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ABSTRACT

This paper addresses the blind symbol identifiability of the or-
thogonal space-time block code (OSTBC) scheme. That is, the
conditions under which OSTBC symbols can be identified with-
out ambiguity when channel state information is not available. In
many space-time communication schemes, achieving unique blind
symbol identification requires certain assumptions on the number
of receiver antennas and the rank of the channel matrix. In this
paper we show that unique blind symbol identification of OST-
BCs is possible for any number of receiver antennas and for any
(nonzero) channel matrix. This attractive unique identifiability re-
sult is shown to be achieved by a class of OSTBCs that exhibit
certain matrix non-rotational properties. Using these properties,
we validate the identifiability of a number of commonly used OS-
TBCs.

1. INTRODUCTION

Orthogonal space-time block coding [1–3] is a multiple-input-
multiple-output (MIMO) communication scheme that uses a sim-
ple code structure to achieve the maximum spatial diversity gain.
Assuming that channel state information (CSI) is available at the
receiver, the maximum-likelihood (ML) detection of orthogonal
space-time block codes (OSTBCs) requires only simple linear pro-
cessing. This feature is attractive from a detection standpoint be-
cause in many other MIMO schemes, achieving ML detection with
CSI often turns out to be a computationally challenging optimiza-
tion problem [4–6]. ML detection without CSI, commonly re-
ferred to as blind ML detection, has recently been investigated
for the OSTBC scheme [7, 8]. Like the coherent ML detection
case, the OSTBC scheme is shown to exhibit a much simpler blind
ML detection problem compared to that of other linear space-time
schemes such as [9–12]. This simplicity has led to an effective
blind receiver [8] that accurately approximates blind ML detection
with a worse-case complexity polynomial in the number of sym-
bols processed.

A key aspect of blind detection techniques is blind symbol
identifiability. That is, the conditions under which the informa-
tion symbols can be uniquely detected, up to mild effects such as
a sign. In many linear MIMO schemes such as spatial multiplex-
ing (SM) [9–11] and linear dispersion based block coding [12,13],
unique symbol identifiability relies on several factors such as the
rank of the channel matrix, the number of receiver antennas, and
the data frame length. In the SM scheme, for instance, the trans-
mitted symbols are uniquely identifiable when the channel matrix
is of full rank, the number of receiver antennas is no less than
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that of transmitter antennas, and the frame length is very large rel-
ative to the number of transmitter antennas [11]. We will show
that in the OSTBC scheme, unique symbol identifiability depends
solely on the code structure. In other words, unique blind symbol
identification of OSTBCs is possible for any number of receiver
antennas and for any (nonzero) channel matrix. In the following,
we will illustrate how the structure of the OSTBC guarantees such
an attractive unique symbol identifiability result. Some examples
of uniquely identifiable OSTBCs will also be given.

2. BACKGROUND

In this section we review the orthogonal space-time block coding
scheme, and describe its blind symbol identifiability problem.

2.1. Signal Model for the OSTBC Scheme

Consider the transmission of a space-time block code (STBC) over
a flat fading channel using Mt transmitter antennas. Let T define
the time block length of the STBC, and assume that the receiver
is equipped with Mr antennas. The received STBC signal can be
modeled as

Y HC s V s AK (1)

where

H Mr Mt MIMO channel matrix with Hmn being the fading
coefficient of the link between the nth transmitter
and mth receiver antennas;

s information symbol block;

C s Mt T code matrix transmitted by the Mt transmitter an-
tennas;

Y Mr T received code matrix;

A symbol constellation set;

K number of symbols per block;

V Mr T additive white Gaussian noise (AWGN) matrix.

In the orthogonal STBC (OSTBC) scheme with real symbol con-
stellations, C takes on the following linear structure [2, 3]

C s
K

∑
k 1

Xksk (2)

where sk is the kth element of s, and Xk
Mt T are constituent

matrices of the code. The set Xk
K
k 1 satisfies Mt T , K T ,

and

XkXT
k I XkXT X XT

k k (3)
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An OSTBC is said to be of full rate if K T . In this work we
focus on binary phase shift keying (BPSK) constellations; i.e., A

1 1 , and we assume that the symbols are independent of one
another. It can be verified from (3) that

C s CT s KI for any s 1 1 K (4)

This semi-orthogonality property leads to two important advan-
tages: i) the maximum spatial diversity gain is achieved; and ii)
with channel state information (CSI), maximum-likelihood (ML)
detection requires only simple linear processing. It was shown [8]
that the ML detector for unknown CSI can also be much simplified
by exploiting the structure in (4). As a tradeoff for the full diversity
gain, the data rate of the OSTBC scheme (i.e., K T symbols/s/Hz)
is inherently restricted to be no greater than 1 symbol/s/Hz, which
is lower than that of some MIMO schemes such as spatial multi-
plexing [9, 10] and linear dispersion block coding [12, 14].

2.2. Blind Detection and Identifiability

In the scenario of blind detection or detection without CSI, the ML
detector structure depends on the MIMO fading channel model.
Here we apply two usual assumptions that lead to the so-called de-
terministic blind ML detector [7]. First, we assume that the MIMO
fading coefficients are slowly time varying such that H remains
fixed over P consecutive code blocks. In this case it is appropriate
to add a block index, p, to the OSTBC signal model in (1):

Yp HC sp Vp p 1 P (5)

where Yp is the pth received signal block, sp 1 1 K is the
pth symbol block, and Vp is again AWGN. Second, we assume H
to be deteministically unknown. For notational convenience, we
collect all information symbol blocks to form a single matrix

S s1 sP 1 1 K P (6)

Under the above two assumptions, the blind ML receiver is shown
to take on the form [7, 8, 11]:

Ĥ Ŝ arg min
H̄ Mr Mt

S̄ 1 1 K P

P

∑
p 1

Yp H̄C s̄p
2
F (7)

where F is the Frobenius norm. Note from (7) that the blind
ML detector jointly detects S from the whole received signal frame
Y1 YP , unlike the known CSI case where it is sufficient to

detect each sp from its respective received code block Yp.
In this work we are interested in the blind identifiability prob-

lem. Other issues such as realization of (7) can be found else-
where [7,8]. To understand blind identifiability, consider that noise
is absent (i.e., Vp 0 for all p). Then Ĥ Ŝ H S is an ML
solution minimizing the objective function in (7). But H S is
the unique ML solution only when we cannot find another solu-
tion, denoted by H̃ S̃ , such that

HC sp H̃C s̃p p 1 P (8)

One immediately obvious situation leading to (8) is when H̃ S̃
H S . Fortunately, this particular ambiguity can be easily

resolved by other means [11]. In the subsequent section, we will
place our emphasis on examining the existence and non-existence
of the other code ambiguity possibilities. This aspect is equally

important to the nonzero noise case, since an ML solution Ĥ Ĉ
could be subjected to a code ambiguity effect similar to (8).

In order to place in context the blind identifiability properties
of OSTBCs that we will derive below, we briefly review the blind
identifiability properties of the spatial multiplexing (SM) scheme.
In the SM scheme, every transmitter antenna transmits its own
independent stream of information symbols. The model in (5)
represents the SM received signal if we set T 1, K Mt , and
C sp sp. The blind identifiability of SM is as follows:

Theorem 1 (Talwar et. al [11]) Consider the SM scheme with
BPSK symbols. Given Y1 YP HS, the symbol matrix
S can be uniquely identified up to signs and permutations in the
rows of S if

i) H is of full column rank; and
ii) the columns of S contain at least 2Mt 1 distinct1 Mt-tuples

in 1 1 Mt .

The (sufficient) conditions in this theorem place two restrictions on
the applicability of blind SM detection. First, to satisfy Condition
i) of Theorem 1, it is necessary that Mr Mt . Second, we need
P 2Mt 1 such that Condition ii) of Theorem 1 occurs with a
high probability.

In the next section we will show that the blind identifiability
conditions in the OSTBC scheme are much less restrictive than
those in the SM. In particular, there is no restriction on the channel
matrix H and the number of receiver antennas.

3. BLIND IDENTIFIABILITY IN OSTBCS

In this section we examine the blind symbol identifiability aspects
of the OSTBC scheme. Due to the lack of space, some of the
theorems will be stated without proof. Details for the proofs will
be given elsewhere [15].

3.1. The Code Rotation Problem

We consider a class of OSTBCs, which we call rotatable OSTBCs.
In blind detection, rotatable OSTBCs always result in non-unique
symbol identification and hence should be avoided. The definition
of rotatable OSTBCs is as follows:

Definition 1 An OSTBC matrix C is said to be rotatable if
there exists a matrix Q Mt Mt , Q I, such that for any
s 1 1 K ,

QC s C s̃ (9)

for some s̃ s, s̃ 1 1 K. Otherwise, C is said to be
non-rotatable. Such a Q, if exists, is called a code rotation matrix.

It immediately follows from Definition 1 and the orthogonality
property in (4) that any code rotation matrix Q is orthonormal.
To demonstrate the problem with rotatable OSTBCs, consider
again the noise free received signal matrices Yp HC sp , where
p 1 P. Suppose that C is rotatable, and let Q be a code ro-
tation matrix of C . Then each Yp can be alternatively expressed
as

Yp HQT QC sp

HQT C s̃p (10)

1Here, two vectors a and b are said to be distinct if a b.
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for some s̃p sp, s̃p 1 1 K . It is clear from (10) that the
rotatable code results in code ambiguity for any S 1 1 K P.

The following is an example of a rotatable OSTBC:

Example 1 Consider a code with Mt T K 2 [2], given by

X1
1 0
0 1 X2

0 1
1 0 (11)

Define a matrix Q X2. Since QX1 X2 and QX2 X1,

QC s1 s2
T C s2 s1

T (12)

in which the symbols s1 and s2 are interchanged and sign altered
after the matrix multiplication process. Eq. (12) indicates that this
OSTBC is rotatable.

Inspired by Example 1, we consider a particular code rotation case
as follows:

Lemma 1 Suppose that there is a matrix Q Mt Mt satisfying

QXk dkXik (13)

for k 1 K, where dk 1 1 , ik 1 2 K is an
index with ik k and ik i for k . In this case C(.) is rotatable.

Lemma 1 describes the case where code rotation results in reorder-
ing and sign altering of each sp. In fact, all rotatable codes fall into
the code rotation case in Lemma 1, as we show in the following
theorem:

Theorem 2 If C is rotatable and Q is its associated code rota-
tion matrix, then the condition in (13) holds.

Using Theorem 2, we can identify a class of OSTBCs that are
non-rotatable. Let R A denote the range space of A. Consider
the following corollary:

Corollary 1 If the set of OSTBC constituent matrices Xk
K
k 1 is

such that for any k ,

R XT
k R XT (14)

then the respective OSTBC is non-rotatable.

The proof of Corollary 1 is as follows. To satisfy (13), it is nec-
essary that some linear combinations of the rows of Xk form the
rows of Xik . This condition is impossible if (14) holds.

The following is an example of a non-rotatable OSTBC that
satisfies the sufficient non-rotatability condition in Corollary 1.

Example 2 Consider the 3 4 full rate OSTBC with constituent
matrices [16]

X1

eT
1

eT
2

eT
3

X2

eT
2
eT
1

eT
4

X3

eT
3
eT
4

eT
1

X4

eT
4

eT
3
e2

(15)

where ei
4 is a unit vector with the nonzero element at the i

entry. Let us compare X1 and X2. We see that no linear combi-
nation of the rows of X2 will form the 3rd row of X1; i.e., e3. In
other words, we have R XT

1 R XT
2 . Likewise it is verified

that R XT
k R XT for any k . Hence this OSTBC is non-

rotatable by Corollary 1. The non-rotatability of this OSTBC was
also confirmed by numerical inspection. .

We should point out that Corollary 1 is not applicable to the
case of Mt T . In this square OSTBC case, the code constituent
matrices Xk are orthogonal matrices due to the property in (3).
Subsequently we have that R XT

k
T for all k, which violates

(14). In fact, the following subsection will show that square OST-
BCs do not generally guarantee unique blind symbol identification.

3.2. Strict Code Non-Rotatability

The previous subsection has illustrated that for unique blind sym-
bol identification, the OSTBC has to be non-rotatable. However,
using non-rotatable codes is not sufficient to guarantee unique
symbol identification. We notice from Definition 1 that for a non-
rotatable code, there does not exist a matrix Q such that the code
ambiguity situation

QC s C s s 1 1 K s (16)

can be satisfied for every s 1 1 K . The non-rotatable code
property, however, does not rule out the possibility that (16) can
be satisfied for some s 1 1 K . Suppose that C is non-
rotatable but satisfies (16) for two particular distinct symbol vec-
tors s s 1 1 K . Then, one can verify from (10) that the
previously shown code ambiguity problem may not occur for ev-
ery S, but will occur when S s s s or when
S s s s . This problem motivates us to consider
a stronger version of code non-rotatability:

Definition 2 An OSTBC matrix C is said to be strictly non-
rotatable if there does not exist a matrix Q Mt Mt such that

QC s C s (17)

for any s s 1 1 K , s s ; or equivalently if

R CT s R CT s (18)

for any s s 1 1 K , s s .

From (18) we obtain the following result:

Lemma 2 No OSTBC with Mt T can be strictly non-rotatable.

Lemma 2 is due to the fact that for Mt T , C is a square orthog-
onal matrix [cf., the property in (4)] and therefore R CT s

T for any s .
We conclude from the above discussion that for arbitrary S,

using strictly non-rotatable codes is a necessary condition for
unique symbol identification. In fact, we can also show that the
strictly non-rotatable code condition is also a sufficient condition
for unique symbol identification, as described in the following the-
orem:

Theorem 3 Consider a non-trivial case where H 0, S
1 1 K P, and P 1 are arbitrary. Given Yp HC sp for

p 1 P, S is uniquely identifiable up to a sign if and only if
C is strictly non-rotatable.

A comparison of the blind symbol identifiability of the OS-
TBC and SM schemes (cf., Theorems 3 and 1, respectively) re-
veals an attractive benefit of using the OSTBC scheme. To guar-
antee unique symbol identification in the SM scheme, we need the
MIMO channel matrix H to be of full column rank. This implies
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full rate code non-rotatable? strictly
Mt T non-rotatable?
2 2 no no
3 4 yes yes
4 4 no no
5 8 yes yes
6 8 yes no
7 8 yes yes
8 8 yes no

Table 1: Rotatability of various full rate OSTBCs. The Mt 8
codes with Mt 8 are obtained by keeping the first Mt rows of
the 8 8 full rate code in [2].

that blind SM detection is not applicable to certain MIMO channel
scenarios such as a single receiver antenna and a rank deficient H.
Since Theorem 3 indicates that unique OSTBC symbol identifica-
tion does not depend on H, blind OSTBC detection can be used
effectively for any nonzero H, including the two harsh channels
mentioned above.

To further illustrate the blind identifiability advantage of the
strictly non-rotatable OSTBCs, we further consider sufficient con-
ditions under which OSTBC symbols can be uniquely identified
without the strictly non-rotatable code property. One such situa-
tion is shown in the following theorem:

Theorem 4 Consider a case where H 0 is arbitrary. Given
Yp HC sp for p 1 P, S is uniquely identifiable up to
a sign if

i) C is non-rotatable; and

ii) S contains at least 2K 1 distinct K-tuples in 1 1 K .

Theorem 4 shows that non-rotatable codes can lead to unique blind
symbol identification for any (nonzero) channel matrix. To guaran-
tee unique blind identification with non-rotatable codes, however,
we need P 2K 1 such that Condition ii) of Theorem 4 occurs
with a high probability. This restriction on the data frame length
is not needed for the case of strictly non-rotatable codes in Theo-
rem 3.

Since code non-rotatability plays in a key role in blind sym-
bol identifiability, we numerically checked the non-rotatability of
a number of commonly encountered full rate OSTBCs [2, 3]. The
results are shown in Table 1. We see that only the 3 4, 5 8, and
7 8 full rate codes are strictly non-rotatable. Moreover, none of
the square codes is strictly non-rotatable, which verifies the result
in Lemma 2. Table 1 also indicates that a strictly non-rotatable
code is non-rotatable. However the converse is not necessarily
true; e.g., the 8 8 full rate code.

4. CONCLUSION AND DISCUSSION

In this paper, the blind symbol identifiability of the OSTBC
scheme has been examined. We have shown that the OSTBC
symbols are uniquely identifiable up to a sign if and only if the
OSTBC matrix exhibits a so-called strictly non-rotatable property.
This property does not depend on factors such as the number of
receiver antennas, and the rank of the channel matrix, all of which
play a crucial role in the blind symbol identifiability of several
other linear MIMO schemes [9,10,12–14]. This implies that blind

OSTBC detection is applicable to any (flat fading) MIMO channel,
an attractive feature that the other MIMO schemes may not easily
achieve.

As strictly non-rotatable OSTBCs guarantee unique symbol
identification, it will be useful to further study their properties.
Moreover, it will be interesting to extend the present ideas to the
complex OSTBC case. These future directions are currently being
explored.
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