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The traditional data envelopment analysis (DEA) literatures generally concentrated on the efficiency evaluation of single decision
making unit (DMU). However, in many practical problems, the decision makers are required to choose a number of DMUs instead
of a single one from the DMUs set. Therefore, it is necessary to study the combinatorial efficiency evaluation problem which can
be illustrated as a knapsack problem naturally. It is indicated that the basic model proposed by Cook and Green may have some
drawbacks and a modified model, which is combined with the super efficiency model, is proposed in this paper. What is more, our
proposed model is more persuasive to the decision makers because it is able to provide a unique best combination of DMUs. An
adapted local search algorithm is developed as a solver of this problem. Finally, numerical examples are provided to examine the
validity of our proposed model and the adapted local search algorithm.

1. Introduction

Data envelopment analysis (DEA) was first introduced by
Charnes et al. [1] in 1978. DEA is an effective method of
evaluating the relative efficiency of decision making units
(DMUs) which consume multiple inputs to produce multiple
outputs. After more than thirty years’ development, DEA
has become a significant and active research area; see [2–4]
as reviews of DEA. The traditional DEA literatures, which
we called individual efficiency evaluation here, generally
concentrated on the efficiency evaluation of single DMU.
However, in many practical problems, such as projects selec-
tion or technology evaluation problem, the decision makers
are required to select a number of DMUs instead of a single
one. According to Cook and Green’s research [5], traditional
individual efficiency evaluation is not adequate to support
the decision making in these problems mainly because a
combination of individually efficient DMUs is not necessarily
still efficient within all the possible combinations. Therefore,
it is necessary to do further research on the combinatorial
efficiency evaluation problem which means the efficiency
evaluation of multiple DMUs combined together under

the DEA framework and can be illustrated as a 0-1 knapsack
problem naturally [5].

The combinatorial efficiency evaluation is a relatively
new problem and some related researches can be found in
the projects selection and technology evaluation problem.
Oral et al. [6] firstly proposed a DEA-based multistage
methodology in the R&D projects collective evaluation and
selection problem. Cook and Green’s [5] research afterwards
may be the primal article that combined the DEA model
and knapsack problem together to solve the R&D projects
selection problem. Loch et al. [7] and Beaujon et al. [8]
did their researches on the projects selection problem with
different mathematical programming models. A DEA-based
methodology was developed by Eilat et al. [9] considering
the interactions between R&D projects. Vitner et al. [10]
used DEA to compare the project efficiency in a multiproject
environment. Based on Cook and Green’s research, Chang
and Lee [11] extended the problem into the fuzzy case.
DEA was also used in a methodology proposed by Khalili-
Damghani et al. [12]. Tavana et al. [13] introduced a fuzzy
DEAmodel for a high-technology projects selection problem
at NASA.
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Cook and Green’ paper [5] is considered as a basic re-
search on the combinatorial efficiency evaluation problem;
some other papers [11, 13] are based on their research.
However, during our research, we find that theremay be some
mistakes in Cook and Green’s model. As mentioned in [10],
each project in the projects selection problem is necessarily a
one-time nonrepeated event. But in Cook and Green’s model,
this basic factwas neglected and the sameprojectwas possible
to be selected more than once. Considering the drawbacks
of Cook and Green’s model, we proposed a new DEA-
based methodology which is combined with the knapsack
problem model and super efficiency model. Comparing with
the previous researches, the efficiency evaluation based on
our proposed methodology is more practically based on
the fact that each DMU is allowed to appear only once in
a combination. Our proposed methodology is also more
persuasive to the decisionmakers because it is able to provide
a unique best combination of DMUs. What is more, our
proposedmethodology is combined with the super efficiency
model and therefore is more powerful in discriminating the
efficient combinations of DMUs. An adapted local search
algorithm is provided as a solver of the knapsack problem.

The rest of this paper is organized as follows: Section 2 is
the problem formulation with some comments on Cook and
Green’s model. Section 3 illustrates our proposed model in
detail. Section 4 described the adapted local search algorithm
briefly. Section 5 is the application into numerical examples.
Finally, we give the conclusions in Section 6.

2. Problem Formulation

2.1. DEA and Its Extension to Combinatorial Efficiency Evalua-
tion. DEAwas first introduced by Charnes et al. in 1978 [1]. It
is supposed that, in aDEAproblem, there are 𝑛DMUswith𝑚
inputs and 𝑠 outputs.The vectors𝑥𝑗 = [𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑚𝑗]

T and
𝑦𝑗 = [𝑦1𝑗, 𝑦2𝑗, . . . , 𝑦𝑠𝑗]

T are usually used to denote the inputs
and outputs of DMU𝑗, in which 𝑗 = 1, 2, . . . , 𝑛. And the basic
efficiency evaluation model of DMU𝑗0 (𝑗0 = 1, 2, . . . , 𝑛) is as
follows:

Max ℎ𝑗0
= 𝑢𝑗0

Τ
𝑦𝑗0

s.t. 𝑢𝑗0

Τ
𝑦𝑗 − V𝑗0

Τ
𝑥𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛

V𝑗0
Τ
𝑥𝑗0

= 1

𝑢𝑗0
≥ 0

V𝑗0 ≥ 0,

(1)

where 𝑢𝑗0
= [𝑢1𝑗

0

, 𝑢2𝑗
0

, . . . , 𝑢𝑠𝑗
0

]
T and V𝑗0 = [V1𝑗

0

, V2𝑗
0

, . . . ,

V𝑚𝑗
0

]
T are the optimal weights assigned to the inputs and

outputs, respectively, and ℎ𝑗0
is the efficiency score of

DMU𝑗0 (𝑗0 = 1, 2, . . . , 𝑛). Although many different forms of
DEA models have been developed [2–4], we use the basic
CCR model (model (1)) here to illustrate our thoughts on
combinatorial efficiency evaluation. Some further studies are
possible to extend the combinatorial efficiency evaluation
into other DEA models.

It can be found that, just like the basic CCR model, most
of the traditional researches are concerned with the individ-
ual efficiency evaluation of single DMU but pay no attention
to the combinatorial efficiency evaluation of multiple DMUs.
As mentioned before, sometimes the decision makers are
required to choose a number of DMUs from the alternatives
instead of a single one, and, therefore, the combinatorial
efficiency evaluation is needed. Before extending our research
to the combinatorial efficiency evaluation problem, we give
some definitions first for convenience.

Definition 1. The combinatorial efficiency evaluation (CEE)
means the efficiency evaluation of a combination of multiple
DMUs under the DEA framework.

Definition 2. Thecombinatorial-DMU(CDMU) is a subset of
DMUs set and can be seen as a new individual DMU in CEE
problem.

Definition 3. The possible-combination set (𝑃) is the power
set of DMUs set (excluding the empty set 0) which contains
all the possible combinations of DMUs, and it is described as
follows:

𝑃 = ∏(DMU𝑠) = ∏({DMU1,DMU2, . . . ,DMU𝑛}) .
(2)

The number of CDMUs in 𝑃 is denoted by |𝑃|, and,
for CDMU𝑘 (𝑘 = 1, 2, . . . , |𝑃|), a binary 0-1 vector 𝑐𝑘 =

[𝑐1𝑘, 𝑐2𝑘, . . . , 𝑐𝑛𝑘]
T is used to denote the combination as fol-

lows:

𝑐𝑗𝑘 = {

1, DMU𝑗 ∈ CDMU𝑘,
0, DMU𝑗 ∉ CDMU𝑘,

𝑗 = 1, 2, . . . , 𝑛. (3)

It is supposed that all the DMUs in DEA problem are
neither synergistic nor interfering [5]; therefore the inputs
and outputs of the CDMUs are directly the sum of its
elements’ inputs and outputs. For example, the inputs 𝑋𝑘 =
[𝑋1𝑘, 𝑋2𝑘, . . . , 𝑋𝑚𝑘]

T and outputs 𝑌𝑘 = [𝑌1𝑘, 𝑌2𝑘, . . . , 𝑌𝑠𝑘]
T of

CDMU𝑘 (𝑘 = 1, 2, . . . , |𝑃|) can be calculated as follows:

𝑋𝑎𝑘 =

𝑛

∑

𝑗=1

𝑐𝑗𝑘𝑥𝑎𝑗, 𝑎 = 1, 2, . . . , 𝑚

𝑌𝑏𝑘 =

𝑛

∑

𝑗=1

𝑐𝑗𝑘𝑦𝑏𝑗, 𝑏 = 1, 2, . . . , 𝑠.

(4)

There are usually some constraints on the inputs and
outputs of CDMUs and therefore not all the CDMUs in
the possible-combination set 𝑃 are rational in practice. In a
CEE problem, what we are concerned with is the CDMUs
that satisfied the constraints instead of the entire possible-
combination set. For this reason, we give some further
definitions about the possible-combination set 𝑃.

Definition 4. The rational-combination set (𝑅) is a subset of
𝑃 in which the CDMUs satisfied some constraints on inputs
and outputs, and it is described as follows:

𝑅 = {CDMU𝑘 | 𝑋𝑘 ≤ 𝑋0, 𝑌𝑘 ≥ 𝑌0,CDMU𝑘 ∈ 𝑃} , (5)
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where𝑋0 and 𝑌0 are the constraints on inputs and outputs of
CDMUs, respectively. In some simplified situation, theremay
be no constrains on the outputs and the rational-combination
set can be described as follows:

𝑅 = {CDMU𝑘 | 𝑋𝑘 ≤ 𝑋0,CDMU𝑘 ∈ 𝑃} . (6)

Definition 5. The desired-combination set (𝐷) is a subset of
𝑅 in which the CDMUs are not allowed to combine with any
other DMU under the restrictions of 𝑋0, and it is described
as follows:

𝐷 = {CDMU𝑘 | 𝑋𝑘 ≤ 𝑋0,CDMU𝑘 ∈ 𝑃,

∀DMU𝑗 ∉ CDMU𝑘, 𝑋𝑘 + 𝑥𝑗 > 𝑋0, 𝑗 = 1, 2, . . . , 𝑛} .

(7)

What the decision makers are concerned with the most
is the efficiency evaluation of CDMUs in the desired-
combination set𝐷 that make full use of the budgets. It should
be noted here that the DMUs in a CDMU are naturally
one-time nonrepeated events and a DMU is not allowed
to appear repeatedly in a combination. Therefore, the basic
combinatorial efficiency evaluation model of CDMU𝑘0 (𝑘0 =
1, 2, . . . , |𝐷|) in desired-combination set𝐷 is as follows:

Max 𝐻𝑘0
= 𝑢𝑘0

Τ
𝑌𝑘0

s.t. 𝑢𝑘0

Τ
𝑌𝑘 − V𝑘0

Τ
𝑋𝑘 ≤ 0, 𝑘 = 1, 2, . . . , |𝐷| (8.1)

V𝑘0
Τ
𝑋𝑘0

= 1

𝑢𝑘0
≥ 0

V𝑘0 ≥ 0.

(8)

As CDMU is a combination of DMUs, the CEE model
of CDMU𝑘0 (𝑘0 = 1, 2, . . . , |𝐷|) can be illustrated as an
equivalent 0-1 knapsack problem model as follows, in which
the binary 0-1 vector 𝑐𝑘0 = [𝑐1𝑘0

, 𝑐2𝑘0
, . . . , 𝑐𝑛𝑘0

]
T is the solution

we need:

Max 𝐻𝑘0
= 𝑢𝑘0

Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘0
𝑦𝑗)

s.t. 𝑢𝑘0

Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘𝑦𝑗) − V𝑘0
Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘𝑥𝑗) ≤ 0,

𝑘 = 1, 2, . . . , |𝐷|

V𝑘0
Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘0
𝑥𝑗) = 1

𝑢𝑘0
≥ 0

V𝑘0 ≥ 0

𝑐𝑗𝑘 ∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , |𝐷| .

(9)

There are mainly two drawbacks in model (8). Firstly,
as mentioned in [5], the quantity of restrictions (8.1) would
grow too fast as the number of DMUs becomes bigger, and
this would affect the practicability seriously. Secondly, there
would be more than one CDMU to be evaluated as efficient
based on the basic model (8).This would be less persuasive to
the decision makers to make a choice between the CDMUs.

These two problems would also exist in model (9) and some
further discussion is needed to improve the usability of
models (8) and (9).

2.2. Some Comments on Cook and Green’s Model. Cook and
Green introduced a resource-constrained DEA approach
combined with the knapsack problem in the project priori-
tization problem in order to select a subset of projects from a
larger set of proposals [5]. Cook andGreen’s papermay be the
first research about the CEE problem, and some other papers
have done research based on Cook and Green’s work [11, 13].
However, during our research, we found that there are some
drawbacks in Cook and Green’s model and some comments
are provided in this section.

In a project selection problem, the decision makers are
required to select a number of projects with constrains on
the project cost.The alternative projects are considered as the
DMUs in DEA problem and the individual efficiency of each
project can be calculated by model (1). Model (8) was also
used as the basic model in Cook and Green’s paper and, in
order to overcome the first drawback of model (8), Cook and
Green introduced the following model:

Max 𝐻𝑘0
= 𝑢𝑘0

Τ
𝑌𝑘0

s.t. 𝑢𝑘0

Τ
𝑦𝑗 − V𝑘0

Τ
𝑥𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛 (10.1)

V𝑘0
Τ
𝑋𝑘0

= 1

𝑢𝑘0
≥ 0

V𝑘0 ≥ 0.

(10)

Comparing Cook and Green’s model (10) with the basic
model (8), we can find that restrictions (8.1) were replaced
by restrictions (10.1) which are the same with the basic CCR
model (1). It is effective to reduce the quantity of restrictions
in model (8) but some problems arose too.

The inequality restrictions in a DEA model shaped the
efficient frontier of the production possibility set (PPS) which
is used as the benchmark of evaluating all DMUs. A funda-
mental fact, which was neglected during Cook and Green’s
transformation, is that the efficient frontier has changed
during the combination of DMUs. In Cook and Green’s
model, the combinatorial efficiency of CDMUs is evaluated
by the original efficient frontier of DMUs, and this would
be inappropriate for some CDMUs. Cook and Green’s model
also neglected the fact that a DMU is not allowed to appear
repeatedly in CDMUs.

In aword, themajor drawback ofCook andGreen’smodel
is that it had not realized the differences between the PPS of
set𝑅 and set𝐷.The purpose of Cook andGreen is to evaluate
the efficiency of CDMUs in set𝐷, but what they used was the
PPS of set 𝑅. It is obviously inappropriate and that will result
in some efficient CDMUs being evaluated to be inefficient by
error.

In the following, a simple numerical example is provided
to illustrate the drawbacks of Cook and Green’s model.
Suppose that there are 4 DMUs shown in Table 1 with one
input and two outputs. The cost of the CDMUs is restricted
to be no more than 2 units; therefore, all the possible
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Table 1: The data of four DMUs.

DMU Input Output 1 Output 2 Efficiency
1 1 1 5 1
2 1 3 4 1
3 1 5 2 1
4 1 4 1 0.8

combinations are provided in Table 2. The purpose of this
CEE problem is to evaluate the combinatorial efficiency of
CDMUs in set 𝐷. And the evaluation results by models (8)
and (10) are compared in Table 3.

Comparing the evaluation results in Table 3, we can
find that the CDMU {3, 4}, which should be efficient in
the combination set 𝐷, is evaluated incorrectly by model
(10). This is mainly because some impractical combinations,
such as {1, 1}, {2, 2}, {3, 3}, and {4, 4}, are used to shape an
impractical efficient frontier in Cook and Green’s model (10);
see Figure 1. And the combinatorial efficiency evaluated by
the impractical efficient frontier is certainly incorrect.

3. Proposed Model for the CEE Problem

In order to overcome the drawbacks of model (8) and model
(10), a new combinatorial efficiency evaluation model is
proposed in our paper. There are mainly three advantages
of our proposed model: (a) our model is combined with the
super efficiency model and therefore the best CDMU can
be provided to the decision makers; (b) in the meanwhile,
the quantity of restrictions is reduced to be acceptable in
our model; (c) finally, evaluation in our model is based on
the super efficient frontier and no efficient CDMU would be
incorrectly evaluated.

The super efficiency model is a series of DEA models in
order to achieve a full ranking of both efficient and inefficient
DMUs [14–18]. A basic super efficiency model is provided by
Andersen and Petersen in [14] as follows:

Max ℎ𝑗0
= 𝑢𝑗0

Τ
𝑦𝑗0

s.t. 𝑢𝑗0

Τ
𝑦𝑗 − V𝑗0

Τ
𝑥𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑗0

V𝑗0
Τ
𝑥𝑗0

= 1

𝑢𝑗0
≥ 0

V𝑗0 ≥ 0.

(11)

Themain idea of theAPmodel is to evaluate the efficiency
of a target DMU by excluding it from the DMUs set. The
practical meaning of AP efficiency is a measure of howmuch
a DMU can extend the PPS. This is persuasive enough to
the decision makers in reality. Although infeasibility would
happen in some cases and many papers have done research
to solve the infeasibility problem [15–18], our interest is not to
improve the super efficiency model. It should be noted here
that any improved super efficiency model can be used in the
CEE problem, and the emphasis of our paper is to provide

a methodology of solving the CEE problem combined with
the super efficiency model. For this reason, we give our
proposed model for the CEE problem as follows:

Max 𝐻𝑘0
= 𝑢𝑘0

Τ
𝑌𝑘0

s.t. 𝑢𝑘0

Τ
𝑦𝑗 − V𝑘0

Τ
𝑥𝑗 ≤ 0,

𝑗 = 1, 2, . . . , 𝑛,

DMU𝑗 ∉ CDMU𝑘0
V𝑘0
Τ
𝑋𝑘0

= 1

𝑢𝑘0
≥ 0

V𝑘0 ≥ 0.

(12)

What is more, the equivalent knapsack problem model
can be formulated as follows:

Max 𝐻𝑘0
= 𝑢𝑘0

Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘0
𝑦𝑗)

s.t. (1 − 𝑐𝑗𝑘0
) (𝑢𝑘0

Τ
𝑦𝑗 − V𝑘0

Τ
𝑥𝑗) ≤ 0, 𝑗 = 1, 2, . . . , 𝑛

V𝑘0
Τ
(

𝑛

∑

𝑗=1

𝑐𝑗𝑘0
𝑥𝑗) = 1

𝑢𝑘0
≥ 0

V𝑘0 ≥ 0

𝑐𝑗𝑘0
∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛.

(13)

Model (13) is used as the fitness measure of solutions
in the knapsack problem, and the optimal solution 𝑐𝑘0

=

[𝑐1𝑘0
, 𝑐2𝑘0

, . . . , 𝑐𝑛𝑘0
]
T is the result we need. And it is assumed

that all the CDMUswe considered here belong to the desired-
combination set𝐷.

4. An Adapted Local Search Algorithm

An adapted local search algorithm is developed in this
section to solve the CEE problem with the knapsack problem
formulation.The local search algorithm is simple but effective
in solving combinatorial optimization problems [19–21].
Considering the fact that the emphasis of our research is
proposing a methodology for the CEE problem, the basic
local search algorithm is used here with some adaptations.
The pseudocode of the basic local search algorithm is pro-
vided in Pseudocode 1, and some adaptations are illustrated
afterwards.

4.1. Generate an Initial Solution. As mentioned in many
literatures [19–21], the initial solution has great effect on
the performance of the local search algorithm. There are
mainly two problems in generating the initial solutions: (a)
how to generate a feasible solution; (b) how to generate a
relatively good initial solution. For the first problem, we use
the constraints in Definition 5 to make sure that all the initial
solutions are feasible and belong to the desired-combination
set 𝐷. For the second problem, we introduce an assumption
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Figure 1: Different efficient frontier in model (8) and model (10).

Generate an initial solution 𝑆0;
𝑆better ← 𝑆0;
𝑆best ← 𝑆0;
for 𝑖 from 1 to𝑚𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟

generate (part of) the neighborhood of 𝑆0;
𝑆better ← the best solution in (part of) the neighborhood of 𝑆0;
if 𝑆better > 𝑆0

𝑆0 ← 𝑆better;
else if 𝑆better ≤ 𝑆0

generate another initial solution 𝑆0;
end if
if 𝑆better > 𝑆best

𝑆best ← 𝑆better;
end if

end for
return 𝑆best

Pseudocode 1: The pseudocode of the basic local search algorithm.

that the combination of efficient DMUs is more efficient
than the combination of inefficient DMUs. Therefore, when
generating an initial solution, we choose an efficient DMU
first and then add other DMUs to the combination randomly
until the solution satisfies the constraints in Definition 5.

4.2. Generate a Neighboring Solution. The neighborhood of
a solution may be too large, and usually only part of the
neighborhood is generated during an iteration. Asmentioned
before, the vector 𝑐𝑘 = [𝑐1𝑘, 𝑐2𝑘, . . . , 𝑐𝑛𝑘]

T is used to denote the
solution of CDMU𝑘 (𝑘 = 1, 2, . . . , |𝐷|), and theDMUs set can

be divided into two subsets according to their corresponding
value in 𝑐𝑘 as follows:

CDMU𝑘
𝑐
= {DMU𝑗 | 𝑐𝑗𝑘 = 0, 𝑗 = 1, 2, . . . , 𝑛} ;

CDMU𝑘 = {DMU𝑗 | 𝑐𝑗𝑘 = 1, 𝑗 = 1, 2, . . . , 𝑛} .

(14)

The way of generating a neighboring solution of CDMU𝑘
in our adapted local search algorithm is to choose a DMU
in CDMU𝑘

𝑐 and a DMU in CDMU𝑘 randomly and exchange
their corresponding value in 𝑐𝑘. The probability of choosing
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Table 2: Different combinations of DMUs.

Combination set CDMUs
𝑃 {1} , {2} , {3} , {4} , {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} , {1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , {1, 2, 3, 4}

𝑅 {1} , {2} , {3} , {4} , {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}

𝐷 {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}

Model (10) {1, 1} , {2, 2} , {3, 3} , {4, 4} , {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}

Table 3: Combinatorial efficiency evaluation by models (8) and (10).

CDMUs Input Output 1 Output 2 Combinatorial efficiency
Model (8) Model (10)

{1, 2} 2 4 9 1 1
{1, 3} 2 6 7 0.9583 0.9285
{1, 4} 2 5 6 0.8125 0.7857
{2, 3} 2 8 6 1 1
{2, 4} 2 7 5 0.8667 0.8571
{3, 4} 2 9 3 1 0.9000

a DMU is determined by the individual efficiency of each
DMU as follows:

𝑝𝑗 =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝐸𝑗( ∑

DMU𝑙∈CDMU𝑘𝑐
𝐸𝑙)

−1

,
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𝑐
,

(𝐸𝑗
−1
)( ∑

DMU𝑙∈CDMU𝑘

(𝐸𝑙
−1
))

−1

,

DMU𝑗 ∈ CDMU𝑘,

𝑗 = 1, 2, . . . , 𝑛,

(15)

where 𝑝𝑗 is the probability of choosing DMU𝑗 and 𝐸𝑗 is the
individual efficiency of DMU𝑗, in which 𝑗 = 1, 2, . . . , 𝑛. It
should be noted here that the generated neighboring solution
should also satisfy the constraints in Definition 5.

5. Numerical Examples

In this section, two numerical examples are provided to
demonstrate the validity and effectiveness of our proposed
model. By the first example, it is demonstrated that our
proposed model is able to provide a unique best combination
of DMUs and therefore would be more persuasive to the
decision makers. By the second example, the superiority of
our proposed model is demonstrated in different scenarios
comparing with Cook and Green’s model. What is more, the
CEE problem considered as a 0-1 knapsack problem here is
solved by the adapted local search algorithm in Section 4.

Example 1. The first numerical example has been introduced
in Section 2.2 to illustrate the drawbacks of Cook and Green’s
model. It is used here again to demonstrate that, comparing
with Cook and Green’s model, our proposed model is able
to provide a unique best solution to the decision makers and
therefore would be more persuasive in practice. The data of
four DMUs is provided once more in Table 4.

Table 4: The data of Example 1.

DMU Input Output 1 Output 2 Efficiency
1 1 1 5 1
2 1 3 4 1
3 1 5 2 1
4 1 4 1 0.8

It is supposed that the input ofCDMUs should be nomore
than 2 units and a comparison between Cook and Green’s
model and our proposed model is provided in Table 5.

The inefficient CDMUs are not shown in Table 5, and, by
the application of our proposed model, the best combination
we found is {1, 2} which achieves a super efficiency of
1.2857. And by the comparison in Table 5, the validity and
effectiveness of our proposed model can be demonstrated
in three points: (a) some impractical CDMUs have been
eliminated by our proposedmodel based on the fact that each
DMU is allowed to appear only one time in a CDMU; (b)
our proposed model is more powerful in discriminating the
CDMUs and is able to provide a unique best combination
which would be more persuasive to the decision makers; (c)
in our proposed model, efficient CDMUs are prevented from
being incorrectly evaluated by Cook and Green’s model, such
as the CDMU {3, 4}.

Example 2. The second numerical example is selected from
Oral’s paper [6] in which 37 research and development
projects in Turkish iron and steel industry were evaluated and
selected collectively.This example was also used in Cook and
Green’s paper [5]. In this example, 37 projects are considered
as the DMUs with one input and five outputs as follows:

Input: the investment of a project;
Output 1 (O1): direct economic contribution;
Output 2 (O2): indirect economic contribution;
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Table 5: Combinatorial efficiency evaluation of Example 1.

CDMU Input Output 1 Output 2 Combinatorial efficiency
Cook and Green’s model Our proposed model

{1, 1} 2 2 10 1 Impractical
{2, 2} 2 6 8 1 Impractical
{3, 3} 2 10 4 1 Impractical
{1, 2} 2 4 9 1 1.2857
{2, 3} 2 8 6 1 1.1111
{3, 4} 2 9 3 0.9000 1.1250

Table 6: The data of Example 2.

Project Input O1 O2 O3 O4 O5 Efficiency
1 84.20 67.53 70.82 62.64 44.91 46.28 0.6543
2 90.00 58.94 62.86 57.47 42.84 45.64 0.5512
3 50.20 22.27 19.68 6.73 10.99 5.92 0.3360
4 67.50 47.32 47.05 21.75 20.82 19.64 0.5283
5 75.40 48.96 48.48 34.90 32.73 26.21 0.5064
6 90.00 58.88 77.16 35.42 29.11 26.08 0.6148
7 87.40 50.10 58.20 36.12 32.46 18.90 0.5060
8 88.80 47.46 49.54 46.89 24.54 36.35 0.4204
9 95.90 55.26 61.09 38.93 47.71 29.47 0.5177
10 77.50 52.40 55.09 53.45 19.52 46.57 0.5431
11 76.50 55.13 55.54 55.13 23.36 46.31 0.5618
12 47.50 32.09 34.04 33.57 10.60 29.36 0.5525
13 58.50 27.49 39.00 34.51 21.25 25.74 0.5045
14 95.00 77.17 83.35 60.01 41.37 51.91 0.6539
15 83.80 72.00 68.32 25.84 36.64 25.84 0.6518
16 35.40 39.74 34.54 38.01 15.79 33.06 0.8542
17 32.10 38.50 28.65 51.18 59.59 48.82 1.0000
18 46.70 41.23 47.18 40.01 10.18 38.86 0.7618
19 78.60 53.02 51.34 42.48 17.42 46.30 0.5179
20 54.10 19.91 18.98 25.49 8.66 27.04 0.3523
21 74.40 50.96 53.56 55.47 30.23 54.72 0.6022
22 82.10 53.36 46.47 49.72 36.53 50.44 0.5068
23 75.60 61.60 66.59 64.54 39.10 51.12 0.6754
24 92.30 52.56 55.11 57.58 39.69 56.49 0.5003
25 68.50 31.22 29.84 33.08 13.27 36.75 0.4024
26 69.30 54.64 58.05 60.03 31.16 46.71 0.6633
27 57.10 50.40 53.58 53.06 26.68 48.85 0.7420
28 80.00 30.76 32.45 36.63 25.45 34.79 0.3478
29 72.00 48.97 54.97 51.52 23.02 45.75 0.5784
30 82.90 59.68 63.78 54.80 15.94 44.04 0.5505
31 44.60 48.28 55.58 53.30 7.61 36.74 0.9459
32 54.50 39.78 51.69 35.10 5.30 29.57 0.6393
33 52.70 24.93 29.72 28.72 8.38 23.45 0.4299
34 28.00 22.32 33.12 18.94 4.03 9.58 0.7973
35 36.00 48.83 53.41 40.82 10.45 33.72 1.0000
36 64.10 61.45 70.22 58.26 19.53 49.33 0.7708
37 66.40 57.78 72.10 43.83 16.14 31.32 0.7391
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Table 7: Combinatorial efficiency evaluation of Example 2.

Methodology Solution Budget (1000) Combinatorial efficiency
Common projects Distinct projects Consume Remain

Oral’s
{1, 16, 17, 18, 23, 26, 27, 31, 35, 36}

{14, 15, 21, 34, 37} 964.70 35.30 1.2542
Cook and Green’s {6, 14, 15, 32, 34, 37} 962.80 37.20 1.2719
Our proposed {10, 11, 12, 21, 29, 30} 975.90 24.10 1.3186

Table 8: Combinatorial efficiency evaluation with different budget restrictions.

(a) Budget restriction: 200

Methodology Solution Combinatorial efficiency
Cook and Green’s {16, 17, 31, 34, 35} 1.2544
Our proposed {16, 17, 23, 35} 1.3781

(b) Budget restriction: 500

Methodology Solution Combinatorial efficiency
Cook and Green’s {16, 17, 18, 23, 26, 27, 31, 34, 35, 36} 1.3132
Our proposed {16, 17, 18, 23, 26, 27, 31, 34, 35, 36} 1.3132

(c) Budget restriction: 800

Methodology Solution Combinatorial efficiency
Cook and Green’s {1, 14, 16, 17, 18, 23, 26, 27, 31, 32, 34, 35, 36, 37} 1.2837
Our proposed {1, 11, 16, 17, 18, 21, 23, 26, 27, 29, 31, 34, 35, 36} 1.3041

(d) Budget restriction: 1000

Methodology Solution Combinatorial efficiency
Cook and Green’s {1, 6, 14, 15, 16, 17, 18, 23, 26, 27, 31, 32, 34, 35, 36, 37} 1.2719
Our proposed {1, 10, 11, 12, 16, 17, 18, 21, 23, 26, 27, 29, 30, 31, 35, 36} 1.3186

(e) Budget restriction: 1200

Methodology Solution Combinatorial efficiency
Cook and Green’s {1, 6, 12, 14, 15, 16, 17, 18, 21, 23, 26, 27, 29, 31, 32, 34, 35, 36, 37} 1.2504
Our proposed {1, 2, 11, 13, 14, 16, 17, 18, 21, 23, 26, 27, 29, 31, 32, 34, 35, 36, 37} 1.2880

(f) Budget restriction: 1500

Methodology Solution Combinatorial efficiency
Cook and Green’s {1, 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37} 1.2648
Our proposed {1, 2, 5, 6, 7, 9, 13, 14, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 29, 34, 35} 1.4587

Output 3 (O3): technological contribution;

Output 4 (O4): scientific contribution;

Output 5 (O5): social contribution.

The input and outputs data is provided in Table 6. It is
supposed that the budget restriction is 1000 units and, as
mentioned in [5], the average cost of these 37 projects is 67.99
and there would be approximately 15 projects selected in a
combination.

By a searching process of our adapted local search algo-
rithm, the best combination we found is {1, 10, 11, 12, 16,
17, 18, 21, 23, 26, 27, 29, 30, 31, 35, 36}, and comparing with
Cook and Green’s result, our proposed solution achieves a
better combinatorial efficiency of 1.3186 evaluated by our
proposed model (13). A detailed comparison between Oral’s

solution [6], Cook andGreen’s solution [5], and our proposed
solution is provided in Table 7.

The common projects selected by all three methodolo-
gies are defined as core projects according to Cook and
Green’s research [5], and in this numerical example, the core
projects are {1, 16, 17, 18, 23, 26, 27, 31, 35, 36}. In the mean-
while, the six distinct projects in our proposed combination
are {10, 11, 12, 21, 29, 30}. By comparing the costs of these
three solutions, we can find that our proposed solution is
better at making full use of the budgets. And finally, what
is the most important, our proposed solution achieves the
best combinatorial efficiency of 1.3186, and the combinatorial
efficiency of Cook and Green’s solution evaluated by model
(13) is 1.2719 while Oral’s solution is 1.2542.

Some further comparisons between Cook and Green’s
model and our proposed model are provided in Table 8 (a∼f)
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Figure 2: A comparison with different budget restrictions.

in which different budget restrictions are introduced into
Example 2.The comparisonwith different budget restrictions
is also shown in Figure 2.

By the comparison between Cook and Green’s solutions
and our proposed solutionswith different budget restrictions;
it can be found that our proposed model generally achieves
a better combinatorial efficiency than Cook and Green’s
model and only when the budget restriction is 500 these two
models achieve the same result. It should also be noted that
the combinatorial efficiency scores calculated by a certain
CEE model are incomparable according to different budget
restrictions. For example, the combinatorial efficiency under
budget restriction 200 is incomparable with the combinato-
rial efficiency under budget restriction 500, even for the same
CEE model.

6. Conclusions

Data envelopment analysis (DEA) is generally an effective
methodology of evaluating the relative efficiency of single
decision making unit (DMU). However, in some practical
problems, the decision makers are required to choose a
group of DMUs instead of a single one. Therefore it is
necessary to study the efficiency evaluation ofmultipleDMUs
within a larger DMU set, and this relatively new problem is
named as combinatorial efficiency evaluation (CEE) in our
paper. By modifying some drawbacks in Cook and Green’s
model, a new combinatorial efficiency evaluation model is
proposed based on the concept of knapsack problem and
super efficiency model. Our proposed model is more logical
in practice, and in themeanwhile, our proposedmodel is able
to provide a unique best combination ofDMUswhich ismore
persuasive to the decision makers. Numerical examples are
provided to demonstrate the validity of our proposed model
compared with some other methods. It should be noted that
our research in this paper is based on the CCR model and
super efficiency model in constant return to scale (CRS) case,
and some further studies are possible to extend the CEE
problem into variable return to scale (VRS) case.
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