
A COMPARISON OF PSO AND BACKPROPAGATION FOR TRAINING RBF NEURAL
NETWORKS FOR IDENTIFICATION OF A POWER SYSTEM WITH STATCOM

Salman Mohaghegi, Yamille del Valle, Ganesh K. Venayagamoorthy and Ronald G. Harley

ABSTRACT Particle Swarm Optimization (PSO) can be a solution to this

problem. It is a population based stochastic optimization
technique developed by J. Kennedy and R. Eberhart in 1995.
It models the cognitive as well as the social behavior of a
flock of birds (solutions) which are flying over an area
(solution space) in search of food (optimal solution) [4].

Backpropagation algorithm is the most commonly used
algorithm for training artificial neural networks. While
being a straightforward procedure, it suffers from
extensive computations, relatively slow convergence
speed and possible divergence for certain conditions. The
efficiency of this method as the training algorithm of a
Radial Basis Function Neural Network (RBFN) is
compared with that of Particle Swarm Optimization, for
neural network based identification of a small power
system with a Static Compensator. The comparison of the
two methods is based on the convergence speed and
robustness of each method.

PSO has been applied to improve neural networks in various
aspects, such as network connection weights, network
architecture and learning algorithms. In recent years, there
have been several papers reporting on the replacement of the
backpropagation algorithm by PSO for some neural network
structures [5]-[7]. This paper investigates the efficiency of
PSO and BP in terms of convergence speed and the
robustness for training a Radial Basis Function Neural
Network (RBFN) on a power system identification problem.

1. INTRODUCTION

Artificial neural networks based closed loop controllers
have been proposed in order to improve the dynamic and
transient performance of nonlinear systems [1]. These are
techniques which can provide robust and adaptive control
for a highly nonlinear and non-stationary system in the
presence of noise and uncertainties. A neural network
based identifier (neuroidentifier) which serves as the
model of the plant (process) to be controlled, is required
in the majority of these designs in order to ensure an
adaptive control performance. Training such a
neuroidentifier is an important aspect of its design.

2. NEUROIDENTIFIER STRUCTURE

Figure 1 shows the schematic diagram of the power system
(plant) to be controlled. It is a single machine infinite bus
(SMIB) with a Static Compensator (STATCOM) connected
in the middle of the transmission line. The generator is
modeled together with its automatic voltage regulator (AVR),
exciter, governor and turbine dynamics all taken into account.
The generator is a 37.5 MVA, 11.85 kV (line voltage)
machine. Parameters used for the entire system can be found
in [8]. The system is simulated in the PSCAD/EMTDC
environment. The backpropagation (BP) algorithm is the most

commonly used technique for training neural networks. It
is an approximation of the Least Mean Square (LMS)
algorithm, which is based on the steepest descent method.
While the BP technique follows a straightforward and
well-established algorithm, there are some disadvantages
associated with it. The method of backwards calculating
weights does not seem to be biologically plausible.
Neurons do not seem to work backward to adjust their
synaptic weights [2]. Furthermore, it suffers from
extensive calculations and therefore in most of the cases
has a slow convergence speed [3].

Figure 1. Block diagram of the plant and the controller.

 S. Mohagheghi and Y. del Valle are with the School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA, 30332-0250 USA (e-mail: salman@ece.gatech.edu).

The STATCOM is a power electronics based inverter which
is connected to the network in parallel and can control the
voltage at the point of connection [9]. Two conventional PI
controllers control the line voltage at the point of connection
to the network as well as the STATCOM DC link voltage
(Fig. 1).

G.K. Venayagamoorthy is with the Real-Time Power and Intelligent
Systems Laboratory, Department of Electrical and Computer
Engineering, University of Missouri-Rolla, MO 65409-0249 USA
(email: gkumar@ieee.org).

R.G. Harley is with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250
USA (e-mail: rharley@ece.gatech.edu), and a Professor Emeritus at the
University of KwaZulu-Natal, South Africa .

 The generator, STATCOM, their internal controllers and the
transmission lines are considered as the plant to be
controlled, with the control signal as the input and the line

de∆

voltage error ∆ as the output. A neuroidentifier is
trained in order to learn the dynamics of the plant and
track its output during normal operating conditions as
well as during dynamic and transient disturbances. The
training procedure of the neuroidentifier is explained in
details in the authors’ previous work [10].

V

A RBFN with Gaussian activation function and a single
hidden layer with 25 neurons is used for the structure of
the neuroidentifier. The neural network receives the plant
input and output at time steps (, and ()1−t)2(−t)3−t , and
generates an estimate of the plant output at time t. (Fig. 2)

Figure 2. Schematic diagram of the neuroidentifier.

Training samples are collected by applying a Pseudo-
Random Binary Signal (PRBS) disturbance (Fig. 3) to the
plant input and storing the corresponding plant output
(forced training). Batch mode training is then carried out
in order to update the neural network weights.

The centers of the neural network are determined offline
using a batch mode clustering method, in order to avoid
the computational complexity of the online recursive
clustering method [3]. The training algorithms explained
in Section 3 are therefore only applied and compared for
updating the output layer weight matrix (Fig. 2).

3. TRAINING ALGORITHMS

Two different methods are compared for updating the
output weight matrices of the neuroidentifier:
backpropagation and PSO. Both methods are applied
offline and are compared in terms of the Mean Square
Error (MSE):

∑
=

=
N

i
ie

N
MSE

1

2||1

where N is the number of data samples in each epoch and
e is the instantaneous error between the actual and
estimated values of the output.

A. Backpropagation Algorithm

The backpropagation (BP) algorithm was developed by
Paul Werbos in 1974. Based on LMS algorithm, BP
applies a weight correction to the neural network
connection weights which is proportional to the partial

derivative of the error function [3]. This adjustment to the
weights is in the negative direction of the gradient of the error
(steepest descent).

The error function is defined as:
2|)(|.

2
1)(tetE =

where is the error value, i.e. the difference between the
actual output of the plant and the estimated neuroidentifier
output. The neuroidentifier weights are adjusted according to:

)(te

(2)

)(
)(.)()1(
tW
tEtWtW

∂
∂

−=+ η (3)

where η is the learning rate parameter. A large learning rate
might lead to oscillations in the convergence trajectory, while
a small learning rate provides a smooth trajectory at the cost
of slow convergence speed.

Figure 3. PRBS signal used for forced training.

Backpropagation can be applied in two modes: sequential and
batch mode. The former is the online mode of training a
neural network, where weight updating is performed after the
presentation of each training sample, while in the latter the
weight matrices are updated after the presentation of all the
training samples that constitute an epoch [3].

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population (swarm)
based optimization tool. Every single solution (called a
particle) “flies” over the solution space in search for the
optimal solution. The particles are evaluated using a fitness
function to see how close they are to the optimal solution [4].
Particles have a tendency to duplicate their individual past
behavior that has been successful (cognition) as well as to
follow the successes of the other particles (socialization). (1)

The neural network weight matrix is rewritten as an array to
form a particle. Particles are then initialized randomly and
updated afterwards according to (4):

)1()()1(+∆+=+ tWtWtW
(4)

)]()(().[.
)]()(().[.)(.)1(

2

1

tWtgBestRandc
tWtpBestrandctWwtW

−+
−+∆=+∆

where are inertia, cognitive and social acceleration
constants respectively.

21,, ccw

For every specific particle, is the best solution that
the particle has achieved so far and indicates the tendency
of the individual particles to replicate their corresponding
past behaviors that have been successful. is the
global best solution so far, i.e. the best solution that any
particle (in the whole population) has achieved so far.
This quantity indicates the tendency of the particles to
follow the success of others. [11], [12]

pBest

gBest

Table I. Parameters for PSO.
Parameter Range Optimum Value
Number of Particles [15,30] 30
Inertia Constant (Base Value) [0.5,0.9] 0.5
Cognitive Acceleration Constant [1,3] 3
Social Acceleration Constant [3,1] 1
Maximum Velocity [1,20] 16
Maximum Search Space Range [1,40] 21

It should be noted that the inertia constant that is applied in
this study is as follows: Another important parameter associated with PSO, is the

maximum velocityV , which determines the resolution
or fineness with which the search space is searched. A
large value might cause the particles to fly past good
solutions, while a small number can cause the particles to
get trapped in the local optima [11].

max
2

()2 −×
+=

randww base
1 (5)

where is the value mentioned in Table I. basew

Figure 6, which shows the best case using optimum
parameters for PSO, indicates a MSE equal to 0.0027 after 20
epochs, (three times less than backpropagation algorithm). A
further comparison of the best cases of training the
neuroidentifier with BP and PSO appears in Figure 7.

Selection of the constant parameters, the population size,
neighborhood size and suchlike are problem dependent
and for this specific problem will be explained in the next
section.

4. SIMULATION RESULTS

Figure 6. Actual and estimated values of the plant output during forced
training using PSO (best case).

Figure 7. Mean square error with BP and PSO training algorithms.

The PRBS disturbance applied to the plant has a
combination of three different frequencies 0.5, 1 and 2
Hz, and its magnitude is selected in a way that it causes

deviations in the plant output. Forced training is
applied to the system for 100 sec. The PSCAD time step
is chosen to be 100 µs, while the neural network sampling
time is 5 ms.

%5±

Batch mode training is first applied for training the
neuroidentifier using the backpropagation algorithm.
Various learning gains are examined in the range of
[0.001,0.5], and the best results are achieved with the
learning gain of 0.211 (MSE is 0.0084 after 20 epochs).
Figure 5 shows the BP results for the best case.

Figure 5. Actual and estimated values of the plant output during forced
training using BP (best case).

Parameters of PSO are also fine tuned in order to get the
best results. Table I shows the range in which each
parameter is searched, as well as the optimum values for
each parameter. The optimum values for the PSO are
derived after an extensive search over the ranges defined
in Table I.

Since PSO is a stochastic optimization method, several sets of
simulations are carried out (50 trials) with the same set of
optimum parameters in order to provide statistical results.
The same number of trials considering the optimum learning
gain was performed in the case of backpropagation algorithm.
Table II shows the comparison between the two methods.

It is also observed during the trials that if the number of
the particles used in PSO is reduced, for the sake of
improving the computational effort, the performance is
slightly degraded as shown in Table II.

Table II. Statistical results.
Statistics PSO BP
Number of Particles 30 20 ----
Minimum MSE 0.0027 0.0036 0.0084
Maximum MSE 0.2266 0.1203 0.0566
Mean MSE 0.0222 0.0238 0.0225

A comparison between the two training algorithms
indicates that even though the minimum MSE in PSO is
considerably smaller (about three times less) than the
minimum MSE in BP, the performance of PSO, on
average, is only slightly better. The authors believe this is
due to the fact that for a RBFN, the centers of the hidden
layer are determined using a clustering method,
irrespective of the training method chosen for updating
the output synaptic weight matrix. Therefore there are less
degrees of freedom for the training methods. A
comparison of the PSO and BP for a neuroidentifier using
Multilayer Perceptron Neural Networks (MLPN) for the
same power system supports this assertion (see Appndix).

Extensive simulations showed that PSO algorithm is
especially robust with respect to wide-range variations on
its parameters. For this specific application, no
convergence problems are observed in any of the 2,500
combinations generated for the different values of inertia
constant, cognitive acceleration, social acceleration and
maximum velocity. This shows a major advantage over
BP algorithm in which the learning gain has to be
accurately determined.

5. CONCLUDING REMARKS

Two different learning algorithms were applied in this
paper for training a radial basis function network based
neuroidentifier: Backpropagation (BP) and Particle
Swarm Optimization techniques (PSO). The training
algorithms have been applied only for updating the output
synaptic weight matrix, and in both cases the centers and
widths of the neurons in the hidden layer are derived
using an offline clustering method.

Backpropagation learning algorithm is the most
commonly used technique for updating neural network
weight parameters. While being straightforward, it has a
slow convergence speed and might at times diverge. It
also requires extensive calculations if the size of the
network increases and it may be difficult to implement
when no gradient information is available for all
activation functions.

On the other hand, PSO algorithm has shown to have
several advantages, both in terms of robustness and the
efficiency in finding the optimal weights for the RBFN
neuroidentifier. Furthermore, the algorithm has proven to

be efficient even for a reduced number of particles, thus the
computational effort is comparable and even less significant
than in the case of backpropagation. Statistical results are
provided that confirm PSO as a reliable algorithm for training
such a neural network.

6. APPENDIX
COMPARISON OF BP AND PSO FOR MLPN

The efficiency of the two training methods is compared for a
MLPN based neuroidentifier for the power system shown in
Fig. 1. The MLPN neuroidentifier has 16 neurons in the
hidden layer. Table III summarizes the results.

Table III. Statistical results for MLPN neuroidentifier.
Statistics PSO BP
Number of Particles 15 ----
Minimum MSE 0.0011 0.0095
Maximum MSE 0.0268 0.0791
Mean MSE 0.0059 0.0366

7. REFERENCES
[1] K.S. Narendra and K. Parthasarathy, “Identification and Control of

Dynamical Systems Using Neural Networks”, IEEE Transactions on
Neural Networks, Vol. 1, No. 1, March 1990, pp 4-27.

[2] S.V. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic,
IEEE Press, 1996, ISBN 0-7803-1128-0.

[3] S.S. Haykin, Neural Networks- A Comprehensive Foundation,
Prentice-Hall, 2nd Edition, 1998, ISBN 0-1327-3350-1.

[4] X. Hu, Y. Shi and R. Eberhart, “Recent Advances in Particle Swarm”,
Proceedings of the Congress on Evolutionary Computation, Portland,
OR, USA, June 19-23, 2004, Vol. 1, pp 90-97.

[5] F. Van den Bergh and A.P. Engelbrecht, “Cooperative Learning in
Neural Networks using Particle Swarm Optimizers”, South African
Computer Journal, Vol. 26, 2000, pp 84-90.

[6] R.C. Eberhart and Y. Shi, “Evolving Artificial Neural Networks”,
Proceedings of the International Conference on Neural Networks and
Brain, 1998, Beijing, China, pp 5-13.

[7] V.G. Gudise and G.K. Venayagamoorthy, “Comparison of Particle
Swarm Optimization and Backpropagation as Training Algorithms for
Neural Networks”, Proceedings of the Swarm Intelligent Symposium,
Indianapolis, IN, USA, April 24-26, 2003, pp 110-117.

[8] S. Mohagheghi et al, “Adaptive Critic Design Based Neurocontroller
for a STATCOM Connected to a Power System”, Proceedings of the
IEEE Industry Applications Society Annual Conference, Salt Lake
City, UT, USA, October 12-16, 2003, pp 749-754.

[9] N.G. Hingorani and L. Gyugyi, Understanding FACTS, Concepts and
Technology of Flexible AC Transmission Systems, IEEE, New York
1999, ISBN 0-7803-3455-8

[10] S. Mohagheghi et al, “An Adaptive Neural Network Identifier for
Effective Control of a Static Compensator Connected to a Power
System”, Proceedings of the IEEE-INNS International Joint
Conference on Neural Networks (IJCNN’03), Portland, OR, USA, July
20-24, 2003, pp 2964-2969.

[11] R.C. Eberhart and Y. Shi, “Particle Swarm Optimization:
Developments, Applications and Resources”, Proceedings of the 2001
Congress on Evolutionary Computation, May 27-30, 2001, Vol. 1, pp
81-86.

[12] X. Hu, Y. Shi and R.C. Eberhart, “Recent Advances in Particle Swarm”
Proceedings of the 2004 Congress on Evolutionary Computation, June
19-23, 2004, Vol. 1, pp 90-97.

	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	01: 381
	02: 382
	03: 383
	04: 384

