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ABSTRACT Particle Swarm Optimization (PSO) can be a solution to this 

problem. It is a population based stochastic optimization 
technique developed by J. Kennedy and R. Eberhart in 1995. 
It models the cognitive as well as the social behavior of a 
flock of birds (solutions) which are flying over an area 
(solution space) in search of food (optimal solution) [4]. 

Backpropagation algorithm is the most commonly used 
algorithm for training artificial neural networks. While 
being a straightforward procedure, it suffers from 
extensive computations, relatively slow convergence 
speed and possible divergence for certain conditions. The 
efficiency of this method as the training algorithm of a 
Radial Basis Function Neural Network (RBFN) is 
compared with that of Particle Swarm Optimization, for 
neural network based identification of a small power 
system with a Static Compensator. The comparison of the 
two methods is based on the convergence speed and 
robustness of each method.   

PSO has been applied to improve neural networks in various 
aspects, such as network connection weights, network 
architecture and learning algorithms. In recent years, there 
have been several papers reporting on the replacement of the 
backpropagation algorithm by PSO for some neural network 
structures [5]-[7]. This paper investigates the efficiency of 
PSO and BP in terms of convergence speed and the 
robustness for training a Radial Basis Function Neural 
Network (RBFN) on a power system identification problem.  

1. INTRODUCTION 

Artificial neural networks based closed loop controllers 
have been proposed in order to improve the dynamic and 
transient performance of nonlinear systems [1]. These are 
techniques which can provide robust and adaptive control 
for a highly nonlinear and non-stationary system in the 
presence of noise and uncertainties. A neural network 
based identifier (neuroidentifier) which serves as the 
model of the plant (process) to be controlled, is required 
in the majority of these designs in order to ensure an 
adaptive control performance. Training such a 
neuroidentifier is an important aspect of its design.  

2. NEUROIDENTIFIER STRUCTURE 

Figure 1 shows the schematic diagram of the power system 
(plant) to be controlled. It is a single machine infinite bus 
(SMIB) with a Static Compensator (STATCOM) connected 
in the middle of the transmission line. The generator is 
modeled together with its automatic voltage regulator (AVR), 
exciter, governor and turbine dynamics all taken into account. 
The generator is a 37.5 MVA, 11.85 kV (line voltage) 
machine. Parameters used for the entire system can be found 
in [8]. The system is simulated in the PSCAD/EMTDC 
environment.  The backpropagation (BP) algorithm is the most 

commonly used technique for training neural networks. It 
is an approximation of the Least Mean Square (LMS) 
algorithm, which is based on the steepest descent method. 
While the BP technique follows a straightforward and 
well-established algorithm, there are some disadvantages 
associated with it. The method of backwards calculating 
weights does not seem to be biologically plausible. 
Neurons do not seem to work backward to adjust their 
synaptic weights [2].  Furthermore, it suffers from 
extensive calculations and therefore in most of the cases 
has a slow convergence speed [3]. 

 
Figure 1. Block diagram of the plant and the controller.                                                  
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The STATCOM is a power electronics based inverter which 
is connected to the network in parallel and can control the 
voltage at the point of connection [9]. Two conventional PI 
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to the network as well as the STATCOM DC link voltage 
(Fig. 1). 
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 The generator, STATCOM, their internal controllers and the 
transmission lines are considered as the plant to be 
controlled, with the control signal as the input and the line 
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voltage error ∆ as the output. A neuroidentifier is 
trained in order to learn the dynamics of the plant and 
track its output during normal operating conditions as 
well as during dynamic and transient disturbances. The 
training procedure of the neuroidentifier is explained in 
details in the authors’ previous work [10]. 

V

A RBFN with Gaussian activation function and a single 
hidden layer with 25 neurons is used for the structure of 
the neuroidentifier. The neural network receives the plant 
input and output at time steps ( , and ()1−t )2( −t )3−t , and 
generates an estimate of the plant output at time t. (Fig. 2) 

 
Figure 2. Schematic diagram of the neuroidentifier. 

Training samples are collected by applying a Pseudo-
Random Binary Signal (PRBS) disturbance (Fig. 3) to the 
plant input and storing the corresponding plant output 
(forced training). Batch mode training is then carried out 
in order to update the neural network weights. 

The centers of the neural network are determined offline 
using a batch mode clustering method, in order to avoid 
the computational complexity of the online recursive 
clustering method [3]. The training algorithms explained 
in Section 3 are therefore only applied and compared for 
updating the output layer weight matrix (Fig. 2). 

3. TRAINING ALGORITHMS 

Two different methods are compared for updating the 
output weight matrices of the neuroidentifier: 
backpropagation and PSO. Both methods are applied 
offline and are compared in terms of the Mean Square 
Error (MSE): 
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where N is the number of data samples in each epoch and 
e is the instantaneous error between the actual and 
estimated values of the output.  

A. Backpropagation Algorithm 

The backpropagation (BP) algorithm was developed by 
Paul Werbos in 1974. Based on LMS algorithm, BP 
applies a weight correction to the neural network 
connection weights which is proportional to the partial 

derivative of the error function [3]. This adjustment to the 
weights is in the negative direction of the gradient of the error 
(steepest descent). 

The error function is defined as: 
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where is the error value, i.e. the difference between the 
actual output of the plant and the estimated neuroidentifier 
output. The neuroidentifier weights are adjusted according to: 
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where η  is the learning rate parameter. A large learning rate 
might lead to oscillations in the convergence trajectory, while 
a small learning rate provides a smooth trajectory at the cost 
of slow convergence speed. 

 
Figure 3. PRBS signal used for forced training. 

Backpropagation can be applied in two modes: sequential and 
batch mode. The former is the online mode of training a 
neural network, where weight updating is performed after the 
presentation of each training sample, while in the latter the 
weight matrices are updated after the presentation of all the 
training samples that constitute an epoch [3]. 

B. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population (swarm) 
based optimization tool. Every single solution (called a 
particle) “flies” over the solution space in search for the 
optimal solution. The particles are evaluated using a fitness 
function to see how close they are to the optimal solution [4]. 
Particles have a tendency to duplicate their individual past 
behavior that has been successful (cognition) as well as to 
follow the successes of the other particles (socialization). (1) 

The neural network weight matrix is rewritten as an array to 
form a particle. Particles are then initialized randomly and 
updated afterwards according to (4): 
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where  are inertia, cognitive and social acceleration 
constants respectively.  
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For every specific particle, is the best solution that 
the particle has achieved so far and indicates the tendency 
of the individual particles to replicate their corresponding 
past behaviors that have been successful.  is the 
global best solution so far, i.e. the best solution that any 
particle (in the whole population) has achieved so far. 
This quantity indicates the tendency of the particles to 
follow the success of others. [11], [12] 

pBest

gBest

Table I. Parameters for PSO. 
Parameter Range Optimum Value 
Number of Particles [15,30] 30 
Inertia Constant (Base Value) [0.5,0.9] 0.5 
Cognitive Acceleration Constant [1,3] 3 
Social Acceleration Constant [3,1] 1 
Maximum Velocity [1,20] 16 
Maximum Search Space Range [1,40] 21 
 
It should be noted that the inertia constant that is applied in 
this study is as follows: Another important parameter associated with PSO, is the 

maximum velocityV , which determines the resolution 
or fineness with which the search space is searched. A 
large value might cause the particles to fly past good 
solutions, while a small number can cause the particles to 
get trapped in the local optima [11].  
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where is the value mentioned in Table I.  basew

Figure 6, which shows the best case using optimum 
parameters for PSO, indicates a MSE equal to 0.0027 after 20 
epochs, (three times less than backpropagation algorithm). A 
further comparison of the best cases of training the 
neuroidentifier with BP and PSO appears in Figure 7. 

Selection of the constant parameters, the population size, 
neighborhood size and suchlike are problem dependent 
and for this specific problem will be explained in the next 
section.  

4. SIMULATION RESULTS 

 
Figure 6. Actual and estimated values of the plant output during forced 
training using PSO (best case). 

 
Figure 7. Mean square error with BP and PSO training algorithms. 

The PRBS disturbance applied to the plant has a 
combination of three different frequencies 0.5, 1 and 2 
Hz, and its magnitude is selected in a way that it causes 

deviations in the plant output. Forced training is 
applied to the system for 100 sec. The PSCAD time step 
is chosen to be 100 µs, while the neural network sampling 
time is 5 ms. 
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Batch mode training is first applied for training the 
neuroidentifier using the backpropagation algorithm. 
Various learning gains are examined in the range of 
[0.001,0.5], and the best results are achieved with the 
learning gain of 0.211 (MSE is 0.0084 after 20 epochs). 
Figure 5 shows the BP results for the best case. 

 
Figure 5. Actual and estimated values of the plant output during forced 
training using BP (best case). 

Parameters of PSO are also fine tuned in order to get the 
best results. Table I shows the range in which each 
parameter is searched, as well as the optimum values for 
each parameter. The optimum values for the PSO are 
derived after an extensive search over the ranges defined 
in Table I. 

Since PSO is a stochastic optimization method, several sets of 
simulations are carried out (50 trials) with the same set of 
optimum parameters in order to provide statistical results. 
The same number of trials considering the optimum learning 
gain was performed in the case of backpropagation algorithm. 
Table II shows the comparison between the two methods.  



It is also observed during the trials that if the number of 
the particles used in PSO is reduced, for the sake of 
improving the computational effort, the performance is 
slightly degraded as shown in Table II.  

Table II. Statistical results. 
Statistics PSO BP 
Number of Particles 30 20 ---- 
Minimum MSE 0.0027 0.0036 0.0084 
Maximum MSE 0.2266 0.1203 0.0566 
Mean MSE 0.0222 0.0238 0.0225 

A comparison between the two training algorithms 
indicates that even though the minimum MSE in PSO is 
considerably smaller (about three times less) than the 
minimum MSE in BP, the performance of PSO, on 
average, is only slightly better. The authors believe this is 
due to the fact that for a RBFN, the centers of the hidden 
layer are determined using a clustering method, 
irrespective of the training method chosen for updating 
the output synaptic weight matrix. Therefore there are less 
degrees of freedom for the training methods. A 
comparison of the PSO and BP for a neuroidentifier using 
Multilayer Perceptron Neural Networks (MLPN) for the 
same power system supports this assertion (see Appndix).  

Extensive simulations showed that PSO algorithm is 
especially robust with respect to wide-range variations on 
its parameters. For this specific application, no 
convergence problems are observed in any of the 2,500 
combinations generated for the different values of inertia 
constant, cognitive acceleration, social acceleration and 
maximum velocity. This shows a major advantage over 
BP algorithm in which the learning gain has to be 
accurately determined.  

5. CONCLUDING REMARKS 

Two different learning algorithms were applied in this 
paper for training a radial basis function network based 
neuroidentifier: Backpropagation (BP) and Particle 
Swarm Optimization techniques (PSO). The training 
algorithms have been applied only for updating the output 
synaptic weight matrix, and in both cases the centers and 
widths of the neurons in the hidden layer are derived 
using an offline clustering method. 

Backpropagation learning algorithm is the most 
commonly used technique for updating neural network 
weight parameters. While being straightforward, it has a 
slow convergence speed and might at times diverge. It 
also requires extensive calculations if the size of the 
network increases and it may be difficult to implement 
when no gradient information is available for all 
activation functions. 

On the other hand, PSO algorithm has shown to have 
several advantages, both in terms of robustness and the 
efficiency in finding the optimal weights for the RBFN 
neuroidentifier. Furthermore, the algorithm has proven to 

be efficient even for a reduced number of particles, thus the 
computational effort is comparable and even less significant 
than in the case of backpropagation. Statistical results are 
provided that confirm PSO as a reliable algorithm for training 
such a neural network.  

6. APPENDIX 
COMPARISON OF BP AND PSO FOR MLPN 

The efficiency of the two training methods is compared for a 
MLPN based neuroidentifier for the power system shown in 
Fig. 1. The MLPN neuroidentifier has 16 neurons in the 
hidden layer. Table III summarizes the results. 

Table III. Statistical results for MLPN neuroidentifier. 
Statistics PSO BP 
Number of Particles 15 ---- 
Minimum MSE 0.0011 0.0095 
Maximum MSE 0.0268 0.0791 
Mean MSE 0.0059 0.0366 
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