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Abstract: The problem of geometric flow and determining the eigenvalues for non-
linear operators acting on finite-dimensional manifolds is a known problem. In this 
paper we will consider the eigenvalue problem for the p-Laplace operator acting on 
the space of functions on closed manifolds. We find the first variation formula for 
the eigenvalues of p-Laplacian on a closed manifold evolving by the Yamabe flow 
and find some applications.
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1. Introduction
Let (M, g) be a compact Riemannian manifold. Studying the eigenvalues of geometric operators for 
instance p-Laplacian on a compact Riemannian manifold M is an important analytic invariant and has 
important geometric meanings. This problem has a wide range of applications and is one of the main 
tools for dealing with such linear and nonlinear operators. There are many mathematicians who inves-
tigate properties of the spectrum of Laplacian and estimate the spectrum in terms of the other geo-
metric quantities of M (see Cheng, 1975; Cheng & Yang, 2005; Harrell II & Michel, 1994; Leung, 1991).

Also, geometric flows have been a topic of active research interest in both mathematics and phys-
ics. The well-known geometric flows in mathematics are the heat flow (see Eells & Sampson, 1964; 
Jost, 2011), the Ricci flow (see Azami & Razavi, 2013; Chow & Knopf, 2004; Chow, Lu, & Ni, 2006; 
Hopper & Andrews, 2010), the mean curvature flow (see Chen, Giga, & Goto, 1991), and Yamabe flow 
(see Brendle, 2005; Brendle, 2007; Chow, 1992; Schwetlick & Struwe, 2003; Ye, 1994). They are all 
related to dynamical systems in the space of all metrics on a given manifold.
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In Yamabe (1960) proposed a generalization of the uniformization theorem to higher dimensions. 
In Hamilton (1982) proposed a heat flow approach to the Yamabe problem. To describe this, let g(t) 
be a smooth one-parameter family of Riemannian metrics on M. Metric g(t) is a solution of the un-
normalized Yamabe flow if

where Rg(t) denotes the scalar curvature of g(t). It is often convenient to consider a normalized ver-
sion of the flow. Also, g(t) is a solution of the normalized Yamabe flow if

Here, rg(t) denotes the mean value of the scalar curvature of the metric g(t); that is,

The evolution Equations (1.1) and (1.2) are equivalent in the sense that any solution of the Equation 
(1.1) can be transformed into a solution of (1.2) by a rescaling procedure.

There were elaborated a set of applications with such geometric flows, following low dimensional 
or approximative methods to construct solutions of evolution equations, in modern gravity and 
mathematical physics, for instance, for gravity (Nitta, 2005), black holes (Headrick & Wiseman, 
2006), and mechanics and classical field theory (Miron & Anastasiei, 1994, 1997).

1.1. Eigenvalues of p-Laplacian
Let M be a closed Riemannian manifold and f be a smooth scalar function on M. The p-Laplacian of f 
for 1 < p < ∞ is defined as

where

and in local coordinate, we have

Let (Mn,g) be a closed Riemannian manifold. We say that � is an eigenvalue of the p-Laplace opera-
tor whenever for some f ∈W1,p

(M),

or equivalently

Normalized eigenfunctions are defined as follows :

(1.1)�tg(t) = −Rg(t)g(t), g(0) = g0,

(1.2)�tg(t) = −

(

Rg(t) − rg(t)

)

g(t), g(0) = g
0
.

rg(t) =
∫
M
Rg(t)dvg(t)

Vol(M)
.

(1.3)
△pf = div(|∇f |p−2∇f )

= |∇f |p−2Δf + (p − 2)|∇f |p−4( Hessf )(∇f ,∇f )

(Hessf )(X, Y) = ∇(∇f )(X, Y) = Y .(X.f ) − (∇YX).f , X, Y ∈ (M)

(Hessf )(�i , �j) = �i�j f − Γ
k
ij�kf .

Δpf + �|f |p−2f = 0

� =
∫
M
|∇f |pd�

∫
M
|f |pd�

.

(1.4)
∫
M

f |f |p−2 d� = 0, ∫
M

|f |p d� = 1.
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Let (Mn,g(t)) be a solution of the Yamabe flow on the smooth manifold (Mn,g0) in the interval [0, T) 
then

defines the evolution of an eigenvalue of p-Laplacian under the variation of g(t) where the eigen-
function associated to �(t) is normalized. Suppose that for any metric g(t) on Mn

is the spectrum of Δp =
g
Δp. In what follows we assume, the existence and C1-differentiability of the 

elements �(t) and f(t) under a Yamabe flow deformation g(t) of a given initial metric. We prove some 
facts about the spectrum variation under a deformation of the metric given by a Yamabe flow equa-
tion. A similar geometric problem have been considered from a different point of view (see Cao, 
2007, 2008; Cerbo, 2007; Perelman, 2002; Wu, 2011).

2. Variation of �(t)
In this section, we will give some useful evolution formulas for �(t) under the Yamabe flow.

Proposition 2.1 Let (Mn, g(t)) be a solution of the un-normalized Yamabe flow on the smooth closed 
manifold (Mn, g0). If �(t) denotes the evolution of an eigenvalue under the Yamabe flow, then

where f is the associated normalized evolving eigenfunction.

Proof � is a smooth function and by derivating (1.5) with respect to t we have

On the other hand, we have

and

Replace (2.3) and (2.4) in (2.2), then

From (1.1), we can then write

(1.5)�(t) = ∫
M

|∇f (x)|p d�t

Specp(g) =
{

0 = �0(g) ≤ �1(g) ≤ �2(g) ≤ … ≤ �k(g) ≤ …
}

(2.1)
d�

dt
=
n�

2 ∫
M

R|f |p d� +
p − n

2 ∫
M

R|∇f |p d�.

(2.2)

d�

dt
= ∫

M

d

dt
(|∇f |p) d� + ∫

M

|∇f |p
d

dt
( d�)

(2.3)
d

dt

(

d�t
)

=
1

2
trg

(

�g

�t

)

d�

(2.4)

d

dt

(

|∇f |p
)

=
d

dt

(

(

|∇f |2
)

p

2

)

=
d

dt

(

(

gij∇i f∇j f
)

p

2

)

=
p

2

{

𝜕

𝜕t
(gij)∇i f∇j f + 2g

ij
∇i f

�
∇j f

}

(gij∇i f∇j f )
p

2
−1

=
p

2

{

−gilgjk
𝜕

𝜕t
(glk)∇i f∇j f + 2 < ∇f �,∇f >

}

|∇f |p−2.

(2.5)

d𝜆

dt
=
p

2 ∫
M

{

−gilgjk
𝜕

𝜕t
(glk)∇i f∇j f + 2 < ∇f �,∇f >

}

|∇f |p−2 d𝜇

+ ∫
M

|∇f |p
1

2
trg

(

𝜕g

𝜕t

)

d𝜇.
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Now, using (1.4), from the condition

(2.7) implies that

Replace (2.8) in (2.6), we have:

square

Now, we give a variation of �(t) under the normalized Yamabe flow which is similar to the previous 
proposition.

Proposition 2.2 Let (Mn, g(t)) be a solution of the normalized Yamabe flow on the smooth closed 
manifold (Mn, g0). If �(t) denotes the evolution of an eigenvalue under the Yamabe flow, then

where f is the associated normalized evolving eigenfunction.

Proof In the normalized case, the integrability conditions read as follows:

Since

we can then write

(2.6)

d𝜆

dt
=
p

2 ∫
M

{

gilgjkRglk∇i f∇j f + 2 < ∇f �,∇f >
}

|∇f |p−2 d𝜇

+ ∫
M

|∇f |p
(

−
n

2
R
)

d𝜇

=
p

2 ∫M R|∇f |
pd𝜇 + p ∫M < ∇f �,∇f > |∇f |p−2 d𝜇

−
n

2 ∫
M

|∇f |pRd𝜇.

(2.7)∫
M

|f |p d� = 1⟹ p ∫
M

f �f |f |p−2 d� =
n

2 ∫
M

|f |pR d�,

(2.8)∫
M

< ∇f �,∇f > |∇f |p−2 d𝜇 = 𝜆 ∫
M

f �f |f |p−2 d𝜇 =
n𝜆

2p ∫
M

|f |pR d𝜇.

d�

dt
=
n�

2 ∫
M

R|f |p d� +
p − n

2 ∫
M

R|∇f |p d�.

(2.9)
d�

dt
= −

p

2
r� +

n�

2 ∫
M

R|f |p d� +
p − n

2 ∫
M

R|∇f |p d�,

(2.10)∫
M

|f |p d� = 1⟹ p ∫
M

f �f |f |p−2 d� =
n

2 ∫
M

|f |pR d� −
n

2
r.

(2.11)
d

dt
( d�t) =

1

2
trg

(

�g

�t

)

d� =
1

2
trg((r − R)g) d� =

n

2
(r − R) d�,
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but

Hence the proposition is obtained by replacing (2.13) in (2.12).  ✷

2.1. Variation of �(t) on a surface
Now, we write Proposition (2.1) and (2.2) in some remarkable particular cases.

Corollary 2.3 Let (M2, g(t)) be a solution of the un-normalized Yamabe flow on a closed surface 
(M2, g0). If �(t) denotes the evolution of an eigenvalue under the Yamabe flow, then

where f is the associated normalized evolving eigenfunction.

Corollary 2.4 Let (M2, g(t)) be a solution of the normalized Yamabe flow on a closed surface (M2, g0). 
If �(t) denotes the evolution of an eigenvalue under the Yamabe flow, then

where f is the associated normalized evolving eigenfunction.

Remark 2.5 If �(M) is the Euler characteristic of the surface M then from the Gauss-Bonnet theorem, 
we have:

therefore, (2.15) implies that

where we suppose that ∫
M
d� = 1.

(2.12)

d𝜆

dt
= ∫

M

d

dt
(|∇f |p) d𝜇t + ∫

M

|∇f |p
d

dt
( d𝜇t)

=
p

2 ∫
M

{

−gilgjk
𝜕

𝜕t
(glk)∇i f∇j f + 2 < ∇f �,∇f >

}

|∇f |p−2d𝜇

+ ∫
M

|∇f |p
1

2
trg

(

𝜕g

𝜕t

)

d𝜇

=
p

2 ∫
M

{

−r|∇f |2 + R|∇f |2 + 2 < ∇f �,∇f >
}

|∇f |p−2 d𝜇

+
n

2 ∫
M

|∇f |p(r − R) d𝜇,

(2.13)∫
M

< ∇f �,∇f >}|∇f |p−2 d𝜇 = 𝜆 ∫
M

f �f |f |p−2 d𝜇 =
n𝜆

2p ∫
M

|f |pR d𝜇 −
nr𝜆

2p
.

(2.14)
d�

dt
= � ∫

M

R|f |p d� +
p − 2

2 ∫
M

R|∇f |p d�

(2.15)
d�

dt
= −

p

2
r� + � ∫

M

R|f |p d� +
p − 2

2 ∫
M

R|∇f |p d�

∫
M

R d� = 4��(M), r =
4��(M)

∫
M

d�

d�

dt
= −

p

2
4��(M)� + � ∫

M

R|f |p d� +
p − 2

2 ∫
M

R|∇f |p d�
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Remark 2.6 Let (M2, g(t)) be a solution of the normalized Yamabe flow on a compact surface then 
from (Chow & Knopf, 2004) for a constant c depending only on g0, we have

(i)  If r < 0 then 

 In this case, for p ≥ 2 from (2.15), we have 

 Integration on [0, t) implies that 

 Now, for 1 < p < 2 we have 

(ii)  If r = 0 then 

 In this case, for p ≥ 2

 Now, for 1 < p < 2 we have 

(iii)  If r > 0 then 

 In this case, for p ≥ 2 we have 

 and for 1 < p < 2 we have 

Lemma 2.7 Let (M2, g0) be a closed surface with nonnegative scalar curvature, then the eigenvalues of 
p-Laplacian are increasing under the un-normalized Yamabe flow.

Proof From Chow and Knopf (2004), under the un-normalized Yamabe flow on a surface, we have

by the maximum principle, the nonnegativity of the scalar curvature is preserved along the Yamabe 
flow. Then (2.14) implies that d𝜆

dt
> 0, therefore �(t) is increasing.  ✷

r − cert ≤ R ≤ r + cert .

−
p

2
cert ≤ 1

�

d�

dt
≤ p

2
cert .

e−
p

2r
c(ert−1) ≤ �(t)

�(0)
≤ e p

2r
c(ert−1).

e(
p

2
−2) cr (e

rt
−1) ≤ �(t)

�(0)
≤ e(2− p

2 )
c

r
(ert−1).

−
c

1 + ct
≤ R ≤ c.

(1 + ct)−
p

2 ≤ �(t)

�(0)
≤ e pct

2 .

(1 + ct)−1ec(
p−2

2
)t ≤ �(t)

�(0)
≤ ect(1 + ct) p−22 .

−cert ≤ R ≤ r + cert .

e−
p

2 (rt+
c

r
(ert−1)) ≤ �(t)

�(0)
≤ e pc

2r
(ert−1),

e(
p

2
−2) cr (e

rt
−1)−rt ≤ �(t)

�(0)
≤ e(1− p

2 )rt+(2−
p

2 )
c

r
(ert−1).

�

�t
R = ΔR + R2
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2.2. Variation of �(t) on homogeneous manifolds 
In this section, we consider the behavior of the spectrum when we evolve an initial homogeneous 
metric.

Let (Mn,g(t)) be a solution of the un-normalized Yamabe flow on the smooth closed homogene-
ous manifold (Mn,g0). If �(t) denote the evaluation of an eigenvalue under the Yamabe flow, then 
the evolving metric remains homogeneous. On the other hand a homogeneous manifold has con-
stant scalar curvature. Therefore (2.1) implies that

If we suppose that (Mn,g(t)) is a solution of the normalized Yamabe flow on the smooth homoge-
neous closed manifold (Mn,g0), then (2.9) implies that �(t) = �(0).

2.3. Variation of �(t) on 3-dimensional manifolds
In this section, we consider the behavior of �(t) on 3-dimensional manifolds.

Proposition 2.8 Let (Mn, g(t)) be a solution of the normalized Yamabe flow on a closed manifold 
whose Ricci curvature is initially negative and there exists � ≥ 0 such that

then

Proof From Surez-Serrato and Tapie (2012), for any solution of the Yamabe flow on a closed mani-
fold with negetive curvature, we have −c < R(., t) < −𝜖 < 0. Hence the proposition is established by 
using (2.9), which implies that
 

✷

3. Examples
In this section, we show that the variational formula is effective to derive some properties of the 
evolving spectrum of p-Laplace operator and then we find �(t) for some of Riemannian manifolds.

Example 3.1 Let (Mn, g0) be an Einstein manifold i.e. there exists a constant a such that Ric(g0) = ag0. 
Assume that we have a solution to the Yamabe flow which is of the form

where u(t) is a positive function. We compute

for this to be a solution of Yamabe flow, we require:

this shows that:

therefore:

(2.16)�(t) = �(0)e
p

2
Rt.

−c < R(0) < −𝜖 < 0

e−
p

2
(r+c)t ≤ �(t)

�(0)
≤ e− p

2
(r+�)t

−
p

2
�(r + c) ≤ d�

dt
≤ −

p

2
�(r + �).

g(t) = u(t)g0, u(0) = 1

�g

�t
= u�(t)g0

u�(t)g0 = −Rg = −gijRic(gij)g = −
1

u(t)
(g0)

ijRic((g0)ij)u(t)g0 = −R0g0 = −ang0

u�(t) = −na,
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so that we have:

which says that g(t) is an Einstein metric. On the other hand it is easily seen that

also

Using Equation (2.1), we obtain the following relation:

or equivalently

hence

Example 3.2 In this example we determine the behavior of the evolving spectrum on Yamabe soli-
tons. The solution g(t) of Yamabe flow with initial condition g(0) = g0 is called Yamabe soliton if there 
exist a smooth function u(t) and a 1-parameter family of diffeomorphisms �t of Mn such that

Now, let (M, g) and (N, h) be two closed Riemannian manifolds and

an isometry, then for p = 2 we have

Hence for given a diffeomorphism �:Mn
→ Mn we have that

is an isometry, therefore we conclude that (Mn,�∗g), and (Mn, g) have the same spectrum

with eigenfunction fk and �∗fk, respectively. If g(t) is a Yamabe soliton on (Mn, g0) then

u(t) = −nat + 1,

g(t) = (1 − nat)g0,

Ric(g(t)) = Ric(g0) = ag0 =
a

1 − nat
g(t),

R(g(t)) =
1

1 − nat
R(g0) =

an

1 − nat
,

d�g(t) = (1 − nat)
n

2 d�g0
.

d�

dt
=
n�

2 ∫
M

an

1 − nat
|f |p d� +

p − n

2 ∫
M

an

1 − nat
|∇f |p d�,

d�

dt
=

pan�

2(1 − nat)
,

�(t) = �(0)(1 − nat)−
p

2 .

g(t) = u(t)�∗

t (g0), u(0) = 1, �0 = idMn .

�:(M, g) → (N,h)

g
Δp◦�

∗
= �

∗◦hΔp.

�:(Mn,�∗g) → (Mn, g)

Specp(g) = Specp(�
∗g)
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so that �(t) satisfies

Specp(g(t)) =
1

u(t)
Specp(g0)

�(t) =
1

u(t)
,

d�

dt
= −

u�(t)

(u(t))2
.
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