
Auto-tuning the Matrix Powers Kernel with SEJITS

Jeffrey Morlan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-95

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-95.html

May 11, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357370321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was performed at the UC Berkeley Parallel Computing
Laboratory (Par Lab), supported by DARPA (contract #FA8750-10-1-0191)
and by the Universal Parallel Computing Research Centers (UPCRC)
awards from Microsoft Corp. (Award #024263) and Intel Corp. (Award
#024894), with matching funds from the UC Discovery Grant (#DIG07-
10227) and additional support from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, Oracle, and Samsung.

Auto-tuning the Matrix Powers Kernel with SEJITS

by Jeffrey Morlan

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for

the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Armando Fox

Research Advisor

(Date)

* * * * * * *

Professor James Demmel

Second Reader

(Date)

Abstract. The matrix powers kernel, used in communication-avoiding
Krylov subspace methods, requires runtime auto-tuning for best perfor-
mance. We demonstrate how the SEJITS (Selective Embedded Just-In-
Time Specialization) approach can be used to deliver a high-performance
and performance-portable implementation of the matrix powers kernel
to application authors, while separating their high-level concerns from
those of auto-tuner implementers involving low-level optimizations. The
benefits of delivering this kernel in the form of a specializer, rather than a
traditional library, are discussed. Performance of the matrix powers ker-
nel specializer is evaluated in the context of a communication-avoiding
conjugate gradient (CA-CG) solver, which compares favorably to tradi-
tional CG.

1 Introduction

Krylov subspace methods (KSMs) are iterative algorithms in linear algebra used
to solve linear systems (given matrix A and vector b, solve Ax = b for x) or to
find eigenvalues and eigenvectors (given A, solve Ax = λx for λ and x) when
the matrix is large and sparse, making direct solvers impractical. The solution
vectors these methods produce in the first i iterations lie in the vector space
spanned by the vectors {x0, Ax0, . . . , A

ix0} for some starting vector x0; this
kind of space is called a Krylov subspace.

Conventionally, KSMs access the matrix A with one or more sparse matrix-
vector multiplications (SpMVs) per iteration. Since an SpMV must read a matrix
entry from memory for every two useful floating-point operations, making it a
highly memory-bound operation, Demmel et al. have proposed communication-

avoiding algorithms that improve performance by trading redundant computa-
tion for memory traffic [1]. In communication-avoiding KSMs, SpMV is replaced
by the matrix powers kernel, which computes Ax,A2x, . . . , Akx (or some equiv-
alent basis that spans the same vector space) for matrix A, vector x, and a small
constant k. Once the computation has been performed, the next k steps of the
solver can proceed without further memory accesses to A by combining vectors
from this set. Thus, memory traffic can be reduced – by up to a factor of k in
the best case – but obtaining the best performance requires substantial tuning.

A difficulty in auto-tuning the matrix powers kernel is that optimal code
depends on not only the machine architecture but also on the specific prob-
lem instance (namely, the placement of nonzeros in the matrix A), so runtime
auto-tuning is necessary to get high performance and performance portability.
Moreover, it is desirable to separate concerns of the application writers using
KSM solvers and programmers implementing auto-tuning. To do this, we take
advantage of SEJITS (Selective Embedded Just-In-Time Specialization) [2], a
programming methodology for maximizing separation of concerns between pro-
grammers working in specific problem domains and programmers who know how
to write efficient low-level code for the kinds of computation used in these do-
mains. The idea is to enable domain experts to express their applications in
code without needing to deal with low-level optimizations. This is accomplished

by defining a domain-specific language (DSL) or API, embedded in a high-level
general purpose language such as Python. The efficiency expert, with the help
of a SEJITS framework such as Asp (Asp is SEJITS for Python) [3], writes a
specializer to compile efficient implementations for the domain-specific code.

This can be seen as a generalization of the common practice of writing a
library in a low-level language with bindings allowing it to be called from a
high-level language. The ability to generate code at runtime makes specializ-
ers applicable in cases where a library would not be able to provide sufficient
flexibility and performance. This could be because the computation itself is too
general for a library: an example of this is the domain of stencil computations [4].
It would not be possible to compile implementations of all possible stencils up
front, but a specializer can lower a stencil function, given as code in its Python-
embedded DSL, down to C++, making it capable of generating optimized code
for arbitrary stencils.

Although the matrix powers kernel’s computation is not application specific,
since SEJITS can generate and compile code at runtime, this approach to de-
livering auto-tuning avoids the combinatorial explosion of code variants implied
by the large space of possible optimizations. Application writers can get both
high performance and performance portability without having to be concerned
with the low-level optimizations making them possible. SEJITS also allows the
tuning logic to be written in the high-level language, making it easier to write
and maintain while still keeping it well separated from applications. These ben-
efits would be difficult to obtain if the kernel were delivered as a conventional
library.

This paper describes a specializer for the matrix powers kernel, which was
built on the Asp framework. Section 2 describes the specializer and the various
optimizations implemented in it, and Section 3 contains performance results. Fi-
nally, discussion of the benefits that SEJITS brings to this kernel is in Section 4.

2 Implementation

The overall structure of the specializer and code using it is shown in Figure 1.
The application first calls the tuner, passing in the sparse matrix A and the
constant k to be used. The tuner attempts to produce an optimized plan for
computing matrix powers. To do this, it iterates over feasible ranges of the
optimization parameters described in Section 2. It calls into C code to do the
necessary transformations on the matrix data, uses the Asp infrastructure to
generate from a template any specialized code necessary to execute the plans, and
benchmarks the plans to find the fastest. Each candidate plan is benchmarked
by running it in a loop until more than a half second has elapsed to get an
accurate measurement of its execution time.

An object representing the fastest plan found is returned back to the applica-
tion, which can then use it in a KSM solver. The solver invokes a method on the
object to execute the matrix powers kernel; for other linear algebra operations

Python code

C code

Application

Tuner

Data transformations

Asp framework

Template

Generated code

Solver

Helper functions

MKL

Fig. 1. Overview of specializer and related code. Solid arrows indicate calls, dotted
arrows indicate processing of code.

that KSMs need, the specializer module also provides helper functions which are
simply wrappers around Intel Math Kernel Library (MKL) [5] BLAS operations.

2.1 Optimizations

The optimizations of the matrix powers kernel, summarized in Table 1, fall
into two major categories: those that reduce memory traffic by storing data
more efficiently, and those that re-order computation to parallelize it or make
better use of cache. The latter must obey the constraint that if matrix entry
Aij is nonzero, then for each level e : 0 ≤ e < k, component j of Aex must be
computed before it can be used in computing component i of Ae+1x. Because of
this, their effectiveness is highly dependent upon the structure of the matrix’s
nonzero entries, making runtime auto-tuning necessary for best performance.

Optimization Type Restrictions

Thread blocking Re-ordering
Explicit cache blocking Re-ordering Useful only when k > 1
Tiling Size reduction
Symmetric representation Size reduction A = AT ; square tiles only
Implicit cache blocking Re-ordering Useful only when k > 1; square tiles only
Index array compression Size reduction Block must be sufficiently small

Table 1. Summary of optimizations.

The first optimization is to allow for parallelism by thread blocking. The ma-
trix rows are partitioned among a number of threads, with each thread being

responsible for computing the vector components whose indices are that of rows
in its partition. In general, however, one thread’s set of Ae+1x components will
depend on a few components of Aex belonging to other threads. To avoid hav-
ing dependencies across threads which would force synchronization after each
output vector and preclude the cache blocking described later, a thread block
contains not only the rows in its partition, but also any additional rows needed
for redundantly computing other threads’ components as shown in Figure 2.

Thread 1 Thread 2 Thread 3

A3x

A2x

Ax

x

Fig. 2. Thread blocking of an 18x18 tridiagonal matrix. Colors indicate which thread
computes each component; the striped components are redundantly computed by two
different threads.

Minimizing the redundant computation means choosing a good partitioning,
i.e. one with few dependencies between thread blocks. One way would be to
make a graph with one vertex per matrix row, add an edge between vertex i and
vertex j whenever Aij 6= 0, and partition this graph. This would give a good
partitioning for k = 1, but not necessarily for larger k. For a more accurate
model of communication volume, what is implemented is to build a hypergraph
in which each vertex has a net containing all vertices that have a dependency
on it in k steps [6] (that is, net i contains vertex j if (AT + I)kij 6= 0, ignoring
cancellation), and partition the hypergraph with the PaToH [7] library.

If a thread block is too large to fit in the processor’s cache, then without
further division it would be read from RAM k times. We can improve this with
cache blocking : divide each thread block into sufficiently small cache blocks, and
compute the entries for all k vectors in one cache block before moving on to
the next. This way, the contents of the thread block are only read once for
all k vectors. Explicit cache blocking is done in an identical manner to thread
blocking; each thread block is simply subdivided recursively until each piece is
small enough. An alternative is implicit cache blocking, which is done later on.

Nonzero entries in a sparse matrix are often close together, and this can be
taken advantage of by tiling. By default, blocks are stored in compressed sparse
row (CSR) format, which consists of three arrays: an array of nonzero values
(one floating point number for each nonzero), an array of column indices corre-
sponding to those values (one index for each nonzero), and an array indicating
where each row begins and ends (one index for each row plus one more, since the

4 5
6 7

8
9

values: 4 5 6 7 8 9
colidx: 0 1 0 1 3 2
rowptr: 0 2 4 5 6

4 5
6 7

0 8
9 0

values: 4 5 6 7 0 8 9 0
colidx: 0 1
rowptr: 0 1 2

Fig. 3. A 4x4 block and its representation in compressed sparse row format, before
and after 2x2 tiling.

end of one row is the start of the next). Tiling a block modifies this to store some
fixed-size tile instead of individual values; a tile is stored if any of its individual
values are nonzero (Figure 3). This results in a larger values array to hold the
extra zeros, but smaller column index and row pointer arrays, which can often
make for a net decrease in size. When either dimension of the tile size is at least
2, it also becomes possible to use SIMD instructions to do two multiply-adds at
a time, which is implemented via compiler intrinsics.

In many applications, the matrix is symmetric, meaning that Aij = Aji for
all i, j. When this is the case, the leading square of every block is symmetric as
well, since the columns are permuted into the same order as the rows. All entries
below the main diagonal can be omitted without losing any information, as they
are merely reflections of entries above the diagonal; this optimization can reduce
the memory size of a block by almost half. However, it alters the structure of
the computation: computing component i now requires going through not only
the entries in row i, but also any entry with a column index of i. This adds
additional dependencies between components for the purposes of implicit cache
blocking, possibly reducing its efficacy.

Block 1 Block 2 Block 3

A3x

A2x

Ax

x

computation_seq: 0‐7, 0‐6, 0‐5; 8‐13, 7‐12, 6‐11; 14‐17, 13‐17, 12‐17

Fig. 4. Implicit cache blocking. Arrows represent the order of computation within each
block; the left block is done first, then the middle block, then the right.

Unlike the partitioning of the matrix A into thread blocks or of a thread block
into explicit cache blocks, where each block is internally stored as a separate
matrix, in implicit cache blocking (Figure 4) the partitioning into cache blocks
is not reflected in the internal data structures in this way. Instead, an array
is created that lists the indices of components that need to be computed at

each level of each cache block; this array determines the sequence to perform
the computation in, which would otherwise simply be one level after another.
Since this array will often contain long sequences of increasing integers, it may
be stanza-encoded, in which a sequence [a, a + 1, a + 2, . . . , b] is represented as
[a, b]. There is no need for any redundant computation: while creating the array,
keep track of what level each entry will have been computed up to at the current
point, and just omit any redundancy.

Finally, arrays of indices in each block can be compressed from 32-bit to 16-
bit if the block is sufficiently small. If a block is implicitly cache blocked and has
fewer than 216 rows, the computation sequence can be compressed. If any block
has no more than 216 columns, its colidx array can be compressed. With fewer
than 216 nonzero tiles, the rowptr array can be compressed as well.

The effect of these optimizations is to reduce memory traffic so that the
problem is no longer bound by memory bandwidth. Although obtaining peak
floating point performance is unrealistic due to irregular memory access and
control flow, one can attain throughput well above what would be possible with
the unoptimized operational intensity of no more than 1 floating-point operation
for each 6 bytes read (Figure 5), despite the extra operations being added by
blocking and tiling.

1/8 1/4 1/2 1 2 4
Operational intensity (Flops/byte)

1

2

4

8

16

32

64

G
Fl

o
p
s/

s

k=
1

k=
1

,t
ile

d

k=
1

,t
ile

d
,s

y
m

m
e
tr

ic

k=
1

,a
ll

o
p
ti

m
iz

a
ti

o
n
s

k=
2

,a
ll

k=
3

,a
ll

k=
4

,a
ll

k=
5

,a
ll

k=
6

,a
ll

Peak m
emory bandwidth (s

tre
am)

Peak floating point
All flops (including redundant)
Useful flops only

k 1 2 3 4 5 6

Extra flops added +20% +32% +34% +42% +49% +57%

Fig. 5. Effect of matrix powers kernel optimizations with a 25-point 2D stencil matrix
(262144 rows, 6522916 nonzero entries); tested on an Intel Xeon X5550 processor.
Optimizations used consist of thread blocking, explicit cache blocking (when k > 1),
2x2 tiling, symmetric representation, and index compression.

3 Results

To test the specializer in a realistic context, we have implemented in Python
a communication-avoiding variant of the conjugate gradient (CG) method, a
Krylov method for solving symmetric positive definite linear systems. The basic
structure of communication-avoiding CG is shown in Algorithm 1. It produces a
sequence of solution approximation vectors xi and residual vectors ri = b−Axi,
using a three-term recurrence which relates xi−1, xi, xi+1, and ri (details of this
are described in [8]). On each iteration, it applies the matrix powers kernel to
the current residual vector rki+1; the power vectors, along with vectors from
the previous iteration, form a basis B from which all vectors produced in this
iteration will be a linear combination. The recurrence relation is used to compute
a matrix D giving the iteration’s output vectors in terms of B columns, with
dot products computed using the Gram matrix G = BTB. Finally, the output
vectors are made explicit by multiplying B and D. Constructions of the Gram
matrix and the final output vectors are done by calling the specializer’s BLAS
wrappers.

Algorithm 1 CA-CG algorithm outline
1: x0 ← 0
2: x1 ← initial guess
3: r0 ← 0
4: r1 ← b−Ax1

5: for i = 0, 1, . . . do
6: Use matrix powers kernel to compute [Arki+1, . . . , A

krki+1]
7: B ← [xki, xki+1, rki−i+2, . . . , rki+1, Arki+1, . . . , A

krki+1]
8: G← BTB

9: Compute matrix D of output vectors in terms of B
10: [xki+i, xki+i+1, rki+2, . . . , rki+i+1]← BD

11: end for

To demonstrate performance portability, the CA-CG solver was tested on
three different multi-core machines: an Intel Xeon (Figure 6), another Intel Xeon
with a large number of cores (Figure 7), and an AMD Opteron (Figure 8). The
five test matrices are from the University of Florida Sparse Matrix Collection [9]
and were chosen for being positive definite and so compatible with CG, being
reasonably well-conditioned, and having the kind of locality in their structures
that makes it possible to avoid communication. A matrix labeled 149K/10.6M
has 149 thousand rows and 10.6 million nonzero elements. The dark part of each
bar shows time spent on matrix powers while the light part shows time in the
remainder of the solver. This does not include time spent in tuning before calling
the solver, which is on the order of a few minutes for each matrix; however, this
cost can be amortized across multiple solves using the same matrix, as tuning
need not be repeated.

The solver is generally several times faster than SciPy’s serial implementation
of conventional CG, the baseline performance a high-level language application
writer could obtain without using any additional libraries. When k is allowed to
be greater than 1, it often beats MKL’s parallel CG implementation as well (ge-
ometric mean is 125% faster for matrix powers alone and 22% faster altogether).
For the k > 1 case, the time given is the time per iteration divided by k, since
one iteration is mathematically equivalent to k iterations of conventional CG.

A caveat regarding the CA-CG solver is that convergence can be impacted
by the inexactness of double-precision floating point arithmetic. The three-term
recurrence formulation of CG that CA-CG is based on is more susceptible to
accumulating error in the x vectors, which limits how close it will get to the
correct answer (Figure 9). This may or may not be a problem depending on how
precise an answer is desired; for every matrix tested, if CA-CG did converge
to a given tolerance then it did so in nearly the expected number of iterations.
A discussion of the phenomenon and a strategy for adapting communication-
avoiding solvers around it are given in [10].

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

5

10

15

20

25

30

35

T
im

e
 p

e
r

st
e
p
 (

m
s)

30.5

19.8

11.9
10.7

12.6

6.3

4.4

2.2 2.7
3.6

5.6 5.4

2.4
3.2

5.45.6

3.8

1.6
2.5

3.3

scipy.sparse.linalg.cg
MKL dcg/dcsrmv
CA-CG (k=1)
CA-CG

Fig. 6. CG solver performance on 2-socket Intel Xeon X5550 (8 cores, 2.67GHz)

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

10

20

30

40

50
T
im

e
 p

e
r

st
e
p
 (

m
s)

52.6

24.7

14.6

17.0

20.5

4.2 3.9
2.1 2.1 2.82.8

3.7

1.4
3.4 3.9

2.8 2.5
1.3

3.1 3.6

scipy.sparse.linalg.cg
MKL dcg/dcsrmv
CA-CG (k=1)
CA-CG

Fig. 7. CG solver performance on 4-socket Intel Xeon X7560 (32 cores, 2.27GHz)

bmwcra_1
149K/10.6M

boneS01
127K/6.7M

cant
62K/4.0M

cfd2
123K/3.1M

Dubcova3
147K/3.6M

0

10

20

30

40

50

60

T
im

e
 p

e
r

st
e
p
 (

m
s)

53.8

38.1

20.1 20.5

27.3

18.1

12.5

6.5
7.9

9.8

17.1

14.6

6.9

9.9
11.8

14.3

9.8

3.8
6.0

7.6

scipy.sparse.linalg.cg
MKL dcg/dcsrmv
CA-CG (k=1)
CA-CG

Fig. 8. CG solver performance on 2-socket AMD Opteron 2356 (8 cores, 2.3GHz)

0 100 200 300 400 500
Number of iterations * k

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

||b
−A

x
||2

Dubcova3

Conventional CG
CA-CG k=1
CA-CG k=2
CA-CG k=3

0 2000 4000 6000 8000 10000 12000
Number of iterations * k

10-6

10-4

10-2

100

102

104

106

108

1010

1012

||b
−A

x
||2

cant

Conventional CG
CA-CG k=1
CA-CG k=2
CA-CG k=3

Fig. 9. CG solver convergence, best and worst observed cases

Platform Solver
Time per step (ms; sparse/dense)

bmwcra 1 boneS01 cant cfd2 Dubcova3

SciPy 28.3/2.2 18.0/1.8 10.8/1.1 9.0/1.7 10.6/2.0
2-socket MKL 5.3/1.0 3.6/0.8 1.8/0.4 1.9/0.8 2.6/1.0

Intel Xeon X5550 CA-CG (k=1) 3.3/2.3 3.5/1.9 1.3/1.1 1.4/1.8 2.2/3.2
(8 cores, 2.67GHz) CA-CG (best) 3.3/2.3 2.1/1.7 0.7/0.9 1.0/1.5 1.2/2.1

k=2 k=1 k=3 k=3 k=3

SciPy 49.5/3.1 22.4/2.3 13.2/1.4 14.9/2.1 18.0/2.5
4-socket MKL 3.0/1.2 2.9/1.0 1.6/0.5 1.1/1.0 1.5/1.3

Intel Xeon X7560 CA-CG (k=1) 0.7/2.1 1.1/2.6 0.4/1.0 0.9/2.5 1.0/2.9
(32 cores, 2.27GHz) CA-CG (best) 0.7/2.1 0.7/1.8 0.3/1.0 0.6/2.5 0.7/2.9

k=2 k=1 k=3 k=2 k=2

SciPy 47.5/6.3 33.1/5.0 17.9/2.2 15.9/4.6 21.4/5.9
2-socket MKL 14.9/3.2 9.6/2.9 5.4/1.1 5.2/2.7 6.6/3.2

AMD Opteron 2356 CA-CG (k=1) 11.2/5.9 9.6/5.0 4.3/2.6 5.2/4.7 6.0/5.8
(8 cores, 2.3GHz) CA-CG (best) 10.0/4.3 6.2/3.6 2.1/1.7 3.0/3.0 3.9/3.7

k=2 k=2 k=3 k=3 k=3

Table 2. CG solver timing data for Figures 6–8.

4 Discussion

From the experience of developing this specializer, several benefits of writing a
specializer rather than a traditional library are observable.

One benefit is that the SEJITS framework provides a ready-made templating
system for generating code. SEJITS templates are less work to create, and often
cleaner, than the ad-hoc code generation scripts typically written in developing
auto-tuned libraries. An example of template use is in Figure 10, where normal
and unrolled loops integrate nearly seamlessly, in contrast to the more confus-
ing code that would exist to do the same code generation using direct string
concatenation.

for (jb = A->browptr[ib]; jb < A->browptr[ib+1]; ++jb) {

% for i in xrange(b_m):

% for j in xrange(b_n):

y[ib*${b_m} + ${i}] += A->bvalues[jb*${b_m*b_n} + ${i*b_n + j}]

* x[A->bcolidx[jb]*${b_n} + ${j}];

% endfor

% endfor

}

Fig. 10. Template code for computing one row (having index ib) of the matrix-vector
multiplication y = Ax. b_m and b_n are the tile height and width, respectively.

Another benefit of writing a specializer is that it allows the auto-tuning logic
to be written in the high-level language. Not only does this make it easier to

write but it also makes it more extensible; if someone wishes to plug in a more
advanced auto-tuner, this can be done without having to modify and re-install
the specializer.

Finally, being able to generate and compile code at runtime means the combi-
natorial explosion of all possible code variants does not cause exponential growth
in the size of the specializer. Each combination of parameters for basis, tile size,
symmetric representation, implicit cache blocking and index compression re-
quires its own compiled code variant to work efficiently. The set of all possible
combinations already numbers in the hundreds, which would make for a large li-
brary; adding more features and optimizations could render the library approach
unworkable.

5 Related Work

The idea of using multiple variants with different optimizations is a cornerstone
of auto-tuning. Auto-tuning was first applied to dense matrix computations in
the PHiPAC library (Portable High Performance ANSI C) [11]. Using param-
eterized code generation scripts written in C, PHiPAC generated variants of
generalized matrix multiply (GEMM) with a number of optimizations plus a
search engine, to, at install time, determine the best GEMM routine for the
particular machine. The technology has since been broadly disseminated in the
ATLAS package [12]. Auto-tuning libraries include OSKI (sparse linear algebra)
[13], SPIRAL (Fast Fourier Transforms) [14], and stencils [15, 16], in each case
showing large performance improvements over non-autotuned implementations.
With the exception of SPIRAL and Pochoir, all of these code generators use
ad-hoc Perl or C with simple string replacement, unlike the template and tree
manipulation systems provided by SEJITS.

The OSKI (Optimized Sparse Kernel Interface) library [13] precompiles 144
variants of each supported operation based on install-time hardware benchmarks
and includes logic to select the best variant at runtime, but applications using
OSKI must still intermingle tuning code (hinting, data structure preparation,
etc.) with the code that performs the calls to do the actual computations. Re-
cently, OSKI has been extended to perform computation in parallel with the
pOSKI library [17][18]. OSKI and pOSKI implement some optimizations similar
to those implemented in the matrix powers specializer, including cache block-
ing (for reuse of vector entries only; matrix entries cannot be reused within a
single SpMV operation) and register tiling, as well as some optimizations which
have not yet been implemented in the specializer, such as prefetching, software
pipelining, and loop unrolling. Like with any efficiency-level library, productiv-
ity of the application writer is subject to availability of bindings; a programmer
writing in C using pOSKI could have to write more code than one using pOSKI
through a hypothetical Python wrapper library and SciPy, whereas a specializer
is invoked directly from the productivity-level language, so there is no need to
write bindings provided the application is written in the same language. The in-
ternals of the specializer and pOSKI are not directly comparable due to differing

functionality; matrix powers is a more general kernel than pOSKI’s SpMV, and
pOSKI has more optimizations and more sophisticated auto-tuning.

6 Future Work

There are several ways this specializer might be improved or extended. Varia-
tions on the matrix powers kernel required by more sophisticated solvers could
be added, such as preconditioning, simultaneous computation of powers of A and
AT as in BiCG, or different bases of the form [p1(A)x, . . . , pk(A)x] where pi(A)
is a degree-i polynomial. More optimizations could be added based on the exten-
sive existing knowledge of optimizing sparse matrix-vector multiplication. The
tuner could be made more advanced, by using a performance model or machine
learning, in order to effectively cover a larger search space of possible optimiza-
tions without taking excessively long as the current brute-force approach would;
note that this would not require changes to the underlying C code.

7 Conclusion

Though originally motivated by domains where a library is unsuitable due to
the generality of the desired computational kernel, the SEJITS methodology
also proves useful for domains where generality comes not from the kernel itself
but from the need to tune it for performance. Although the matrix powers kernel
could plausibly be written as a library, as a specializer it demonstrates how writ-
ing auto-tuners as specializers has benefits for both efficiency-level programmers
and for productivity-level programmers who wish to extend the tuning logic.

Acknowledgements

Thanks to Erin Carson and Nicholas Knight for providing the initial version of
the code for the matrix powers kernel. Thanks also to Mark Hoemmen, Marghoob
Mohiyuddin, Armando Fox, Shoaib Kamil, and James Demmel for feedback and
suggestions on this paper.

This work was performed at the UC Berkeley Parallel Computing Labora-
tory (Par Lab), supported by DARPA (contract #FA8750-10-1-0191) and by
the Universal Parallel Computing Research Centers (UPCRC) awards from Mi-
crosoft Corp. (Award #024263) and Intel Corp. (Award #024894), with match-
ing funds from the UC Discovery Grant (#DIG07-10227) and additional support
from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Oracle, and
Samsung.

References

1. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communica-
tion in sparse matrix solvers. In: Supercomputing 2009, Portland, OR (November
2009)

2. Catanzaro, B., Kamil, S., Lee, Y., Asanović, K., Demmel, J., Keutzer, K., Shalf, J.,
Yelick, K., Fox, A.: SEJITS: Getting productivity and performance with selective
embedded JIT specialization. In: Workshop on Programming Models for Emerging
Architectures. PMEA ’09, Raleigh, NC (October 2009)

3. Kamil, S.: Asp: A SEJITS implementation for Python.
https://github.com/shoaibkamil/asp/wiki

4. Kamil, S., Coetzee, D., Fox, A.: Bringing parallel performance to Python with
domain-specific selective embedded just-in-time specialization. In: Proceedings of
the 10th Python in Science Conference. SciPy 2011, Austin, TX (2011)

5. Intel: Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/
6. Carson, E., Demmel, J., Knight, N.: Hypergraph partitioning for computing ma-

trix powers. http://www.cs.berkeley.edu/˜knight/cdk CSC11 abstract.pdf (Octo-
ber 2010)

7. Catalyürek, Ü.V.: Partitioning Tools for Hypergraph.
http://bmi.osu.edu/˜umit/software.html

8. Hoemmen, M.: Communication-avoiding Krylov subspace methods. PhD thesis,
EECS Department, University of California, Berkeley (Apr 2010)

9. Davis, T., Hu, Y.: The University of Florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices

10. Carson, E., Demmel, J.: A residual replacement strategy for improving the max-
imum attainable accuracy of communication-avoiding Krylov subspace methods.
Technical Report UCB/EECS-2012-44, EECS Department, University of Califor-
nia, Berkeley (Apr 2012)

11. Bilmes, J., Asanović, K., Chin, C.W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In:
Proceedings of International Conference on Supercomputing, Vienna, Austria (July
1997)

12. Whaley, R.C., Petitet, A.: Automatically tuned linear algebra software.
http://math-atlas.sourceforge.net/

13. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics Conference Series 16(i) (2005) 521–530

14. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adaptation” 93(2) (2005) 232–
275

15. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: IPDPS’10. (2010) 1–12

16. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures. SPAA ’11, New York, NY, USA, ACM
(2011) 117–128

17. Jain, A.: pOSKI: An extensible autotuning framework to perform optimized Sp-
MVs on multicore architectures. Master’s thesis, EECS Department, University of
California, Berkeley (July 2008)

18. Byun, J.H., Lin, R., Demmel, J.W., Yelick, K.A.: pOSKI: Parallel optimized sparse
kernel interface library. http://bebop.cs.berkeley.edu/poski/

