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Abstract 

Bayesian networks have shown themselves to be useful tools 

for the analysis and modelling of large data sets. However, 

their complete generality leads to computational and 

modelling complexities that have limited their applicability. 

We propose an approach to simplify and constrain Bayesian 

networks that strikes a more useful compromise between 

generality and tractability. These constrained graphical will 

allow us to build computationally tractable models for large 

high-dimensional data sets. 

We also describe examples of data sets drawn from image 

and speech processing on which we can (1) further explore 

this constrained set of graphical models, and (2) analyse their 

performance as a general-purpose statistical data analysis tool.  

1. Introduction 

Understanding the properties of large data sets has become a 

crucial activity in the Information Age: numerous tasks, 

ranging from the measurements of hundreds of distributed 

sensors, to the speech of thousands of speakers, each with 

distinct accents, voices and habits of speech, are undertaken 

continually in knowledge-intensive societies. Such data 

analysis plays a vital role in tasks as diverse as financial 

management, environmental monitoring and information 

technology (IT) service provision.  

It is shown in [1] that the optimal choice of classifier for a 

classification task depends on the properties of the data set 

and the properties of the classifiers being considered. 

Significant expertise in the problem domain and data analysis 

is thus required to understand the properties of the 

classification data and significant insight into the properties of 

classifiers are also required to select the classifier that fits the 

properties of the classification task best. Mathematical 

modelling tools that are available for data analysis also remain 

highly specialized, requiring significant domain expertise to 

be useful in most applications. Furthermore, the 

dimensionalities of data sets have also increased significantly 

with the increased amount of available digital information, 

which increases the complexity of data analysis and limits the 

intuitive insight into the properties of the data. Understanding 

and modelling the properties of high-dimensional data has 

thus also become a crucial activity in the Information age. 

It is clear that pattern recognition requires a unified 

framework for the analysis and modelling of arbitrary 

datasets. It is expected that the creation of a fully general 

framework will require one or more major breakthroughs [2]; 

however, even in the absence of such breakthroughs, much 

will be gained by developing representations and algorithms 

that treat diverse data sets in a more unified manner. The 

development of graphical models (also known as Bayesian 

networks) goes some way towards delivering such a 

description [3,4]; however, the excessive generality of these 

models has limited our intuitive insight into their properties 

(and has stymied attempts to create efficient learning 

algorithms for deriving their structure) [5]. 

We propose a constrained set of graphical models that 

strikes a more useful compromise between generality and 

tractability: more focused learning algorithms (e.g. the 

Expectation Maximization algorithm for mixture models or 

constrained optimisation algorithms for kernel models) tend 

to be ineffective at structural learning, whereas more general 

algorithms (e.g. Monte-Carlo based algorithms for graphical 

models) tend to be extremely expensive computationally. Our 

approach allows us to limit both of these risks, thus delivering 

algorithms that can efficiently describe the properties of 

complex real-world data sets with a limited amount of domain 

expertise and training data. 

In Section 2 we give an overview of existing methods that 

are used for the analysis and modelling of data. We point out 

the advantages and disadvantages of these approaches, 

specifically in the context of high-dimensional data. 

In Section 3 we formalize a new framework for the 

analysis of arbitrary data sets; we present a set of constrained 

graphical models that strikes a more useful compromise 

between generality and tractability than Bayesian networks. 

We also show, in Section 4, how these graphical models can 

represent the class-conditional probability density functions 

(pdf) learned by the Gaussian mixture model (GMM) 

classifier and how this framework can represent artificial data 

sets with known properties. 

In Section 5 we discuss applications in image and speech 

processing with large datasets, on which our framework can 

be applied and evaluated, and we summarize our conclusions 

in Section 6. 

2. Background 

There are several existing approaches to analyse and model 

data; these techniques include (1) density estimation, (2) 

dimensionality reduction, (3) clustering, (4) bi-clustering, (5) 

topological models and (6) Bayesian networks.  
There are two main approaches to density estimation, 

namely parametric and non-parametric density estimation [6]. 

Parametric approaches are fast and tractable but the 



assumptions regarding the parametric shape of density 

functions are often too constraining, whereas non-parametric 

approaches make no assumptions about the form of the 

density functions; density functions are often estimated as e.g. 

a sum of kernels of sum of Gaussians. Non-parametric 

approaches are, however, computationally expensive 

(especially for high-dimensional data) and the final models 

give no transparent insight into the properties of the data. 

Dimensionality reduction techniques attempt to project 

data to a lower-dimensional feature space, while still retaining 

as much of the information in the data as possible. A 

significant loss of information occurs, however, when the 

intrinsic dimensionality of the data (k) is higher than the 

dimensionality to which the data is projected. In order to 

visualize data, data is typically projected to 3-dimensions or 

lower. If k<=3, dimensionality reductions techniques can give 

insight into the properties of data by visualizing the projected 

data, if k>>3 (which is often the case for real-world data), 

dimensionality reduction is less useful.  

Clustering techniques are very useful if the measure of 

similarity between objects in the feature space remains 

constant. A distance measure between objects is defined a 

priori for a clustering algorithm and remains the same 

throughout the clustering process. The properties of real-

world data, however, tend to change throughout the feature 

space  and clustering algorithms do not take this change in the 

relationship between variables into account.  

Bi-clustering techniques try to account for this changing 

relationship between features throughout the feature space by 

clustering observations and features simultaneously. Bi-

clustering techniques effectively divide the feature space into 

sub-feature spaces, where data points in sub-feature spaces 

have similar properties. Bi-clustering techniques are, 

however, computationally very expensive - it is known to be 

an NP-hard problem, for which efficient approximations have 

not been found. 

Topological models attempt to describe the properties of 

data by describing how similar groups of data points are 

connected throughout the feature space [7]. They do not 

provide any information of the underlying structures of these 

groups of data points and do not provide probabilistic models 

that can be used to model the data. They are, however, useful 

to learn more from the data, when sufficient expertise is 

available for the analysis and interpretation of the data. 

Bayesian networks are graphical models that can be used 

to learn and represent the joint pdf of data in a graphical 

framework. The fundamental insight motivating Bayesian 

networks is that multivariate probability distributions can be 

simplified if appropriate conditional independence 

relationships are recognized. If such relationships exist, an n-

variable probability distributions can be represented in terms 

of conditional distributions for n1, n2,..., nk variables, where 

n1+ n2 + ...+ nk = n. Since the complexity of estimating a 

multivariate probability distribution is exponential in the 

number of variables in the worst case [8], the savings implicit 

in this decomposition can be substantial. The graphical model 

is used to keep track of the independence relationships 

between groups of variables. 

The application of such models requires the solution of 

two key problems: 

• The learning problem: how does one estimate the 

structure and parameters of a graphical model (in 

practice, usually based on a number of training 

samples) 

• The inference problem: given the values of some 

variables, how does one infer the most likely values 

of other, unknown variables, in order to compute a 

complete probability estimate. 

Most current inference algorithms build on the message 

passing approach pioneered by Pearl [3]. Although such 

algorithms can have exponential worst-case behaviour, they 

are fairly efficient for appropriately-structured networks, and 

modern approaches have extended their applicability quite 

widely [8]. 

The learning problem usually factors into two parts, 

namely estimation of the appropriate structure, followed by 

parameter estimation for conditional distributions for all 

nodes within the structure [5]. For the latter problem, 

standard techniques from statistics are generally employed 

(see, for example, [6] for an overview). However, the success 

of these techniques depends on appropriate structure 

estimates, and these have not yielded well to the 

maximization approaches typically used in machine learning 

[9]. Hence, successful structure learning approaches currently 

require substantial domain-specific information [14]. 

In summary, graphical models offer an extremely 

attractive approach to the modelling of high-dimensional data 

sets. However, in full generality they require either significant 

domain expertise or large computational budgets, for both the 

inference and learning tasks. Their applicability would be 

greatly enhanced if an approach could be developed that 

removes some of these obstacles, even if their full generality 

is compromised in doing so. 

3. Formal definition of graphical framework 

3.1. Motivation for graphical models 

It is shown in [10] that as the dimensionality of a feature 

space increases, the volume of a hyper-cube moves to the 

edges, whereas the volume of an ellipsoid moves to the outer 

shell. The volume of high-dimensional spaces thus tends to 

move to small regions of the feature space, which suggests 

that data tends to lie in manifolds (which make up small parts 

of the feature space) with high densities while the remaining 

part of the feature space is relatively empty. This phenomenon 

thus suggests that data, specifically in higher dimensional 

feature spaces, are generated from underlying manifolds. 

If we consider an example of a body suit with N sensors 

capturing motion in 3 dimensions, we have a feature space of 

dimensionality 3N [11]. The exact position of a body can 

actually be specified by k angles between the joints of the 

body. The intrinsic dimensionality of the problem (k) is 

significantly smaller than the dimensionality of the feature 

space (3N). Mumford illustrated this same principle [12], by 

showing that high-dimensional natural images can be reduced 

to points on a 7-sphere. These examples suggest that high-

dimensional data can be described by underlying manifolds 

with intrinsic dimensionalities (k) much lower than the 

dimensionality of the feature space (d). 

In order to characterize a dataset, we thus need to identify 

the underlying manifolds from which the data points we 

observe have been generated, and we need to describe the 



geometrical structure and intrinsic dimensionalities of these 

manifolds. 

We propose a framework that consists of three 

components that are sufficient to describe the geometrical 

structure and intrinsic dimensionality of the underlying 

manifolds of data. This framework consists of (1) functional 

transformations, which are used to describe the geometrical 

structure of a manifold, (2) continuous pdfs which are used to 

(i) randomly select a point from a manifold and (ii) to model 

the intrinsic dimensionality of a manifold (i.e. the variation of 

a selected point from the manifold) and (3) discrete 

probability mass functions (pmf) which are used to switch 

between manifolds within a feature space. 

Even in the case where the geometrical structure of a 

manifold cannot be described by a single parametric equation, 

we can approximate the geometrical structure with a 

combination of simplexes (simplicial complexes). Simplicial 

complexes can be used to approximate any arbitrary 

geometrical structure and have a point based representation 

which makes them easy to describe. In the next section we 

will illustrate how simplicial complexes can be used to 

generate artificial data and how they are represented in our 

graphical framework. 

The proposed framework thus constrains our graphical 

networks to only three components to make practical learning 

algorithms more tractable, while still maintaining sufficient 

generality to describe datasets with underlying manifolds of 

any geometrical structure and intrinsic dimensionality. 

In the following sub-section we propose the nomenclature 

of our proposed set of graphical models. 

3.2. Nomenclature of graphical models 

We denote random variables with bolded upper class Roman 

capital letters e.g.X , a value drawn from a univariate random 
variable is denoted by a lower class Roman letter x  and a 
vector drawn from a d-dimensional multivariate RV e.g. 

],...,[ 1 dXXX =  is denoted by a lower case bolded Roman 

letter x . The ith row vector of a matrix X  is indicated by 

ix . 

Vectors are indicated by lower case bolded Roman letters 

are column vectors, and a superscript capital T is used to 

indicate the transpose of a vector e.g. 
Tx , which in this case 

will represent a row vector. Matrices are also indicated by 

bolded Roman capital lettersM , if random variables are used 

in the same context as matrices, the random variable will 

contain subscripts e.g. 
1X . )(xFX  is used to indicate the 

cumulative distribution function (cdf) of a univariate random 

variable X , and )(xf X  is used to indicate the probability 

density function of a univariate random variable X .  

)(xXρ  is used to indicate the probability mass function 

(pmf) of a discrete univariate random variable. )(yp refers to 

the probability that the vector y  belongs to a specific class. 

3.3. Components of graphical models 

As discussed earlier, our graphical models will consist of 

three types of nodes: (1) continuous pdfs will be represented 

by circular nodes, (2) discrete pmfs will be represented by 

triangular nodes and (3) functional transformations will be 

represented by rectangular nodes. 

The nodes in a graphical network will be connected by 

one-directional arrows, the directions of the arrows indicate 

the direction in which the function of each node is performed, 

and thus the sequence in which data is processed. 

In the next section we give examples of how these 

graphical models can be applied. 

4. Examples of graphical models 

In this section we will illustrate how our graphical models can 

be used to (1) represent the class-conditional pdfs learned by 

a GMM classifier and (2) represent the underlying structure of 

artificially generated data. 

4.1. Examples of class-conditional probability density 

funtions 

A GMM classifier assumes that the class-condition pdf of 

each class consists of a mixture of Gaussian distributions; the 

class-conditional pdf is this the weighted sum of the pdfs of 

the mixtures. We can represent the class-conditional pdf 

learned by a GMM classifier in our graphical framework as 

illustrated in Figure 1. 

 

 

Figure 1: Graphical representation of GMM classifier 

class-conditional pdf 

The output vector y  can be expressed as 

mxy = ,   (1) 

where mx  is the sample drawn from mixture m .  

As shown in Figure 1, the value of m  is drawn from the 

discrete pmf )(mpM . This pdf is characterised by the weight 

assigned to each mixture; the number of times the value m  is 

drawn is proportional to the weight of mixture m , given by 

iΠ . The pdf of y can be expressed as 
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where M is the total number of mixtures per class and 
iΠ  

is the weight assigned to mixture i  by the GMM classifier, 

iµ  is the mean of mixture i  and 
iΣ  is the covariance matrix 

of mixture i . 

4.2. Examples of generating artificial datasets from 

geometrical structures 

Artificial datasets can be generated from underlying 

manifolds with known geometrical structures. In this sub-

section we will illustrate how these artificial datasets can be 

represented in the proposed graphical framework. 

We firstly generate an artificial dataset by sampling data 

points from a 3rd order polynomial function 

7.03.02.08.0)( 23

1 +−−= xxxxf . Data points are 

uniformly sampled from the polynomial manifold by 

generating values for x from a uniform distribution, U(-1,1), 

and calculating the values of p(x). The data points sampled 

from this polynomial function can be regarded as data points 

lying on the same underlying manifold. We sample data from 

a second underlying manifold with the equation 

5.0)(2 =xf (a straight line parallel to the x-axis). Note 

that the manifold described by )(1 xf  has a dimensionality 

of 2 (data points vary in both dimensions) while the manifold 

described by )(2 xf  has a dimensionality of 1 (data points 

vary only in the x-direction). Figure 2 illustrates the dataset 

sampled from these two manifolds. 

 
Figure 2: Dataset 1 (sampled from two polynomial functions  

 

This dataset can be represented in our graphical framework as 

shown in Figure 3. 

  

 

Figure 3: Graphical representation of dataset 1. 

We can generate an equivalent dataset to dataset 1 by 

approximating the underlying structures of the two manifolds 

in our first example with simplexes. We can specify the 

anchor points of the simplexes as shown by the markers on 

the edges of each simplex. 

We then make use of the Barycentric method to sample 

data points uniformly from the simplexes. The dataset 

sampled from the simplexes described by P, and their 

representations in our graphical framework are illustrated in 

Figures 4 and 5. 

 

 

 

Figure 4: Dataset 2 (approximated structure of dataset 1). 



 

Figure 5: Graphical representation of dataset 2. 

5. Application of framework to real-world 

projects 

As part of a collaborative research project between the 

Meraka HLT Research Group, Material Science and 

Manufacturing and Modelling and Digital Science units at the 

CSIR, these graphical models are being applied and evaluated 

on three real-world projects, namely (1) age classification of 

speech data, (2) robotic perception and (3) computer vision 

for unmanned aerial vehicles. Each of these problems will be 

discussed in more detail in the following sub-sections. 

5.1. Speaker age and gender classification 

Estimating a speaker's age and gender from recordings of his 

or her voice is a task that has seen significant activity in the 

past five years [13]. On the one hand, this task is of psycho-

acoustic interest: researchers wish to determine what the most 

important correlates of age and gender in a speaker's voice 

are. On the other hand, it also has significant practical 

importance - particularly for the design of spoken-dialogue 

systems that adapt to the characteristics of their users. Finally, 

insights gained from the study of this classification task will 

also be useful for the extraction of other meta-information 

(such as the speaker's cognitive load or physical exhaustion) 

from the speech signal; such meta-information is likely to 

become increasingly important as speech-based systems are 

deployed in, for example, automotive applications.  

Researchers at Deutsche Telekom have developed a 

standard database for the age-and-gender classification 

problem, containing more than 50 000 recordings of speakers 

ranging from 7 to 72 years old. Each of these recordings is 

labelled as belonging to one of seven classes (children and 3 

age ranges of males and of females). Mueller and Burkhardt 

[13] have defined a set of 22 features that can be used for this 

classification task, and in this sub-project we intend to 

optimize our graphical models using this feature set. Besides 

its relevance to a significant real-world task, this problem will 

allow us to refine our methods in a feature space of fairly low 

dimensionality (compared to the problems described below). 

State-of-the-art classification accuracy in this environment is 

around 50%, so there is substantial room for improvement. 

5.2. Computer vision (Robotic perception) 

In robotic systems, perception ability is often required to 

interpret external signals and build a conceptual model of the 

environment in order to interact with that environment.  

Examples of active research fields in robotic perception 

include speech recognition and computer vision. 

Typical computer vision tasks, such as 3D reconstruction 

and object recognition, rely on the idea that certain features 

could be extracted from digital images and matched against 

other features.  For example, in stereo vision, features are 

matched over the spatial domain (different images of the same 

scene captured at the same time instant) and geometrical 

calculations are performed, in structure from motion, features 

are matched over the temporal domain (images of a scene are 

captured at different time instants) and in object recognition, 

features are matched against previously extracted features, 

where features or sets of features are associated with a 

particular class label. 

 



Clearly, the use of a feature-based approach is crucial to 

many computer vision tasks.  However, the specific feature 

being used varies greatly from application to application.  A 

variety of feature descriptors have been studied for different 

problems, for example SIFT, SURF, shape context, Harris 

corner and edge detectors, Haar filters, image histograms, 

steerable filters, differential invariants, etc. (for a review and 

comparison of different feature descriptors, see [14]).  These 

techniques differ from one another at a fundamental level and 

although working well for different problems, there is no 

underlying unifying framework. 

The approach of learning structured representation from 

data will be applied specifically to problems in object 

recognition.  In our research, the objective is to determine the 

most appropriate features to use for a given classification 

problem, rather than trying to apply a range of existing feature 

descriptors (which may work well in other contexts but may 

not be suited to the problem).  Given a set of labelled training 

images of natural scenes, we are extracting labelled image 

patches at different scales.   Using this raw information, we 

aim to study the underlying manifolds and model the 

probability density functions associated with different classes. 

Such models should make it possible to approach 

classification problems in computer vision in a generic way. 

5.3. Computer vision (Unmanned aerial vehicles) 

This application focuses on the development of a vision-based 

positioning system that forms part of a rotary-winged aerial 

inspection platform. This sub-system is required by the 

inspection platform to ensure that the correct inspection data 

(images) are collected for offline processing.  

The inspection system’s onboard GPS information would 

be able to position it near the object that is to be inspected but 

it would most likely not be accurate enough for the purpose of 

inspection. It is therefore proposed to do the accurate 

positioning visually. This approach makes use of the rich 

information provided by the visual sensor to solve the 

positioning problem while benefiting from its relatively light 

weight to minimise the overall payload.  

The first step in the proposed solution involves detecting 

and identifying the object of interest. The objects 

classification is then used to perform a model based 3D 

registration with the current view. This will allow the 

extraction of the 3D spatial transform required to move the 

platform into position (via the flight control system). 

It is envisioned that the graphical modelling and analysis 

techniques being developed will be used to design effective 

feature extraction algorithms. This will be achieved by 

analysing the relationships between the features and their 

contribution at various stages of orientation and scale. 

The feature vectors will be complex structures consisting 

of variable and invariant information whose influence will 

vary depending on the current task. The features for training 

and testing will be extracted from images of both simulated 

objects and scale-sized real world models. 

6. Conclusions 

In summary, graphical models offer an extremely 

attractive approach to the modelling of high-dimensional data 

sets. However, in full generality they require either significant 

domain expertise or large computational budgets, for both the 

inference and learning tasks.  

We have formalised and presented a constrained set of 

graphical networks that will make practical learning 

algorithms more tractable than learning algorithms for 

Bayesian networks, while still maintaining sufficient 

generality to describe datasets with underlying manifolds of 

any geometrical structure and intrinsic dimensionality. 

We are currently developing learning algorithms for these 

constrained networks; we will apply these learning algorithms 

to the real-world applications discussed in Section 5. 
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