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Abstract. Hierarchical Multi-label Classification (HMC) is the task of
assigning a set of classes to a single instance with the peculiarity that the
classes are ordered in a predefined structure. We propose a novel HMC
method for tree and Directed Acyclic Graphs (DAG) hierarchies. Us-
ing the combined predictions of locals classifiers and a weighting scheme
according to the level in the hierarchy, we select the “best” single path
for tree hierarchies, and multiple paths for DAG hierarchies. We devel-
oped a method that returns paths from the root down to a leaf node
(Mandatory Leaf Node Prediction or MLNP) and an extension for Non
Mandatory Leaf Node Prediction (NMLNP). For NMLNP we compared
several pruning approaches varying the pruning direction, pruning time
and pruning condition. Additionally, we propose a new evaluation met-
ric for hierarchical classifiers, that avoids the bias of current measures
which favor conservative approaches when using NMLNP. The proposed
approach was experimentally evaluated with 10 tree and 8 DAG hier-
archical datasets in the domain of protein function prediction. We con-
cluded that our method works better for deep, DAG hierarchies and in
general NMLNP improves MLNP.

1 Introduction

The traditional classification task deals with problems where each example e is
associated with a single label y ∈ L, where L is the set of classes. However,
some classification problems are more complex and multiple labels are needed.
This is called multi-label classification. A multi-label dataset D is composed
of N instances (x1, J1), (x2, J2), ..., (xN , JN ), where J ⊂ L. The task is called
Hierarchical Multi-label Classification (HMC) when the labels are ordered in
a predefined structure, typically a tree or a DAG (Direct Acyclic Graph), the
main difference between them is that in the DAG a node can have more than
one parent node.

In hierarchical classification, an example that belongs to certain class auto-
matically belongs to all its superclasses (hierarchy constraint), e.g., in Figure 1b
an instance that belongs to class node 3 also belongs to nodes 1, 4 and root.

Some major applications of HMC can be found in the fields of text cate-
gorization [10], protein function prediction [13], music genre classification [12],
phoneme classification [6], etc.
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Fig. 1. An example of a tree and a DAG structure

Two general approaches can be distinguished in HMC [14]. The first is a
global approach that builds a single classification model, taking into account
the class hierarchy as a whole. These methods are incapable of handling large
scale datasets because the models become too complex and thus time consuming.
The second is a local approach that divides the problem in several subproblems
according to a strategy (can be a local classifier per level, per node or per non
leaf node). The main problem of this approach is that it does not incorporate
the relations (underlying structure) in the local classification.

We propose a novel HMC approach, Chained Path Evaluation (CPE). CPE
belongs to the local approaches so it can work effciently with large scale datasets;
a local classifier is trained for each non-leaf node in the hierarchy. To include the
relations between the classes, and diminish the limitation of local approaches, an
extra attribute is added to the instances in each node which corresponds to the
parent node class according to the hierarchy. We also incorporated a weighting
scheme to value more the predictions of the more general classes than the more
particular ones. CPE scores all the paths in the hierarchy to select the best one.
CPE predicts single paths from the root down to a leaf node for tree hierarchies
(e.g., in Figure 1a 2, 1, root) and multiple paths for DAG hierarchies (e.g., in
Figure 1b 3, 1, 4, root).

We developed an extension of the base method for Non Mandatory Leaf Node
Prediction (NMLNP); in which a pruning phase is performed to select the best
path. We compared several pruning approaches, the best approach for the task
was to prune and then choose the optimal path in a top-down fashion, using the
most probable child as the condition to prune a node. Additionally, we proposed
a new evaluation metric for hierarchical classifiers, that avoids the bias of current
measures which favor conservative predictions (predictions of short paths that
only predict the most general classes) when using NMLNP.

The proposed approach was experimentally evaluated with 10 tree and 8 DAG
hierarchical datasets in the domain of protein function prediction. We concluded
that our method in both versions, MLNP and NMLNP, is competitive with other
methods in the state of the art, and performs better in deeper, DAG hierarchies.

The document is organized as follows. Section 2 reviews the relevant work
in the area, Section 3 describes the method in detail, Section 4 outlines the
framework for the experiments, Section 5 evaluates experimentally our approach,
and Section 6 summarizes the paper and suggests possible future work.
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2 Related Work

When the labels in a multi-label classification problems are ordered in a pre-
defined structure, typically a tree or a Direct Acyclic Graph (DAG), the task
is called Hierarchical Multi-label Classification (HMC). The class structure rep-
resent an “IS-A” relationship, these relations in the structure are asymmetric
(e.g., all cats are animals, but not all animals are cats) and transitive (e.g., all
Siameses are cats, and all cats are animals; therefore all Siameses are animals).
In hierarchical classification, there are basically two types of classifiers: global
classifiers and local classifiers.

Global classifiers construct a global model and train it to predict all the classes
of an instance at once. Vens et al. [15] present a global method that applies
a Predicting Clustering Tree (PCT) to hierarchical multi-label classification,
transforms the problem in a hierarchy of clusters with reduced intra-cluster
variance. One problem of global classifiers is that the computational complexity
grows exponentially with the number of labels in the hierarchy.

Local classifiers can be trained in three different ways: a Local Classifier per
hierarchy Level (LCL), that trains one multi-class classifier for each level of the
class hierarchy; training a Local binary Classifier per Node (LCN), where each
classifier decides if a node is predicted or not; the third way is training a Local
Classifier per Parent Node (LCPN), where a multi-class classifier is trained to
predict its child nodes.

Cerri et al. [5] propose a method that incrementally trains a multilayer per-
ceptron for each level of the classification hierarchy (LCL). Predictions made by
a neural network at a given level are used as inputs to the network of the next
level. The labels are predicted using a threshold value. Finally, a post processing
phase is used to correct inconsistencies (when a subclass is predicted but its
superclass is not). Some difficulties of this approach are the selection of a correct
threshold and the need of a post-processing phase.

Alaydie et al. [1] developed HiBLADE (Hierarchical multi-label Boosting with
LAbel DEpendency), an LCN algorithm that takes advantage of not only the
predefined hierarchical structure of the labels, but also exploits the hidden corre-
lation among the classes that is not shown through the hierarchy. This algorithm
attaches the predictions of the parent nodes as well as the related classes. How-
ever, appending multiple attributes can create models that over-fit the data.

Silla et al. [12] propose an LCPN algorithm combined with two selective meth-
ods for training. The first method selects the best features to train the classifiers,
the second selects both the best classifier and the best subset of features simul-
taneously, showing that selecting a classifier and features improves the classifica-
tion performance. A drawback of this approach is that the selection of the best
features and the best classifier for each node can be a time-consuming process.

Bi et al. [3,4] propose HIROM, a method that uses the local predictions to
search for the optimal consistent multi-label classification using a greedy strat-
egy. Using Bayesian decision theory, they derive the optimal prediction rule by
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minimizing the conditional risk. The limitations of this approach is that it opti-
mizes a function that does not necessarily maximizes the performance in other
measures.

The approach of Hernandez et al. [7], used for tree structured taxonomies,
learns an LCPN. In the classification phase, it classifies a new instance with the
local classifier at each node, and combines the results of all of them to obtain
a score for each path from the root to a leaf-node. Two fusion rules were used
to achieve this: product rule and sum rule. Finally it returns the path with the
highest score. One limitation of this method is that it favors shorter (product
rule) or longer paths (sum rule) depending on which combination rule is used.
Another limitation is that it does not take into account the relations between
nodes when classifying an instance.

Extending the work of Hernandez et al., our method (Chained Path Evalua-
tion or CPE), changes the way the classifiers are trained to include the relations
between the labels, specifically of the parent nodes of the labels, to boost the
prediction. The score for each path is computed using a fusion rule that takes
into account the level in the hierarchy, thus minimizing the effect that the length
of the path has in the score. We also extended the method to work with DAG
structured hierarchies.

To include the relations of the parent nodes we used the idea of chain classifiers
proposed by Read et al. [9] and further extended by Zaragoza et al. [16]. The
chain classifiers proposed by Read link the classifiers along a chain where each
classifier deals with the binary classification problem associated with a label.
The feature space of each classifier in the chain is extended with the 0/1 label
of all the previous classifiers in the chain. Zaragoza et al. propose a Bayesian
Chain Classifier where they obtain a dependency structure out of the data. This
structure determines the order of the chain, so that the order of the class variables
in the chain is consistent with the structure found in the first stage. We adapt
this idea to a hierarchical classifier, such that the chain structure is determined
by the hierarchy.

3 Chained Path Evaluation

Let D be a training set with N examples, ek = (xk, Jk), where xk is a d-
dimensional feature vector and J ⊂ L, L = {l1, 12, ..., lM} a finite set of M
possible labels. These labels are represented as Y ∈ {0, 1}M , where yi = 1 iff
yi ∈ Jk else yi = 0. The parent of label yi in the hierarchy is represented as pa(yi),
the children nodes as child(yi) and the siblings as sib(yi), the siblings include
all the children nodes of pa(yi) except yi. Our method exploits the correlation
of the labels with its ancestors in the hierarchy and evaluates each possible path
from the root to a leaf node, taking into account the level of the predicted labels
to give a score to each path and finally return the one with the best score.
The method is composed of two phases: training and classification. There is an
additional optional phase, pruning, which can be applied for non-mandatory leaf
node prediction.
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3.1 Training

The method trains local classifiers per parent node (LCPN). A multi-class clas-
sifier Ci is trained for each non leaf node yi. The classes in Ci are the labels in
the set of child(yi) plus an “unknown” label that corresponds to the instances
that do not belong to any child(yi).

The training set for Ci is composed of two sets. The positive training set
(Tr+(Ci)) consists of the instances where child(yi) = 1. Each instance in this
set will be labeled with the corresponding child(yi) label. The negative training
set (Tr−(Ci)) consists of instances in sib(yi), in case yi has no siblings this
set will include the uncle nodes, these instances are labeled as “unknown”. The
number of instances on Tr−(Ci) is proportional to the average of the training
examples for each child(yi) to create a balanced training set. The idea behind
Tr−(Ci) is to include instances where the associated label of the parent has the
value zero. The intuition is that the instances that has the parent label set as
zero, will have less probability to be predicted as true that the ones that have
the parent predicted as one.

As in multidimensional classification, the class of each node in the hierarchy
is not independent from the other nodes. To incorporate these relations, inspired
by chain classifiers, we include the class predicted by the parent node(s) as an
additional attribute in the LCPN classifier. That is, the feature space of each
node in the hierarchy is extended with the 0/1 label association of the parent
(tree structure) or parents (DAG structure) of the node, as in a Bayesian Chain
Classifier [16].

3.2 Classification

The classification phase consists in calculating for each new instance with feature
vector xe, the probability of a node i to occur given the feature vector and the
prediction of the parents at each label P (yi = 1|xe, pa(yi)). When the structure
of the dataset is a DAG it is possible to obtain more than one prediction for
one class, then the associated prediction is the average of the prediction of all
the parents for that class. After computing a probability for each node, the
predictions are merged using a rule to obtain a score for each path.

Merging Rule. The rule that merges the predictions of each local classifier
into one score considers the level in the hierarchy of the node to determine the
weight that this node will have in the overall score. Misclassifications at the upper
hierarchy levels (which correspond to more generic concepts) are more expensive
than those at the lower levels (which correspond to more specific concepts).

To achieve this task, the weight of a node (w(yi)) is defined in Equation (2)
and depicted on Figure 2, where level(yi) is the level at which the node yi is
placed in the hierarchy (Equation (1)). For a tree structure it is simply the weight
of its parent plus one, and for DAG structures it is computed as the mean of the
levels of the m parents (pa(yi)) of the node (yi) plus one. Finally, maxLevel is
the length of the longest path in the hierarchy. This way of computing the weight
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of each node assures that the weights are well distributed along the hierarchy;
so that the weights of the lower levels do not tend rapidly to zero, as in other
approaches [3,15].

level(yi) = 1 +

∑m
j=1 level(pa(yi)j)

|pa(yi)|
(1)

wi = 1− level(yi)

maxLevel+ 1
(2)

Equation (3) describes the merging rule which is the sum of the logarithms
of the probabilities on the nodes along the path or paths (when it is a DAG),
where n is the number of nodes in the path, hi is the ith node in the path and
P (hi = 1|xe, pa(hi)) is the probability of the node hi to be predicted as true
by the local classifier. Taking the sum of logarithms is used to ensure numerical
stability when computing the probability for long paths. Figure 2 depicts the
classification procedure.

score =
n∑

i=1

whi ∗ log(P (hi|xe, pa(hi))) (3)

This scheme assumes independence between the labels, although in an indirect
way the dependencies with the parent nodes are considered by incorporating
them as additional attributes. As in chain classifiers, this scheme looks for a
balance between classification accuracy and computational complexity.

For DAG structures there might be numerous paths from the root to one leaf
node. In that case, all the paths that end in that leaf node are returned.
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Fig. 2. Example of the application of the merging rule. (a) Each node has an associated
probability. (b) The local probabilities are combined to obtain a score for each path.
The path with highest score is highlighted.

3.3 Pruning

Sometimes the information available is not sufficient to estimate the class of an
instance at the lower levels in the hierarchy, so it could be better to truncate
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the predicted path at some level, this is known as non-mandatory leaf node
prediction (NMLNP). We introduce a pruning phase to obtain NMLNPs. We
consider three decisions that need to be taken into account for pruning: pruning
direction, pruning time and pruning condition.

Pruning direction. Determines the way the hierarchy is traversed to prune:

1. Top-Down. The hierarchy is traversed starting from the root node, when
the pruning condition is met in one node, the traversing is stopped and the
descendants of the node are pruned.

2. Bottom-Up. The hierarchy is traversed starting from the leaf nodes, when
the pruning condition is met in one node, the traversing is stopped and the
node and its descendants are pruned.

Pruning time. Determines when to perform the pruning stage:

1. Prune & Choose. Prune the hierarchy before the classification phase.
2. Choose & Prune. Prune the path that the classification phase selected.

Pruning condition. Establishes the condition to fulfill to prune a node:

1. Sum children probabilities (SUM). Prunes if the sum of the probabilities of
the children is less than the probability of the ’unknown’ label.

2. Most probable child (BEST). Prunes if the probability of the most probable
child is less than the probability of the ’unknown’ label.

3. Information Gain (IG). Prunes if there is not information gain when includ-
ing the child in the prediction.

In the experiments we compared the different pruning strategies.

4 Experimental Setup

The proposed method, Chained Path Evaluation (CPE), was evaluated experi-
mentally with several tree and DAG structured hierarchies, using five different
evaluation metrics and compared with several state of the art hierarchical clas-
sification techniques.

4.1 Databases

Eighteen datasets were used in the tests, these datasets are from the field of
functional genomics1. Ten of them (tree structured) are labeled using the FunCat
annotation scheme [11]. The remaining eight datasets (DAG structured) are
labeled using the Gene Ontology vocabulary [2]. From the set of paths that each
instance owned we selected only the first to get instances with just one path.
We prunned the hierarchy to obtain nodes with enough instances (more than
50) to train. The two tables in Table 1 represent two datasets: the first used in
1 http://dtai.cs.kuleuven.be/clus/hmcdatasets/

http://dtai.cs.kuleuven.be/clus/hmcdatasets/
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MLNP experiments (all the class paths end on a leaf node) and the second used
in NMLNP experiments (the class paths does not always end on a leaf node);
they have the same names and number of attributes but not the same number of
labels and instances, because the prunning was more exhaustive in MLNP case.

Table 1. Description of the datasets for the experiments. M=Number of Labels,
A=Number of Attributes, N=Number of Instances and D=Maximum Depth.

(a) MLNP experiments

Dataset M A N D
Tree Hierarchies

cellcylcle_FUN 36 77 2339 4
church_FUN 36 29 2340 4
derisi_FUN 37 65 2381 4
eisen_FUN 25 81 1681 3
expr_FUN 36 553 2346 4

gasch1_FUN 36 175 2356 4
gasch2_FUN 36 54 2356 4
pheno_FUN 17 71 1162 3
seq_FUN 39 480 2466 4
spo_FUN 36 82 2302 4

DAG Hierarchies
cellcycle_GO 53 77 1708 11
church_GO 53 29 1711 11
derisi_GO 54 65 1746 11
expr_GO 53 553 1720 11

gasch1_GO 53 175 1716 11
gasch2_GO 53 54 1720 11

seq_GO 52 480 1711 11
spo_GO 53 82 1685 11

(b) NMLNP experiments

Dataset M A N D
Tree Hierarchies

cellcylcle_FUN 49 77 3602 4
church_FUN 49 29 3603 4
derisi_FUN 49 65 3675 4
eisen_FUN 35 81 2335 4
expr_FUN 49 553 3624 4

gasch1_FUN 49 175 3611 4
gasch2_FUN 49 54 3624 4
pheno_FUN 22 71 1462 3
seq_FUN 51 480 3765 4
spo_FUN 49 82 3553 4

DAG Hierarchies
cellcycle_GO 56 77 3516 11
church_GO 56 29 3515 11
derisi_GO 57 65 3485 11
expr_GO 56 553 3537 11

gasch1_GO 56 175 3524 11
gasch2_GO 56 54 3537 11

seq_GO 59 480 3659 11
spo_GO 56 82 3466 11

4.2 Evaluation Metrics

Measures for conventional classification are not adequate for hierarchical multi-
label classification, for that reason specific measures for HMC have been pro-
posed. In our work we use four of the most common evaluation metrics and
propose a new metric.

Let M be the number of labels in L, N the number of instances in the training
set, yi the real set of labels and ŷi the predicted set of labels. The labels of an
instance are represented in a 0/1 vector of size M where the predicted/real labels
are set to 1 and the rest with 0.

Accuracy. Is the ratio of the size of the union and intersection of the predicted
and actual label sets, taken for each example, and averaged over the number of
examples.

Accuracy =
1

N

N∑

i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

(4)
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Exact Match. The exact match represents the proportion of the real label sets
that were predicted.

ExactMatch =
1

N

N∑

i=1

1yi=ŷi (5)

F1-measure. F1-measure (F1) is calculated as in Equation (6) but redefining
precision and recall as:

precision as the fraction of predicted labels which are actually true |zi∧ẑi|
|ẑi| .

recall as the fraction of true labels which are also predicted |zi∧ẑi|
|zi| .

F1 =
2× precision× recall

precision+ recall
(6)

We have specified a vector z instead of the yi vector, because in the multi-label
context there are two ways to average this measure.

F1-macro D (Equation (7)) is averaged by instances; we obtain N vectors of
zi ≡ yi.

F1macro×D(D) =
1

N

N∑

i=0

F1(zi, ẑi) (7)

F1-macro L (Equation (8)) is averaged by labels; we obtain M vectors of
zi ≡ [y1i , ..., y

N
i ].

F1macro×L(D) =
1

M

M∑

i=0

F1(zi, ẑi) (8)

Gain-Loose Balance. In this paper we propose a new evaluation measure for
hierarchical classifieres that avoids conservative predictions when using NMLNP.
Gain-Loose Balance (GLB) is a measure that rewards the nodes that are correct
and penalizes the ones that are incorrect. The rewards and penalties are deter-
mined using the number of siblings of the node and the depth of the node in the
hierarchy.

Based on the notion that discriminating few categories is much easier than
discriminating many of them, a correctly classified node with few siblings has a
minor impact on the rewards than one with many. On the contrary, a misclas-
sified node with few sibling has a mayor impact on the penalty than one with
many.

A correctly classified node that belongs to a deep level in the hierarchy has
more impact on the rewards than one in shallow levels, because reaching the
most specific node is the goal of the prediction. In contrast, a deeper misclassified
node in a deep level of the hierarchy has less impact in the penalty than one in
shallow levels, while the predicted classification is near to the real it become less
expensive.

Equation (9) describes the GLB measure, where np is the number of correct
classified labels, nfp is the number of false positive errors, nfn is the number of
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false negative errors, nt is the number of true labels; N represents the number
of siblings plus one (the node that is being evaluated).

∑np

i=0(1 − 1
N )(1 − wi)∑nt

i=0(1 −
1
N )(1 − wi)

−
(nfp∑

i=0

1

N
wi +

nfn∑

i=0

1

N
wi

)
(9)

Gain-Loose Balance ranges from 1 (when the predicted path is equal to the
real path) to −maxL

2 (see Equation (10)), where maxL is the maximum number
of levels in the hierarchy (see Equation (1)). In the worst case scenario the node
has just two sibling and N = 2. wi is defined in Equation (2).

As we know the maximum and minimum values of the GLB measure we
transformed it into a (0, 1) range maintaining the ratio.

minV alue = −2
maxL∑

i=1

1

N
wi = −2

maxL∑

i=1

1

2

(
1− i

maxL + 1

)
(10)

= −2

(
maxL∑

i=1

1

2
− 1

2(maxL+ 1)

maxL∑

i=1

i

)
(11)

= −maxL+
maxL

2
(12)

5 Experiments

The proposed method, Chained Path Evaluation (CPE), was evaluated experi-
mentally with a number of tree and DAG structured hierarchies and compared
with various hierarchical classification techniques. We performed three sets of
experiments to: (i) compare our method using MLNP with other state of the
art techniques, (ii) evaluate the different pruning strategies, (iii) analyze the
NMLNP alternative, comparing it with MLNP and other method.

For MLNP related experiments we used the datasets in Table 1a and con-
sidered the first four evaluation metrics, for NMLNP related we used Table 1b
and considered the five metrics, including GLB. The results were obtained by a
stratified 10-fold cross-validation. The best results are marked in bold. Random
Forest was used as base classifier for CPE in all the experiments because is the
base classifier that best suits the data in our method.

5.1 Comparison of CPE-MLNP against other Methods

Results are summarized in Tables 2 and 3, the complete set of tables is presented
in Appendix A.1.

Tree Structured Datasets. For tree structured hierarchies, we compared CPE
against three HMC methods:
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1. Top-Down LCPN (TD). Proposed by Koller et al. [8], this method trains a
LCPN and selects at each level the most probable node. Only the children of
this node are explored to preserve the consistency of the prediction. Random
Forest was used as base classifier. This is the most typical approach for MHC.

2. Multidimensional Hierarchical Classifier (MHC). Proposed by Hernandez et
al. [7]. Random Forest was used as base classifier as reported by the authors.
This is the method that we are extending.

3. HIROM. Proposed by Bi et al. [4]. The used base classifier was Support
Vector Machines as reported by the authors. This is a recent work in local
based HMC.

Table 2. Comparing CPE against other methods in tree structured datasets

Metric CPE TD MHC HIROM
Accuracy 23.63 20.67 19.93 3.10

Exact Match 18.33 16.63 9.79 3.05
F1-macro D 26.30 22.76 25.07 3.12
F1-macro L 13.79 14.38 2.44 0.86

DAG Structured Datasets. For DAG structured datasets, we compared CPE
against tree HMC methods:

1. Top-Down LCPN (TD).
2. Top-Down LCPN Corrected (TD-C). The only difference between this

method and TD is that when a leaf node is reached, all the paths to that
node are appended to the final prediction. TD returns a single path.

3. HIROM. The variant for DAG structures.

Table 3. Comparing CPE against other methods in DAG structured datasets

Metric CPE TD TD-C HIROM
Accuracy 38.74 36.48 36.42 19.02

Exact Match 21.87 18.59 19.22 0.0
F1-macro D 48.86 46.76 46.57 29.28
F1-macro L 13.68 16.18 16.94 2.93

Discussion. For tree structured datasets we observe that the proposed method
is superior in terms of accuracy and exact match to other methods, and in most
cases the difference is significant. In the case of F1-macro D and F1-macro L, it is
superior to HIROM and competitive with MHC and TD. For DAG hierarchies,
our method is clearly superior for the first three measures and for the fourth
measure it is beaten by TD-C. One possible explanation is that it is difficult to
design a method that is better in all measures, however the proposed approach
is overall competitive in all measures and superior in some.
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F1-macro L metric is the exception where CPE never obtains the best results.
In this metric the results are averaged by labels, that means that there is proba-
bly a label(s) which does not have many instances classified, where our method
could fail.

5.2 Selection of the Best NMLNP Approach

The pruning approaches described in Subsection 3.3 for the NMLNP version
of CPE were tested to select the best one. In the case of the DAG structured
datasets the root of the hierarchy has only one child and this child (l0) is parent
of the rest of the nodes of the hierarchy. The problem in this kind of hierarchies
is that most measures score the conservative classifications as the better ones.
In this case, the method “Top-Down, Select & Prune, IG” predict just the l0
for every new instance, this classification is useless due to the fact that every
instance belongs to l0 and nevertheless is the one that is better scored.

Gain-Loose Balance deals with this problem and gives better scores to other
methods that return relevant predictions. For that reason, and the fact that the
other measures were inconsistent along the databases and the different struc-
tures, the methods were compared using Gain-Loose Balance. The results for
the NMLNP approaches are depicted on Table 4, the results are averaged along
the datasets.

Table 4. Comparison in terms of GLB (%) of the different approaches for NMLNP in
tree and DAG structures

Dataset
Top-Down Bottom-Up

Prune & Select Select & Prune Prune & Select Select & Prune
SUM BEST IG SUM BEST IG SUM BEST IG SUM BEST IG

Tree/DAG 71.02 71.53 68.71 69.79 70.12 69.31 70.34 70.61 68.68 69.66 69.83 68.58

Discussion. We observe that “Top-Down, Prune & Select, BEST” method ob-
tains in most of the cases the better score in both, tree and DAG structures.
The datasets have approximately 16% percent of instances which real label set
is just the label l0 . Since the average number of labels per instance is three,
when a method predict only l0 it already has 1/3 of the correct answer. This
can be one of the reasons why the rest of the metrics give high scores with the
“Top-Down, Select & Prune, IG” method.

5.3 Comparison of CPE NMLNP-version against MLNP-version

We compared the best NMLNP method (Top-Down, Prune & Select, BEST)
against the MLNP to determine if it is worth to prune the hierarchies. Table 5
depicts the results. The datasets in Table 1b were split by hierarchy structure
and the results averaged along the datasets.
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Table 5. Gain-Loose Balance Metric (%) comparing NMLNP against MLNP

Dataset structure NMLNP MLNP
Tree 61.688 59.419
DAG 83.826 80.262

Discussion. In every dataset the results obtained by NMLNP version were sig-
nificantly superior compared to the MLNP version for NMLNP datasets. Thus,
prunning obtains better scores than returning complete paths to a leaf node
according to the GLB metric.

5.4 Comparison of CPE-NMLNP against Other Methods

We compared CPE-NMLNP against HIROM, a method proposed by Bi et al.
[4] which has a variant for DAG structures. The base classifier used for HIROM
was SVM as reported by the authors. The results are depicted on Table 6.

Table 6. Comparison of MLNP methods

(a) Tree structured datasets

Metric CPE HIROM
Accuracy 17.10 3.98

Exact Match 11.16 3.89
F1-macro D 19.87 4.02
F1-macro L 11.51 0.76

GLB 59.41 41.35

(b) DAG structured datasets

Metric CPE HIROM
Accuracy 32.29 14.92

Exact Match 9.31 0.02
F1-macro D 44.68 24.81
F1-macro L 8.56 3.33

GLB 80.18 64.03

Discussion. CPE obtains better results than HIROM in most of the datasets
along all the metrics, most of them with statistical relevance. This can be due
to the fact that HIROM optimizes a loss function that does not necessarily
improves its score in other metrics. Other fact is that HIROM is designed to
return multiple paths instead of just one.

6 Conclusions and Future Work

We presented a novel approach for hierarchical multi-label classification for tree
and DAG structures. The method estimates the probability of each path by
combining LCPNs, including a pruning phase for NMLNP. A new metric was
introduced that avoids conservative classifications. Experiments with 18 tree and
DAG hierarchies show that: (i) the proposed method is competitive compared
against other state-of-the-art methods for tree hierarchies and superior for DAGs,
(ii) the best pruning strategy is top-down, prune first and based on the most
probable child; (iii) NMLNP improves mandatory leaf-node prediction.

As future work we plan to extend the proposed method for multiple path
prediction.
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A Appendix

For the comparison of more than two methods (Appendix A.1) we performed
a Friedman test and for the comparison of two methods (Appendix A.2) we
performed a one tailed t-test; both with a confidence degree of 95%. Statistically
inferior results against CPE are marked with ↓ and statistically superior results
are marked with ↑.
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A.1 Comparison of CPE-MLNP against Other Methods

Table 7. Tree structured datasets

(a) Accuracy (%)
Dataset CPE TD MHC HIROM

cellcycle_FUN 22.76 20.14 19.74 4.20↓
church_FUN 14.24 12.79 19.71 6.30↓
derisi_FUN 18.58 13.20 19.43 4.41↓
eisen_FUN 31.07 27.25 21.77 3.27↓
expr_FUN 29.46 23.36 19.63↓ 1.96↓

gasch1_FUN 28.39 19.83 19.66↓ 2.83↓
gasch2_FUN 22.32 19.57 19.63 3.94↓
pheno_FUN 18.39 23.0 22.49 6.63
seq_FUN 30.52 32.36 17.30 2.48↓
spo_FUN 20.57 15.22↓ 19.92 3.82↓

(b) Exact Match (%)
Dataset CPE TD MHC HIROM

cellcycle_FUN 17.53 17.02 9.92 4.10↓
church_FUN 11.20 10.90 9.87 6.24↓
derisi_FUN 13.27 10.63 9.70 4.28↓
eisen_FUN 23.32 23.32 9.99↓ 3.27↓
expr_FUN 23.47 20.20 9.85↓ 1.78↓

gasch1_FUN 22.12 16.88 9.85↓ 2.77↓
gasch2_FUN 17.49 15.58 9.85 3.78↓
pheno_FUN 14.90 11.62 9.47↓ 6.63↓
seq_FUN 25.26 27.90 9.41 2.31↓
spo_FUN 14.73 12.29 9.95↓ 3.69↓

(c) F1-macro D (%)
Dataset CPE TD MHC HIROM

cellcycle_FUN 25.40 21.71 24.74 4.24↓
church_FUN 15.77 13.87 24.71 6.32↓
derisi_FUN 21.27 14.73 24.38 4.45↓
eisen_FUN 34.98 29.33 27.66 3.27↓
expr_FUN 32.47 24.98 24.60↓ 2.01↓

gasch1_FUN 31.53 21.33↓ 24.64 2.85↓
gasch2_FUN 24.76 21.62 24.60 3.99↓
pheno_FUN 20.16 28.71 29.00↑ 6.63
seq_FUN 33.17 34.64 21.40 2.53↓
spo_FUN 23.49 16.64 24.98 3.87↓

(d) F1-macro L (%)
Dataset CPE TD MHC HIROM

cellcycle_FUN 14.34 18.05 2.09 0.69↓
church_FUN 7.72 6.80 2.09 0.98↓
derisi_FUN 11.54 10.53 2.01↓ 0.70↓
eisen_FUN 19.59 17.73 3.21↓ 0.76↓
expr_FUN 18.45 20.30 2.08 0.57↓

gasch1_FUN 17.24 15.73 2.08↓ 0.47↓
gasch2_FUN 8.74 11.22 2.08 0.61↓
pheno_FUN 11.14 9.83 4.86↓ 1.46↓
seq_FUN 17.21 21.05 1.75 0.71↓
spo_FUN 11.97 12.54 2.11↓ 0.63↓

Table 8. DAG structured datasets

(a) Accuracy (%)
Dataset CPE TD TC-C HIROM

cellcycle_GO 36.60 34.70 34.64 19.01↓
church_GO 32.09 31.11 30.86 19.11↓
derisi_GO 33.42 32.61 32.45 18.44↓
expr_GO 42.80 38.93 38.91↓ 19.18↓

gasch1_GO 42.03 39.39 39.23 19.17↓
gasch2_GO 39.53 36.44 36.29↓ 19.18↓

seq_GO 48.99 46.03 46.55 19.26↓
spo_GO 34.45 32.63 32.44↓ 18.79↓

(b) Exact Match (%)
Dataset CPE TD TD-C HIROM

cellcycle_GO 19.26 16.74 17.27 0.00↓
church_GO 13.79 12.45 12.74 0.00↓
derisi_GO 15.41 14.09 14.43 0.00↓
expr_GO 27.33 21.86↓ 22.50 0.00↓

gasch1_GO 26.28 22.09 22.73 0.00
gasch2_GO 22.62 19.01↓ 19.30 0.00↓

seq_GO 33.31 28.46↓ 30.51 0.00↓
spo_GO 16.97 14.01↓ 14.24 0.00↓

(c) F1-macro D (%)
Dataset CPE TD TD-C HIROM

cellcycle_GO 47.03 45.19 44.98 29.28↓
church_GO 43.24 42.05 41.68 29.40↓
derisi_GO 44.25 43.40 43.14 28.59↓
expr_GO 52.14 48.77 48.64↓ 29.47↓

gasch1_GO 51.52 49.27 48.97 29.47↓
gasch2_GO 49.60 46.69 46.41↓ 29.47↓

seq_GO 57.94 55.28 55.55 29.54↓
spo_GO 45.12 43.45 43.15 29.03↓

(d) F1-macro L (%)
Dataset CPE TD TD-C HIROM

cellcycle_GO 10.45 14.32 15.17↑ 2.92
church_GO 8.72 10.41 10.51 2.93↓
derisi_GO 9.50 13.17 13.35↑ 2.81
expr_GO 17.45 17.82 18.80 2.95↓

gasch1_GO 16.70 18.24 18.29 2.94↓
gasch2_GO 12.52 15.02 15.42 2.95

seq_GO 24.28 28.21 31.60↑ 3.02
spo_GO 9.79 12.21 12.38 2.89



Multi-label Classification for Tree and Directed Acyclic Graphs Hierarchies 425

A.2 Comparison of CPE-NMLNP against Other Methods

Table 9. Tree structured datasets

(a) Accuracy (%)
Dataset CPE HIROM

cellcycle_FUN 16.26 4.2↓
church_FUN 9.12 6.3↓
derisi_FUN 13.71 4.41↓
eisen_FUN 21.46 3.27↓
expr_FUN 21.44 1.96↓

gasch1_FUN 20.92 2.83↓
gasch2_FUN 16.44 3.94↓
pheno_FUN 13.36 6.63↓
seq_FUN 24.05 2.48↓
spo_FUN 14.26 3.82↓

(b) Exact Match (%)
Dataset CPE HIROM

cellcycle_FUN 10.74 4.2↓
church_FUN 5.86 6.3
derisi_FUN 8.62 4.41↓
eisen_FUN 14.91 3.27↓
expr_FUN 13.99 1.96↓

gasch1_FUN 13.87 2.83↓
gasch2_FUN 10.76 3.94↓
pheno_FUN 8.35 6.63↓
seq_FUN 15.64 2.48↓
spo_FUN 8.81 3.82↓

(c) F1-macro D
Dataset CPE HIROM

cellcycle_FUN 18.87 4.24↓
church_FUN 10.7 6.32↓
derisi_FUN 16.22 4.45↓
eisen_FUN 24.45 3.27↓
expr_FUN 24.81 2.01↓

gasch1_FUN 24.19 2.85↓
gasch2_FUN 19.11 3.99↓
pheno_FUN 15.63 6.63↓
seq_FUN 27.85 2.53↓
spo_FUN 16.84 3.87↓

(d) F1-macro L (%)
Dataset CPE HIROM

cellcycle_FUN 11.94 0.69↓
church_FUN 4.47 0.98↓
derisi_FUN 8.58 0.7↓
eisen_FUN 13.28 0.76↓
expr_FUN 16.21 0.57↓

gasch1_FUN 15.82 0.47↓
gasch2_FUN 8.28 0.61↓
pheno_FUN 10.64 1.46↓
seq_FUN 16.36 0.71↓
spo_FUN 9.52 0.63↓

(e) GLB (%)
Dataset CPE HIROM

cellcycle_FUN 58.96 39.99↓
church_FUN 56.40 41.18↓
derisi_FUN 57.66 40.03↓
eisen_FUN 60.96 44.5↓
expr_FUN 60.48 38.78↓

gasch1_FUN 60.69 39.2↓
gasch2_FUN 59.26 39.89↓
pheno_FUN 59.6 50.62↓
seq_FUN 62.16 39.55↓
spo_FUN 57.9 39.71↓

Table 10. DAG structured datasets

(a) Accuracy (%)
Dataset CPE HIROM

cellcycle_GO 41.08 16.73↓
church_GO 40.41 18.49↓
derisi_GO 40.98 17.08↓
expr_GO 39.15 14.7↓

gasch1_GO 40.82 15.4↓
gasch2_GO 42.14 17.19↓

seq_GO 40.9 14.08↓
spo_GO 41.19 17.18↓

(b) Exact Match (%)
Dataset CPE HIROM

cellcycle_GO 3.61 0.0↓
church_GO 3.10 0.0↓
derisi_GO 4.10 0.09↓
expr_GO 8.76 0.0↓

gasch1_GO 7.01 0.0↓
gasch2_GO 5.00 0.0↓

seq_GO 9.65 0.0↓
spo_GO 4.53 0.0↓

(c) F1-macro D (%)
Dataset CPE HIROM

cellcycle_GO 55.81 27.43↓
church_GO 55.27 29.90↓
derisi_GO 55.61 27.85↓
expr_GO 52.53 24.59↓

gasch1_GO 54.80 25.60↓
gasch2_GO 56.69 28.14↓

seq_GO 54.28 23.70↓
spo_GO 55.76 28.10↓

(d) F1-macro L (%)
Dataset CPE HIROM

cellcycle_GO 5.09 3.96↓
church_GO 3.77 4.07
derisi_GO 5.16 3.93↓
expr_GO 10.34 3.34↓

gasch1_GO 8.87 3.55↓
gasch2_GO 4.64 3.87

seq_GO 11.44 2.96↓
spo_GO 5.37 4.12↓

(e) GLB (%)
Dataset CPE HIROM

cellcycle_GO 83.83 65.51↓
church_GO 83.57 67.32↓
derisi_GO 83.73 65.65↓
expr_GO 83.55 63.76↓

gasch1_GO 83.96 64.35↓
gasch2_GO 84.12 66.27↓

seq_GO 84.01 63.24↓
spo_GO 83.84 65.87↓


