we conclude. �

As the analysis above shows, there is no direct connection between the indifference price and
the conditional certainty equivalent. Indeed, using (3.14) and (3.29), we easily see

νs (Ct) 6= EQmm
(
C(s,s+1)

Qmm (νs+1 (Ct))
∣∣∣Fs) . (3.33)

Respectively, (3.18) and (3.30) yield

νs (Ct) 6= EQme
(
C(s,s+1)

Qme (νs+1 (Ct))
∣∣∣Fs) . (3.34)

These findings are direct consequences of the form of the investment performance process
Vt (x) (see (2.40) and (2.39)), as well as the measurability properties of the minimal aggregate
entropy Hmet,T (see, for example, (2.23) or (2.36)).

Remark 3.14. A direct analogy between the indifference price and the classical certainty equiv-
alent is present in two cases. Specifically, it holds when the binomial model is of reduced form.
This case is analyzed in detail in Section 4. It is, also, present in an alternative kind of indiffer-
ence prices built in reference to a new framework for portfolio choice in which the value function
process, Vs (x) , is replaced by its "forward" analogue (we refer the reader to [21] for further
details).

3.3. Risk preference normalization points and the related indifference prices

So far, we have derived indifference prices associated with an exponential utility function (pre)set
at time T. An important implicit assumption in the entire construction is that the claims we
consider mature before this exogenously chosen horizon. We will refer to the instant T as the
risk preference normalization point.

Two questions then arise: i) how the indifference prices depend on the choice of the risk
preference normalization point? and ii) can this dependence be relaxed? Herein, we only address
the first question and refer the reader to [21] for the second one.

In order to emphasize the dependence on the horizon choice, we introduce the notations
Vt,T (x) and νs (Ct;T ) for the value function and the indifference price, respectively. We will be
referring to νs (Ct;T ) as the indifference price normalized at T.

Theorem 3.15. Let T̂ and T be two normalization points with T̂ > T, and let Hmes,T and
Hme
s,T̂

be the associated minimal aggregate entropy processes. Consider a claim written at t0 = 0

and maturing at t = 0, 1, ..., T, yielding payoff Ct ∈ Ft. Let νs
(
Ct; T̂

)
and νs (Ct;T ) be the

indifference prices normalized at T̂ and T, respectively. Then, for 0 ≤ s ≤ t ≤ T,

νs
(
Ct; T̂

)
= νs (Ct − Zt;T ) + Zs (3.35)

where, for u = s, ..., t,
Zu = 1

γ

(
Hme
u,T̂
−Hmeu,T

)
. (3.36)

Proof. Consider the normalization point T̂ . Then, (2.38) yields

sup
αs+1,...,αt

EP
(
Vt,T̂ (Xt − Ct)

∣∣∣Fs) =

= sup
αs+1,...,αt

EP
(
− exp

(
−γ (Xt − Ct)−Hmet,T̂

)∣∣∣Fs)
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= sup
αs+1,...,αt

EP
(
− exp

(
−γ (Xt − Ct)−

(
Hme
t,T̂
−Hmet,T

)
−Hmet,T

)∣∣∣Fs)
= sup
αs+1,...,αt

EP

(
− exp

(
−γ

(
Xt −

(
Ct −

1
γ

(
Hme
t,T̂
−Hmet,T

)))
−Hmet,T

)∣∣∣∣Fs)
= sup
αs+1,...,αt

EP
(
− exp

(
−γ (Xt − (Ct − Zt))−Hmet,T

)∣∣∣Fs)
= sup
αs+1,...,αt

EP (Vt,T (Xt − (Ct − Zt))| Fs) ,

where we used (3.36). From (3.1), we have

sup
αs+1,...,αt

EP
(
Vt,T̂ (Xt − Ct)

∣∣∣Fs) = − exp
(
−γ

(
x− νs

(
Ct; T̂

))
−Hme

s,T̂

)
and, similarly,

sup
αs+1,...,αt

EP (Vt,T (Xt − (Ct − Zt))| Fs) = − exp
(
−γ (x− νs (Ct − Zt;T ))−Hmes,T

)
.

Combining the above we easily conclude. �

We conclude with an interesting parity result for the indifference price of the differential of
the minimal aggregate entropies.

Corollary 3.16. Consider a claim written at t0 = 0 and yielding at t, t = 1, ..., T, payoff (cf.
(3.36))

Zt = 1
γ

(
Hme
t,T̂
−Hmet,T

)
,

with T̂ > T. Then, for s = 0, 1, ..., t,

Zs = νs (−Zt;T ) = −E(s,t)
QmeT

(−Zt) . (3.37)

On the other hand,
Zs = νs

(
Zt; T̂

)
= E(s,t)

Qme
T̂

(Zt) . (3.38)

4. Reduced incomplete binomial models

We focus on an important special case of the incomplete binomial model introduced in Section
2. Specifically, we assume that neither the values nor the transition probabilities of the stock
price process are affected by the non-traded factor process, i.e. for t = 0, 1, ..., T − 1,

ξut+1 ∈ FSt and ξdt+1 ∈ FSt , (4.1)
and

P
(
ξt+1 = ξut+1 |Ft

)
= P

(
ξt+1 = ξut+1

∣∣∣FSt ) . (4.2)
We will call such an incomplete binomial model reduced.

Notice that under (4.1) and (4.2) the nested model becomes complete and market incomplete-
ness is generated only through the presence of the non-traded risk factor in the claim’s payoff.
To our knowledge, this is the only case analyzed so far in exponential indifference pricing in
binomial models (see, among others, [1], [18], [30] and [29])).

As it is expected, the minimal martingale and minimal entropy measures must coincide
since there is now a unique (nested) martingale measure. We denote this measure by Q ( ·| Ft) ,
t = 0, 1, ..., T. The interesting fact is that the minimal aggregate entropy looses its non-linear
character and reduces to a mere conditional expectation of the aggregate local entropy.

Lemma 4.1. Under assumptions (4.1) and (4.2), the local entropy process is
FSt -predictable, i.e., ht ∈ FSt−1, t = 1, ..., T.
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Proposition 4.2. In the reduced binomial model, the minimal martingale and minimal entropy
measures coincide, i.e. for t = 0, 1, ..., T,

Q ( ·| Ft) = Qmm ( ·| Ft) = Qme ( ·| Ft) . (4.3)

Moreover, the minimal aggregate entropy Hmet,T becomes

Hmet,T = EQ

 T∑
i=t+1

hi

∣∣∣∣∣∣FSt
 , (4.4)

with hi, i = t+ 1, ..., T, as in (2.8).

Proof. The proof is based on iterative arguments. Equality (4.3) holds trivially for t = T while
for t = T − 1 it was shown in (2.30). Equality (4.4) also holds for t = T, T − 1, as it can be
shown using (2.21) and (2.30).

Next, we observe that Lemma 33 yields HmeT−1,T ∈ FST−1 and, thus, the (conditional on FT−2)
values Hme,uuT−1,T and Hme,udT−1,T coincide. Therefore, (2.17) and (2.11) imply

Qme(AT−1BT−1|FT−2) = Qmm(AT−1BT−1|FT−2).

Similar arguments yield analogous equalities for the values of Qme(·|FT−2) and Qmm(·|FT−2)
on the sets AcT−1BT−1, AT−1B

c
T−1 and AcT−1B

c
T−1. Thus, (4.3) is shown for t = T − 2.

Using once more that HmeT−1,T is FST−1-measurable, (2.22) implies

HmeT−2,T = hT−1 + Qmm(AT−1|FT−2)Hme,uuT−1,T + Qmm(AcT−1|FT−2)Hme,duT−1,T .

In turn,
HmeT−2,T = hT−1 + EQmm(HmeT−1,T |FT−2) = EQmm(hT−1 + hT |FT−2),

and (4.4) follows for t = T − 2. The rest of the proof follows by similar arguments which are
omitted. �

Combining (4.4) with Proposition 2.16, we deduce the following result.

Proposition 4.3. Under assumptions (4.1) and (4.2), the value function process Vt (x) is
FSt −adapted and given by

Vt (x) = − exp

−γx− EQ

 T∑
i=t+1

hi

∣∣∣∣∣∣FSt
 ,

with Q as in (4.3) and h as in (2.8).

The next result shows that in the reduced binomial model, the pricing functionals P(s,s+1)
Q

and E(s,s+1)
Q coincide. Moreover, they are equal to the conditional expectation of the conditional

certainty equivalent C(s,s+1)
Q .

Proposition 4.4. Let Q be as in (4.3) and Z be a random variable in (Ω,F ,P). For s =
0, 1, ..., T − 1, the following statements are true.

i) The single-step pricing functionals P(s,s+1)
Qmm and E(s,s+1)

Qme (Z) (cf. (3.7) and (3.5)) coincide

P(s,s+1)
Q (Z) = E(s,s+1)

Q (Z) .

ii) Moreover, the conditional certainty equivalence defined in (3.28) satisfies

EQ
(
C(s,s+1)

Q (Z)
∣∣∣Fs) = P(s,s+1)

Q (Z) = E(s,s+1)
Q (Z) .
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Proof. i) From (3.7) we have

P(s,s+1)
Qmm (Z) = E(s,s+1)

Qmm

(
Z − 1
γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
−1
γ
Hmes+1,T

)
.

Property (4.4) implies Hmes+1,T ∈ FSs+1, for s = 0, 1, ..., T − 1, and, thus,

E(s,s+1)
Qmm

(
Z − 1
γ
Hmes+1,T

)
= E(s,s+1)

Qmm (Z)− EQmm

(1
γ
Hmes+1,T | Fs

)
.

Similarly,

E(s,s+1)
Qmm

(
−1
γ
Hmes+1,T

)
= −EQmm

(1
γ
Hmes+1,T | Fs

)
.

Combining the above with (4.3) we easily conclude.
ii) We only show that

EQ
(
C(s,s+1)

Q (Z)
∣∣∣Fs) = E(s,s+1)

Q (Z) ,

since the rest of the statements follow easily. To this end, using (4.3), (2.38) and (3.27), we
deduce

EQ
(
C(s,s+1)

Q (Z)
∣∣∣Fs) = EQ

( 1
γ

lnEQ
(
eγZ−H

me
s+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
+EQ

(1
γ
Hmes+1,T | Fs

)
.

Using that in the reduced model Hmes+1,T ∈ FSs+1, we obtain

EQ

( 1
γ

lnEQ
(
eγZ−H

me
s+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)

= E(s,s+1)
Q (Z)− EQ

(1
γ
Hmes+1,T | Fs

)
,

and the assertion follows. �

We are now ready to state the main theorems of this section. The first theorem, a direct
consequence of the above result, states that in the reduced model the two pricing algorithms
(presented on Theorems 22 and 23) coincide. It, also, states that the single-step indifference
price functional yields a natural stochastic extension of the classical certainty equivalent rule.

The second theorem shows that in the reduced model the indifference price is not affected by
the risk preference normalization point. The intuition behind this property is the following. In
the general model, there are two sources of market incompleteness, one coming from the payoff
and the other from the model itself. The latter affects the form of the value function which
is also affected by the choice of the normalization point. Once the internal incompleteness is
removed, the measurability of the minimal aggregate entropy reduces and scaling simplifications
take place.

Theorem 4.5. In the reduced binomial model, the indifference price νs(Ct) satisfies

νt (Ct) = Ct,

and, for s = 0, 1, ..., t,

νs (Ct) = P(s,s+1)
Q (νs+1 (Ct)) = E(s,s+1)

Q (νs+1 (Ct))

= EQ
(
C(s,s+1)

Q (νs+1 (Ct))
∣∣∣Fs) .
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Theorem 4.6. In the reduced binomial model, the indifference prices are invariant with respect
to the choice of the risk preference normalization point. Specifically, consider a claim written at
t0 = 0 and maturing at t = 0, 1, ..., T, yielding payoff Ct ∈ Ft. Let T , T̂ be two normalization
points with T̂ > T and νs (Ct;T ), νs

(
Ct; T̂

)
, s = 0, 1, ..., t, , be the associated indifference prices.

Then,
νs (Ct;T ) = νs

(
Ct; T̂

)
. (4.5)

Proof. Using (4.4) we have Hmes,T ′ ∈ FSs , for T ′ = T , T̂ and s ≤ t ≤ T . Therefore, the claim
Zt = Hme

t,T̂
−Hmet,T ∈ FSt and, in turn, (3.37) implies, for s = 0, 1, ..., t, Zs = EQ(Zt| Fs). Equation

(3.35), then, yields
νt−1

(
Ct; T̂

)
= νt−1 (Ct − Zt;T ) + Zt−1

= νt−1 (Ct;T )− EQ (Zt| Ft−1) + Zt−1 = νt−1 (Ct;T ) ,
with Q as in (4.3). Similarly, for s = t− 2, we deduce, using (3.35),

νt−2
(
Ct; T̂

)
= νt−2

(
νt−1 (Ct;T ) ; T̂

)
= νt−2 (νt−1 (Ct;T )− Zt−1;T ) + Zt−2

= νt−2 (νt−1 (Ct;T ) ;T )− EQ (Zt−1| Ft−2) + Zt−2

= νt−2 (νt−1 (Ct;T ) ;T ) = νt−2 (Ct;T ) .
Proceeding iteratively and using similar to the above arguments, we obtain (4.5) for s =
0, 1, ..., t− 2. �

5. Numerical results

We study numerically the dependence of the indifference price on the risk preference normaliza-
tion point T and on the risk aversion parameter γ. We consider a non-reduced incomplete model
in which the stochastic factor affects both the claim’s payoff and the transition probabilities of
the stock price process.

Specifically, we assume that the values ξut , ξdt , ηut and ηdt , t = 0, 1, ..., T, (cf. (2.1) and (2.2))
are given by

ξut = 1 + µdt+ σ
√
dt and ξdt = 1 + µdt− σ

√
dt,

and
ηut = 1 + bdt+ a

√
dt and ηut = 1 + bdt− a

√
dt,

with the constants σ, µ, a and b satisfying −σ < µ
√
dt < σ and −a < b

√
dt < a.

The time increment dt is given by dt = 1
N T where T and N represent, respectively, the risk

preference normalization point and the number of periods in [0, T ]. For t = 0, 1, ..., T , we choose
P(Yt = Y ut | Ft−1) = 0.5,

P(St = Sut | Ft−1) =
{

0.75, Yt−1 ≥ Y0,
0.5, otherwise

and
Cor (∆St,∆Yt| Ft−1) = 0.5.

We consider a call option written only on the stochastic factor and maturing at T, i.e. CT =
(YT −K)+. The model parameters are chosen as σ = 0.2, a = 0.5, b = µ = 0 and S0 = Y0 =
K = 10.

Figures 1 and 2 show, respectively, the dependence of the option’s price on the risk preference
normalization time, T, and the risk aversion coefficient, γ.
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Figure 2. Dependence of the indifference price on the risk aversion.

In Figure 1, γ is fixed at 0.2. The number of time increments, N, varies from 60 to 155 in 5
unit-increments, and T varies from 0.083 to 0.215. The claim’s expiration time is fixed at 0.083
years.

In Figure 2, N = 115, T=0.4792, the claim’s expiration time is set at 0.25 years and γ varies
from 0.001 to 0.901, with 0.045 increments.
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Finally, Figure 3 incorporates changes in both T and γ. Therein, N and T are varying as in
Figure 1.

As discussed earlier, the indifference price changes with the risk preference normalization
point. For the chosen example, the price decreases as the normalization point moves further
away from the expiration time. This dependence dissipates considerably when the normalization
point is set at more than twice the contract’s expiration. It is worth noticing that Figure 1
suggests that the price has a finite limit as T → +∞. Two interesting questions arise: i) does
the price limit as T → +∞ coincide with a price obtained from any known pricing methodology
and ii) do such limits exist for other, more general, contingent claims? We plan to address these
questions in another paper.

Figure 2 shows the dependence of the indifference price on the risk aversion for a fixed horizon
choice T . The latter is taken to be different that the claim’s expiration time. One easily sees the
well known result that the price is monotone with respect to γ.

Figure 3 displays results for various levels of risk aversion, namely, when γ = 0.001, 0.5, and
1.0. The graph highlights the interplay between the risk preference normalization point and
the risk aversion coefficient. As it is well known, when the risk aversion approaches zero, the
indifference price becomes linear.

Based on the latter observation, one may wrongly expect that the dependence on T vanishes
for small values of γ. This is not, however, what the graph shows. For example, when γ = 0.001,
significant dependence on T is still present on the price. In our opinion, this dependence may
be attributed to the fact that while the pricing functional (3.5) is independent of the horizon
choice, the associated pricing measure, the minimal entropy one, is (cf. (2.17)). As discussed
earlier, this dependence is reversed if one uses the pricing algorithm in Theorem 23, in that
now the pricing functional (3.7) depends on the normalization point while the pricing measure,
the minimal martingale one, does not (cf. (2.11)). In both cases, the corresponding dependences
prevail even if the risk aversion coefficient becomes very small.
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5.1. Comparison to linear pricing rules

By far, both in theory and practice, the most popular pricing approach in incomplete markets is
based on the construction of the price as the conditional expectation of the (discounted) payoff
under a specific martingale measure. This approach produces the price in an ad hoc way and
not as the outcome of replicating strategies, for perfect replication is not feasible. On the other
hand, the deduced price inherits all desirable features of the one in complete markets, especially
its semi-group property and linearity with respect to the claim’s payoff4.

How to choose this measure is the topic of very active research. In continuous time models
with stochastic volatility that is correlated with the stock diffusion process - which is the clos-
est analogue of our binomial model - a convenient representation of all equivalent martingale
measures is via the family of the so-called q−optimal measures (see, among others, [9] and [12]).
Three values are the most popular, namely, q = 0, q = 1 and q = 2. The choice q = 0 yields the
minimal martingale measure while q = 1 generates the minimal entropy measure. For q = 2, the
associated measure is the variance-optimal measure (see below).

The parameter q, then, becomes a useful index and a natural question arises, whether the
associated prices are monotone with respect to it. The answer is affirmative and we refer the
reader to [9] and [11]. To our knowledge, a similar analysis for non-reduced binomial models has
not been carried out. This requires extensive work and will be addressed in the future.

Next, we take a preliminary step and only study numerically two families of "prices". The first
one consists of expectations of the payoff under the minimal martingale and minimal entropy
measures, Qmm (q = 0) and Qme (q = 1), and the minimal variance measure, denoted by analogy
by Qmv (q = 2). In an self-evident notation, we denote these quantities by

π0
s (Ct) = E(s,t)

Qmm (Ct) , π1
s (Ct) = E(s,t)

Qme (Ct) and π2
s (Ct) = E(s,t)

Qmv (Ct) . (5.1)
The second family consists of their non-linear counterparts, namely,

π̂0
s (Ct) = E(s,t)

Qmm (Ct) , π̂1
s (Ct) = E(s,t)

Qme (Ct) and π̂2
s (Ct) = E(s,t)

Qmv (Ct) , (5.2)
where the nonlinear functionals are given in Definition 19 for Q = Qmm,Qme and Qmv. Clearly
the indifference price computed herein satisfies

νs (Ct) = π̂1
s (Ct) . (5.3)

In analogy to the results in Propositions 3 and 5 where we provide, respectively the densities
of the minimal martingale and minimal entropy measures (q = 0 and q = 1), we construct the
density of the measure (q = 2). We first recall the definition of the latter (see, for example, [3]
and [27]).

The variance-optimal measure, Qmv (· |Ft ), t = 1, ..., T, is defined on FT as the minimizer of
Hmvt,T where

Hmvt,T (Q (· |Ft ) | P (· |Ft )) = EP

(
Q (· |Ft )
P (· |Ft )

2
|Ft

)
,

for t = 1, ..., T and Q ∈QT , i.e.

Hmvt,T (Qmv (· |Ft ) | P (· |Ft )) = min
Q∈QT

Hmvt,T (Q (· |Ft ) | P (· |Ft )) . (5.4)

The following results are, to the best, of our knowledge, new. They resemble the ones derived
for the minimal entropy measure (see Propositions 5 and 9). With a slight abuse of notation, we
refer to Hmvt,T as the minimal entropy. The calculations to derive the formulae below are rather
tedious and are omitted for the sake of presentation.

4Implicitly, the price operator is also independent of any individual investment horizon.
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Proposition 5.1. The variance-optimal measure, Qmv, satisfies, for t = 1, ..., T,

Qmv (AtBt| Ft−1)
P (AtBt| Ft−1)

=
Qmv (At| Ft−1)Hmv,udt,T

P (AtBt| Ft−1)Hmv,udt,T + P (AtBct | Ft−1)Hmv,uut,T

, (5.5)

Qmv (AtBct | Ft−1)
P (AtBct | Ft−1)

=
Qmv (At| Ft−1)Hmv,uut,T

P (AtBt| Ft−1)Hmv,udt,T + P (AtBct | Ft−1)Hmv,uut,T

,

Qmv (ActBt| Ft−1)
P (ActBt| Ft−1)

=
Qmv (Act | Ft−1)Hmv,ddt,T

P (ActBt| Ft−1)Hmv,ddt,T + P (ActBct | Ft−1)Hmv,dut,T

and
Qmv (ActBct | Ft−1)

P (ActBct | Ft−1)
=

Qmv (Act | Ft−1)Hmv,dut,T

P (ActBt| Ft−1)Hmv,ddt,T + P (ActBct | Ft−1)Hmv,dut,T

where At, Bt are as in (2.6) and Hmv,uut,T ,Hmv,udt,T ,Hmv,dut,T ,H(mv,dd
t,T are the values of the Ft−measurable

random variable Hmvt,T (cf. (5.4)) conditional on Ft−1.

Next, we provide an iterative scheme for the computation of the minimal entropy Hmvt,T .

Proposition 5.2. The minimal entropy Hmvt,T is given by the iterative scheme

HmvT,T = 0 and HmvT−1,T = Qmv(AT | FT−1)
P(AT | FT−1)

+ (1−Qmv(AT | FT−1))2

1− P(AT | FT−1)
and

Hmvt−1,T = Qmv(At| Ft−1)
P(At| Ft−1)

Hmv,udt,T Hmv,uut,T

P(AtBt|Ft−1)
P(At|Ft−1) H

mv,ud
t,T + P(AtBct |Ft−1)

P(At|Ft−1) H
mv,uu
t,T

+(1−Qmv(At| Ft−1))2

1− P(At| Ft−1)
Hmv,ddt,T Hmv,dut,T

P(ActBt|Ft−1)
1−P(At|Ft−1)H

mv,dd
t,T + P(ActBct |Ft−1)

1−P(At|Ft−1)H
mv,du
t,T

.

We are now ready to compute the quantities in (5.1) and (5.2).
Figure 4 shows the dependence of the linear prices in (5.1) on the risk preference normal-

ization point T . Naturally, the minimal martingale measure yields prices independent of T . To
the contrary, the minimal entropy and the variance-optimal measure exhibit monotonically de-
creasing dependence on T . Moreover, the graph shows that prices are monotone with respect to
parameter q, with smaller values of q giving higher prices. Thus the q-monotonicity result of [9]
appears to be valid for the binomial model at hand as well.

Figure 5 describes the nonlinear prices in (5.2). All three prices depend on the risk aversion
parameter, as expected from the definition of the nonlinear price functional. Moreover, for all
three values q = 0, 1, 2, the dependence on the risk preference normalization point, T, bears
the same character as for the linear pricing operators. Finally, we observe that the non-linear
expectations are also monotone with respect to parameter q, with higher prices obtained for
smaller values of q.

Remark 5.3. As we previously mentioned, the case q = 1 corresponds to the indifference price
defined and constructed herein (cf. (5.3)). On the other hand, one can show that the case of
q = 0 corresponds to an indifference price that is built on a new kind of risk preferences. These
are the so-called forward performance processes (see, for example, [22]). A complete study of
the forward indifference prices can be found in [21]. Interesting questions related to qualitative
and quantitative studies of the traditional and the forward prices are left for future research.
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Figure 4: Dependence of the linear prices on the risk preference normalization
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6. Glossary

• Vt (x) : value function (maximal expected utility) process

• T : terminal horizon, risk preference normalization point

• Qmm (· |Ft ) , t = 1, ..., T, minimal martingale measure defined on FT

• Qmm : abbreviated notation for the minimal martingale measure

• Qme (· |Ft ) , t = 1, ..., T, minimal entropy measure defined on FT

• Qme : abbreviated notation for the minimal entropy measure

• Hmet,T : minimal aggregate entropy with respect to the minimal entropy measure

• J (s,s+1)
Q and J (s,s′)

Q : single- and multi-step entropic nonlinear functionals evaluated at a
generic martingale measure measure Q

• νs (Ct) : indifference price, evaluated at s, of a claim maturing at t = 0, 1, ..., T

• P(s,s+1)
Qmm and P(s,s′)

Qmm : single- and multi-step price functionals evaluated at the minimal
martingale measure

• E(s,s+1)
Qme and E(s,s′)

Qmm : single- and multi-step price functionals evaluated at the minimal
entropy measure

• C(s,s+1)
Q : conditional certainty equivalent evaluated at a generic martingale measure Q

νs
(
Ct; T̂

)
: indifference price, evaluated at s, of a claim maturing at t with terminal

utility set at time T̂ , t < T̂ .
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