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Abstract 
An essential task in design and certification of modern aircraft is the accurate prediction of unsteady flow-induced loads. 
The established techniques related to aeroelastic simulations are usually based on potential flow theory. However, in the 
transonic flight regime this methodology is limited in its fidelity due to distinct aerodynamic nonlinearities. Recent 
advancements are achieved by using computational fluid dynamics (CFD) approaches to address fluid-structure-interaction 
problems. Besides the accuracy improvements, the computational cost increases dramatically. Hence, the development 
of reduced-order models (ROMs) for aeroelastic analyses becomes a research area of increasing interest. The aim of 
ROM methods is to efficiently describe the dominant static and dynamic characteristics of the underlying system. Therefore, 
a limited set of CFD-based data is exploited to calibrate the ROM. Subsequently, the obtained model can be supplied with 
new inputs and ideally responds equivalent to the considered system. 
In this paper, a ROM approach is presented that employs radial basis function neural networks (RBF-NN) to train the 
dynamic relationship between the structural motion and the resulting flow-induced loads. For selecting an optimal set of 
basis functions, the orthogonal least squares (OLS) training technique is utilized. Since the recurrent RBF-NN is based on 
nonlinear system identification principles, it is suited to describe nonlinear aerodynamic effects with sufficient accuracy. 
Preliminary numerical investigations on the NLR 7301 supercritical airfoil show good correlation between the results 
obtained by the ROM methodology in comparison to the full-order CFD solution. 
 
 

NOMENCLATURE � = generalized damping matrix (N × N) �� = center vector, RBF-NN c�� = center vector i, element j c
 = pressure coefficient c��
 = chord length, m e� = mean squared error of output element i � = time-domain discrete force vector (N × 1), N ���� = time-domain generalized aerodynamic force 
vector (N × 1) f���,� = generalized aerodynamic force vector 
element i, time domain f���,�� = generalized aerodynamic force vector 
element i caused by an excitation of mode j, 
time domain f = oscillation frequency, Hz � = auxiliary matrix for weight determination ��� = generalized aerodynamic force matrix, 
frequency domain (N × N) � = generalized stiffness matrix (N × N) k = time increment k��� = reduced frequency (2πf ∙ c��
/U ) ! = generalized mass matrix (N × N) M = number of neurons in the hidden layer Ma  = freestream Mach number m = maximum input delay-order, m ∈ ℕ N = number of considered eigenmodes N' = number of training samples N( = number of inputs, RBF-NN N) = number of outputs, RBF-NN n = maximum output delay-order, n ∈ ℕ p = p-nearest-neighbor model constant p  = freestream static pressure, N/m² , = vector of generalized coordinates (N × 1) 

   

   r = scaling factor used for network optimization q  = freestream dynamic pressure, N/m² t = time, s U  = freestream velocity, m/s 0 = input vector (N( × 1), RBF-NN 1 = weight matrix (N) ×M), RBF-NN 2 = system output vector (N) × 1) 23 = model output vector (N) × 1), RBF-NN α = angle of attack, deg γ = ratio of specific heats, 1.4 (air) ∆t = dimensional time step, s ∆τ = nondimensional time step 8 = modal matrix, 8 = :;<, ;=, … , ;?@ ;� = vector of eigenmode i Θ = normalized excitation amplitude ρ  = freestream density, kg/m³ σ� = spread/radius of neuron i, RBF-NN τ = nondimensional time D� = basis function operator, RBF-NN ω = k��� ∙ Ma ∙ √γ, nondimensional angular 
frequency 

 

1. INTRODUCTION 

In classical aeroelastic analysis, the interaction of 
structural, aerodynamic, and inertial forces is studied to 
determine the static and dynamic characteristics of an 
aircraft. Fluid-structure interaction (FSI) effects are of 
paramount importance regarding the limits of the flight 
envelope and are therefore strongly influencing safety and 
efficiency requirements [1]. 
In the context of aeroelasticity, the unsteady flow-induced 
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loads are mainly modeled using the well-developed linear 
potential flow theory [2]. For industrial applications, these 
methods are used because of low computational effort in 
combination with reliable results, especially, in the subsonic 
and supersonic flight regime. However, for transonic flow 
conditions this methodology has drawbacks due to distinct 
aerodynamic nonlinearities such as compression shocks, 
which are not covered by the underlying theory [3]. 
Advancements can be achieved by using recently 
developed computational fluid dynamics (CFD) approaches 
to address aeroelastic problems. Besides the 
improvements in quality and accuracy, the computational 
cost increases substantially due to the large number of 
influence parameters that have to be studied (e.g., number 
of eigenmodes, Mach number, angle of attack, flap 
deflection angle). Today the long turn around periods are 
still the limiting factor for the industrial use of CFD codes in 
terms of predicting unsteady aerodynamic forces. 
Hence, the development of reduced-order models (ROMs) 
for multidisciplinary analyses becomes a research area of 
increasing interest. The aim of ROM methodologies is to 
reduce the full-order flow problem (Euler or Reynolds-
averaged Navier-Stokes) to a simpler mathematical model, 
while maintaining the dominant physical and dynamical 
characteristics of the complex system. Calculating the 
response of a reduced model is far more efficient than 
solving the full-order CFD equations. In order to calibrate 
the ROM, a dataset of CFD-based input-output data is 
exploited to extract the high-quality information. 
In the last years, different ROM concepts have been 
developed to efficiently describe unsteady aerodynamic 
quantities. The approaches can be divided into time domain 
and frequency domain ROMs, though in this work only the 
time domain representation is considered. A brief 
description of the recently developed ROMs is given below. 
 
Lucia et al. [4] as well as Dowell and Hall [5] gave a 
comprehensive overview of several reduced-order 
techniques; e.g., harmonic balance, Volterra theory, and 
proper orthogonal decomposition (POD), while showing 
their application to aeroelastic test cases. 
In the literature, other approaches comprise the use of 
linear system identification concepts to obtain a ROM. An 
example is the eigensystem realization algorithm (ERA) [6] 
that is employed to construct a linear time invariant (LTI) 
state-space model [7]. For further computational efficiency, 
this method had been extended in order to excite several 
structural modes simultaneously, see Kim and Bussoletti 
[8], Silva [9], and Fleischer and Breitsamter [10].  
Concurrently, various methods based on nonlinear system 
identification principles had been developed. Because of 
their mathematical foundation, these kind of ROMs should 
be able to capture large amplitude vibrations as well as 
(highly) nonlinear aerodynamic phenomena such as shock-
induced limit-cycle-oscillations (LCO). In 1997, Faller and 
Schreck [11] proposed a recurrent multi-layer-perceptron 
neural network (MLP-NN) for the identification of 
experimentally gathered airfoil data. Subsequently, 
Marques and Anderson [12] used a multi-layer-based 
temporal neural network to predict unsteady aerodynamic 
forces in transonic flow. Voitcu and Wong [13] 
demonstrated that a neural network is suitable to describe 
the dynamics of an aeroelastic system. Mannarino and 
Mantegazza [14] extended those ideas by using a recurrent 
MLP-NN to approximate the lift and pitching-moment 
coefficients of the NACA 64A010 airfoil [15]. A similar 
approach was followed by Rampurawala et al. [16].  

There, a non-recurrent MLP-NN (without feedback) was 
utilized to model the aeroelastic behavior of the 3D Goland 
wing [17]. In order to include dynamic memory effects, 
temporal derivatives of the excitation signal were added to 
the input vector of the neural network. Within the rotorcraft 
community, a surrogate model that accounts for time-
dependent Mach number variations had been formulated by 
Glaz et al. [18]. For the nonlinear mapping, they used a 
kriging algorithm. Furthermore, Zhang et al. [19] employed 
a radial basis function neural network (RBF-NN) to 
investigate LCOs of the NACA 64A010 airfoil [15]. Recently, 
Lindhorst et al. [20] combined a RBF-NN with the POD 
approach to study the aeroelastic behavior of the 
HIRENASD-wing-fuselage configuration [21]. 
 
In the present paper, a similar approach as in Zhang et al. 
[19] is followed. A recurrent RBF-NN is utilized to train the 
dynamic relationship between the simultaneously-excited 
pitch-plunge motion of the two-dimensional NLR 7301 airfoil 
[22] and the respective generalized aerodynamic forces 
(GAFs). For this purpose, the modal deflections are used 
as the model input, and the unsteady aerodynamic forces 
are the RBF-NN’s resulting output. The full-order CFD 
system is considered with the Euler-based AER-Eu solver 
[23]. Nevertheless, the ROM concept is also valid for 
aerodynamic data that has been generated using the 
Reynolds-averaged Navier-Stokes (RANS) equations. 
Once the theoretical background and several network 
training techniques have been described, the reduced-
order results for the NLR 7301 airfoil in transonic flow are 
compared to the corresponding time-accurate AER-Eu 
results. 
 

2. THEORY AND NUMERICAL METHODS 

Firstly, the relevant basics regarding structural dynamics as 
well as the concept of generalized aerodynamic forces are 
introduced. Subsequently, the CFD solvers AER-Eu and 
AER-SDEu will be addressed briefly. The main focus is on 
a detailed discussion of the RBF-ROM method. Hence, the 
fundamentals of recurrent RBF-NNs as well as application 
aspects are explained. 
 

2.1 Structural Dynamics and Generalized 
Aerodynamic Forces 

In modern aeroelastic analysis, the structure of a flexible 
aircraft is usually discretized using the finite-element 
method (FEM) [1]. For a reduction of the numerous degrees 
of freedom, the initial finite-element model in physical space 
is often transferred into modal coordinates. Hence, the well-
known equations of motion for a multi-modal structural 
system can be written in generalized coordinates as 

(1a) !,G (t) + �,K (t) + �,(t) = ����(t) 
(1b) ����(t) = 8L�(t) 

A FEM-driven modal analysis leads to the modal matrix 8 =:;<, ;=, … , ;?@		with N considered eigenmodes  as well as 
the generalized mass, damping, and stiffness matrices, 
respectively, !, �, and �. In Eq. (1a), vector ,(t) represents 
the modal/generalized coordinates that can be interpreted 
as scaling factors for the corresponding mode shapes.  
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Taking only aerodynamic loads into account, the concept of 
generalized forces results in the relation for the i-th modal 
force vector element in the time domain: 

(2) f���,�(t) = q ∙ N c
(t) ∙ ;� ∘ dQ'  

In Eq. (2), the local pressure coefficient c
(t) is integrated 

over the aerodynamically effective surface and weighted 
with the corresponding eigenmode.  
Because the linearized aerodynamic forces in the 
frequency domain are subsequently exploited for validation 
purposes, they will be briefly addressed. When performing 
classical flutter analyses, it is assumed that a linear relation 
between the structural deflection of an eigenmode and the 
generalized aerodynamic forces exists. Hence, the 
aeroelastic equations can be transferred into the frequency 
domain to treat harmonic motions. Thus, the well-known 
linear flutter equation in the frequency domain can be 
derived: 

(3) :−ω=!+ iω� + �− q ���(k���, Ma )@ ∙ ,S	=	0 
 
Eq. (3) contains the introduced modal matrices, the physical 
angular frequency ω and the ��� matrix. Latter quantity 
represents the linear aerodynamic transfer function in the 
frequency domain, while ,S is the modal amplitude. When 
comparing harmonic excitations, the time domain solutions 
are Fourier analyzed to allow for a validation based on the 
real and imaginary parts of the ��� matrix. Further details 
on this approach can be found in Fleischer and Breitsamter 
[10].  
 

2.2 Computational Fluid Dynamics – AER-Eu and 
AER-SDEu 

In this research, the CFD solver AER-Eu is used to provide 
the subsequently described RBF-ROM with high-quality 
training data for the steady and unsteady aerodynamic 
loads. Additionally, AER-Eu and AER-SDEu are used for 
intermethod comparisons in order to assess the accuracy 
of the ROM approach. In this work, the purpose of the ROM 
is to reproduce the underlying CFD system, which is 
considered as the reference. 
AER-Eu solves the Euler equations in conservation form by 
utilizing a shock-capturing finite-volume method for 
structured multi-block grids [23]. The spatial discretization 
is realized by Roe’s flux-difference splitting [24], while the 
MUSCL extrapolation (from monotonic-upstream-scheme-
for-conservation-laws) is employed in order to retain the 
total variation diminishing (TVD) property. The temporal 
integration is performed with the dual-time stepping scheme 
by Jameson, whereas the embedded pseudo-time solution 
is carried out using the lower-upper symmetric successive 
overrelaxation [25]. Furthermore, a deforming mesh 
approach had been implemented. For this purpose, a user-
defined time law can be prescribed to interpolate between 
a reference grid and an amplitude grid [10].  
Based on the previously described Euler code, the time-
linearized AER-SDEu solver had been developed. The 
fundamental assumption is that a harmonic motion of the 
investigated body (aircraft) results also in a harmonic 
response of the unsteady aerodynamic forces according to 
the classical flutter theory. Hence, nonlinear effects are 
neglected and only the magnitude and phase of the first 
harmonic unsteady load have to be evaluated. Because of 

the linear relationship, it is possible to compute the 
aerodynamic quantities directly in the frequency domain. 
With this high-fidelity CFD method, a significantly lower 
computational effort compared to the dynamically fully 
nonlinear approach is required to calculate the GAFs for the 
linear flutter analysis. For further information, refer to [23, 
26-28]. 
 

2.3 Aerodynamic Reduced-Order Model – Radial 
Basis Function Neural Network 

In the following, the fundamentals of RBF-NNs as well as 
the utilized training strategies are discussed. A Markov 
chain-based approach for training the dynamic system 
behavior using a finite set of input-output data samples will 
be presented. Finally, some application guidelines 
regarding the simulation of unsteady aerodynamic loads 
are given. 
 

2.3.1 Radial Basis Function Theory 

Originally published by Broomhead and Lowe [29] in 1988, 
the RBF-NN belongs to the domain of artificial neural 
networks, and is able to approximate any nonlinear function 
to an arbitrary degree of accuracy with a finite number of 
neurons. Thus, the network fulfills the universal 
approximation theorem [30]. In Fig. 1, a schematic of a 
RBF-NN with one output is shown. The depicted network 
structure can be subdivided into three layers: the input layer 
for distributing the network inputs, the nonlinear hidden 
layer containing the RBFs and the linear output layer.   Each 
hidden layer circle symbolizes a neuron that receives an 
input, processes the information in a nonlinear way, and 
produces an output. One single neuron allows only 
comparatively simple operations. However, the 
combination of many neurons makes this approach 
powerful. The mathematical formulation for a RBF-NN with 
an output vector consisting of N) elements (1 ≤ i ≤ N)) can 

be written as   

(4) y3� = Ww��Y
�	Z	S ∙ D�[\0 − ��\	]				with	DS = 1	 

where y3� is the i-th element of the output vector, 1 a matrix 
containing the linear weights w��, 0 the input vector and �� 
the center vector affiliated to neuron j. Hence, the 

multivariable function mapping 0	 → 	23 (with 0 ∈ ℝ?a	and 23 ∈ ℝ?b) is realized. For the M basis functions D� in the 

hidden layer, the typical approach of using the Gaussian 
RBF in combination with the Euclidean distance norm is 
inserted: 

(5) D�[\0 − ��\	] = expd−∑ (ug − c�g)=?agZ< 2σ�= h 

Due to the characteristics of RBFs, the output of a neuron 
becomes smaller when the distance between the input and 
the neuron’s center increases. The spread parameter σ� in 

Eq. (5) determines the sphere of influence of neuron j and, 
therefore, has a strong nonlinear effect on the overall 
network performance. With larger spreads, the width of the 
Gaussian RBF increases and therefore covers a greater 
regime of the input space. Thus, σ� 	→ 0 implies that only an 

input vector equal the center vector activates neuron j. 
Recalling that only input and output vectors are known for 
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a given training data-set, the centers, weights, and spreads 
have to be trained to realize a RBF-NN-based model. 

 

Fig 1: Schematic representation of a RBF-NN with one 
output y3 and a constant spread σ 
 

2.3.2 Training of the RBF-NN 

In order to train the network, various methods are given in 
the literature. A detailed review of all approaches is beyond 
the scope of this paper. Hence, only the employed 
instances in this research are given. Further information 
can be found in Haykin [31] and Nelles [30].  
Firstly, the approach for determining the weight matrix is 
examined. Since the weights can be interpreted as scaling 
factors for the corresponding RBFs, the overall network 
output is a linear superposition of all neuron outputs. For 
training those quantities, it is assumed that the basis 
functions are fixed and known a priori. Thus, a least 
squares formulation results for the linear weights that can 
be solved by using the commonly employed pseudo-
inverse method [31]: 

(6a) 1 = (�L�)i<�L	2 
(6b) G�� = 	expd−\0� − ��\=2σ�= h 

Its calculation is extremely efficient compared to any 
nonlinear optimization technique, e.g., required for MLP-NN 
training. By solving Eq. (6a), the mean squared error 
regarding the estimated network output 23 and the exact 
system response 2 is minimized for a fixed set of k�:   

(7) el =	 1N' 	W[y3�� − y��]=
?m
�Z< 												for	1 ≤ i ≤ N) 

In Eq. (7), N' represents the number of sample points that 
has been used for training the network. 
 
In the preceding paragraph, it was assumed that the RBFs 
of the hidden layer, and hence the centers, are known. In 
the following, two variants for center selection are 
discussed briefly: 
 
• One possible solution is to use every training sample 

point as a center. A consequence is that there are M =N' neurons. However, a large number of neurons 

should be avoided because of model overfitting effects 
(see Nelles [30], for instance). Hence, this approach 
should be used only for verification purposes. 

 
• In the present research, the orthogonal least squares 

(OLS) method for linear subset selection as proposed 
by Chen et al. [32] has been utilized. This supervised-
learning method exploits the benefits of the linear 
relationship between the RBFs and the weights to 
select the centers. Because a detailed discussion of 
the algorithm is beyond the scope of this paper, only 
the most relevant steps are presented: 
1) At the beginning, all training samples N' are used 

to train a separate RBF-NN with one center, 
assuming a user-defined initial spread for all 
dimensions. For those N' networks, the mean 
squared error related to the whole training data-
set is evaluated, see Eq. (7). Subsequently, the 
center that causes the smallest prediction error is 
selected as the first network center vector 
(regressor). 

2) After the initial step, another training sample is 
made orthogonal to the previously chosen 
regressor/s by using the modified Gram-Schmidt 
orthogonalization. This procedure is iterated for 
each remaining sample. In analogy to step one, 
the error is evaluated, while the regressor that 
yields the smallest error is added as a neuron’s 
center. 

3) Step two is repeated until a prescribed maximum 
number of neurons is reached or the mean 
squared error is smaller than a user-defined limit. 

By using the OLS approach, the available information 
about the exact system behavior is fully exploited. 
Because the initial spread has to be defined manually, 
further iterations due to an unfavorable choice may be 
necessary. As a result of the OLS method, only the 
most relevant sample points (in terms of the prediction 
error) are used as center vectors, thus the risk of 
undesirable over- and underfitting phenomena is 
minimized. Moreover, the resulting network is very 
compact and thereby allows an extremely fast 
calculation.  

 
Lastly, methods for determining the spreads will be 
discussed. Two instances are employed here: 
 
• The simplest approach is to choose a constant spread 

(σ� = σ = const.) for all neurons. The value of the 

spread parameter can be optimized by a brute-force 
search approach in a user-defined interval. Once the 
procedure is terminated, the spread that yields the 
smallest prediction error according to Eq. (7) is 
selected. 
 

• The more sophisticated approach is to allow a variable 
spread. In the late 1980’s, Moody and Darken [33] 
presented the p-nearest-neighbor method. For each of 
the M selected centers, the p nearest centers are 
determined based on the Euclidean distance. Then the j-th spread value can be expressed by 

(8) σ� = r ∙ 1pqW\�� − ��\=

�	Z	<  
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A value of p = 2 or p = 3 is suggested to achieve 
adequate results. Optionally, the factor r can be 
handled like a constant spread. It allows a 
computational brute-force optimization to improve the 
network prediction capability.  

 

2.3.3 Unsteady Aerodynamic Simulation using the 
RBF-NN 

Up to this point, the discussed RBF-NN can be used to 
realize the mapping of a nonlinear function. However, in 
order to take time dependencies and dynamic memory 
effects into account, the Markov chain approach must be 
introduced to obtain a recurrent network. 
Many widely-used parametric system identification 
techniques (e.g., ARX and ARMA [30]) are based on the 
assumption that the known relationship between a finite 
series of former inputs and previous outputs is sufficient to 
predict the system response at the subsequent time step. 
This approach for modeling dynamic systems can be 
written in the following form, defining that k is the 
considered current discrete-time increment:  

(9) 2(k) = s t0(k), 0(k − 1), … , 0(k −m),2(k − 1),… , 2(k − n) u 
In this manner, not only the current system input is 
considered for the model input vector, but also previous 
system inputs and outputs. The maximum dynamic delay-
orders depicted in Eq. (9) are m for the inputs and n for the 
outputs, respectively. Furthermore, it is assumed that a 
constant time step ∆τ (k − 1	 → k) is employed.  Because 
the function s in Eq. (9) is typically nonlinear and 
multidimensional, the RBF-NN is used to model the spatial-
temporal relation. For aeroelastic computations, the input 
vector 0 symbolizes the structural states and can be 
expressed by the modal deflections ,. By definition, the 
output vector 2 can contain either the aerodynamic lift and 
pitching-moment coefficients (in the 2D case) or the 
generalized aerodynamic forces. 
Because the dynamic delays have to be specified by the 
user, some guidelines are given in the following: Generally, 
there is no mathematical restriction on the number or the 
sequence of the dynamic delays. However, to circumvent 
stability problems, the maximum output delay should be 
smaller than or equal to the maximum input delay. To find 
a good delay sequence, several simpler models (e.g., ARX, 
ARMA) with different delay schemes can be efficiently 
estimated. Then, a comparison of the prediction errors of 
these models according to Eq. (7) leads to a first guess for 
the dynamic delays of the nonlinear RBF-NN. However, 
finding a good delay-order pattern is an iterative task. 
Assuming that a properly trained network for the considered 
system is given, and the dynamic delays are optimized, an 
unsteady dynamic simulation can be realized. It is important 
to highlight that only constant time steps can be handled by 
this approach. Hence, the same discrete time step 
incorporated in the training data-set must be employed for 
the simulation. 
If the output is fed back, i.e., if output delays are used, a 
discrete time-marching approach must be employed, as 
shown in Fig. 2. 
 
To carry out unsteady aerodynamic simulations using the 
RBF-NN, two options exist: 
1) The complete input time-series is known: This is the 

case for simulating forced-motion vibrations or impulse 

excitations. Those structural motions are of particular 
interest in order to obtain the generalized aerodynamic 
forces in the frequency domain via Fourier analysis. 

 
2) Past and current inputs are known, future inputs are 

unknown: If a coupled aeroelastic system is 
considered, the structural displacements and the 
aerodynamic loads mutually influence each other. 
Therefore, future inputs (structural states) depend on 
current outputs (aerodynamic forces). Hence, for the 
aeroelastic ROM, a time-marching coupling scheme is 
necessary; see Zhang et al. [19], for instance.  

 

 
Fig. 2: Simulation of a single-input single-output (SISO) 
model with a maximum delay-order of two 

Both described simulation types can be treated with the 
discussed network-based approach. However, special care 
must be taken at the beginning of the simulation: The RBF-
NN expects as many previous inputs and outputs as 
defined by the maximum delay-order. Therefore, the initial 
condition for the structural excitation is typically set to zero 
or to an aeroelastic equilibrium state. The aerodynamic 
quantities (output) have to be defined according to the 
corresponding structural deflection. Thus, the initial values 
are usually known from the steady-state CFD solution.  
 

2.4 Generation of Training Data - Structural 
Excitation 

For identifying linear dynamic systems, the impulse or step 
excitation involving one distinct amplitude is sufficient [10, 
30]. However, the nonlinear-system-identification approach 
requires more information about the underlying system in 
order to train the nonlinear ROM. Hence, the design of an 
adequate excitation signal is a challenging task. The signal 
has to stimulate the dominant and representative 
characteristics (amplitudes and frequencies) of the 
aerodynamic system. Concurrently, the generation of the 
training data-set must not be too computationally 
demanding to exploit the ROM advantages. Various 
excitation strategies and theories are given in the literature 
in order to fulfill these prerequisites. Here, the amplitude-
modulated pseudo-random binary signal (APRBS) [30] is 
chosen for the forced-motion structural excitation. This 
signal can be generated from the frequently used pseudo-
random binary signal (PRBS) by assigning random 
amplitudes to each plateau level. The main advantage of 
utilizing the APRBS is the large spectrum of excited 
frequencies and amplitudes. This property is of paramount 
importance for the nonlinear identification task. 
Furthermore, only a comparatively short excitation time-
series is needed, limiting the computational cost. An 
example APRBS as well as the corresponding power 
spectral density is visualized in Fig. 3. 
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Fig. 3: APRBS signal in the time domain and the 
corresponding power spectral density 

For each modal coordinate, a different APRBS signal is 
generated. Thus, coupling effects regarding the structural 
eigenmodes are captured. 
 

2.5 Overview of the RBF-ROM Method 

To summarize the discussed methods, a composite of the 
multidisciplinary approaches is given in Fig. 4.  
The basis of all further computations is a steady-state AER-
NS/Eu simulation for a fixed set-up characterized by the 
freestream Mach number and the angle of attack. 
Subsequently, an unsteady CFD solution is computed using 
one generated APRBS for each structural eigenmode. In 
this manner, the considered body is formed by a linear 
superposition of all modal shapes multiplied by the 
corresponding time-varying APRBS values. Hence, the 
AER-NS/Eu result is a time-series of the particular 
generalized aerodynamic force vector resulting from the 
prescribed motion. 
Combining the APRBS inputs with the CFD-based outputs, 
the merged data-set must be preprocessed in order to train 
the RBF-NN. Therefore, the delay pattern is needed to 
arrange the data according to the Markov chain approach. 
Furthermore, the data is normalized to improve the 
numerical robustness. After the preprocessing step, the 
training data can be utilized to train the unknown quantities 
of the neural network. 

 

Fig. 4: Scheme of the RBF-ROM method 

Because of the iterative nature of finding an optimal delay 
pattern and RBF-NN configuration, a further optimization 
may be necessary. Therefore, the available CFD-based 
data-set is typically segmented, while around 70% of the 
data is used for training. The remaining data is exploited for 
verification purposes in order to realize a stable and 
accurate model.       
If the RBF-NN-based model optimization yields satisfactory 
results, the ROM can be used for aerodynamic simulations. 
Therefore, an arbitrary structural excitation can be 
preprocessed and fed into the RBF-ROM. However, the 
excitation amplitudes should be covered by the training 
data to achieve adequate results. After renormalization, the 
unsteady aerodynamic forces of the modeled system are 
obtained. 
 

3. RESULTS 

In order to demonstrate the RBF-ROM approach, the 
method is applied to the two-dimensional NLR 7301 
transonic airfoil [22, 34], while the RBF-NN algorithms are 
implemented in MATLAB [35]. For this 2D case, the 
accuracy as well as the computational efficiency is 
analyzed and compared to the respective AER-Eu 
simulations. For a further comparison of the RBF-ROM with 
AER-SDEu, the ROM-based generalized aerodynamic 
forces resulting from harmonic excitations are transferred 
to the frequency domain via Fourier analysis. 
 

3.1 NLR 7301 Airfoil - Setup 

The frequently investigated NLR 7301 airfoil offers a distinct 
nonlinear aerodynamic behavior in the transonic flight 
regime due to the presence of a strong shock and is thereby 
suited to assess the simulation accuracy of the nonlinear 
RBF-ROM approach. According to Weber et al. [36] and 
Tang et al. [34], the supercritical wing is studied at Ma =0.753 and α = 0. Furthermore, the investigated 2D airfoil is 
characterized by a chord length of c��
 = 0.3	m, which is 
also interpreted as the reference length for computing the 
reduced frequency. Since the focus is on intermethod 
comparison, arbitrary excitations are considered in this 
work, while the ROM outputs are compared to the CFD 
results. Because this paper presents preliminary solutions, 
only inviscid flow was taken into account, although viscous 
effects have a huge impact on the aerodynamic and 
aeroelastic characteristics [36]. The consideration of 
viscous flow remains a topic for future research. 
The linear two-degree-of-freedom structural model for the 
NLR 7301 airfoil is adopted from Tang et al. [34]. Once the 
modal analysis is performed, the resulting eigenmodes are 
adequately scaled for the unsteady aerodynamic 
simulations. In this context, two conflicting requirements 
occurred: Because the nonlinear effects are of major 
concern, the deflections should be large in order to induce 
distinct shock motions. However, for comparison with the 
AER-SDEu solutions, the maximum deflections are limited, 
due to the linearization assumption. As a trade-off, the 
maximum deflection of the plunge-dominated mode was 
scaled to 3.3 percent of the chord length while the pitching-
dominated eigenmode was scaled to a maximum angle of 
attack of 3 degree.  The deformed CFD grids are generated 
from the scaled modal shapes and the reference CFD grid 
by using the thin-plate spline (TPS) interpolation approach 
followed by the transfinite interpolation (TFI) for mesh 
reconstruction. 
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The employed reference CFD grid is discretized by 14,396 
cells in a four-block C-H topology using the commercial 
ICEM-CFD software package [37]. A grid-sensitivity study 
was carried out to ensure the independence of the solution 
from the spatial discretization. In Fig. 5, the CFD grid is 
visualized along with the steady-state Mach number 
distribution. The figure shows a typical transonic flow field 
with a crisp shock on the upper surface. 

 

Fig. 5: Structured reference CFD grid and computed 
steady-state Mach number contours of the NLR 7301 airfoil 
at Ma = 0.753 and α = 0 (AER-Eu) 

3.2 Unsteady Aerodynamic Results 

Originating from the steady-state solution, the unsteady 
flow computation was conducted to evaluate the response 
of the aerodynamic system to the simultaneously 
superimposed modal deflection. The APRBS-based time 
law for each generalized coordinate is shown in the top plot 
of Fig. 6. As a result of the particular AER-Eu simulation, 
the time-series of the generalized force vector ����(τ)		is 

obtained. Fig. 6 shows the first component of this vector as 
a function of the nondimensional simulation time. In this 
work, a nondimensional time step of ∆τ = 0.1 was 
employed. The relation to the physical time step is defined 
as 

(10) ∆t = xp ρ ∙ ∆τ 
Based on the excitation signal, the aerodynamic response 
is computed for 3042 discrete time steps. Thus, a 2 x 3042 
matrix results for the GAFs as well as the structural input. 
In the following, 70% of this data is considered as the 
training set for conditioning the nonlinear RBF-ROM. The 
remaining 30% of the set is used for model verification. 

According to the workflow proposed in Fig. 4, each input 
and output quantity is normalized by removing the mean 
value and dividing by the corresponding standard deviation. 
Subsequently, the data has to be arranged according to the 
Markov chain approach. Therefore, the maximum delay for 
the inputs, as well as for the outputs, was specified to be 
12, while all delays between 1, 2, …, 12 are included as 
well. Because the current/undelayed input is also 
embedded, the network input vector consists of 2 x 13 + 2 
x 12 = 50 elements. The output vector is formed by the 
undelayed GAFs. 

 

 
Fig. 6: Training and verification data consisting of the two 
simultaneously excited modal coordinates and the 
generalized aerodynamic force responses (only first 
component is shown); NLR 7301 airfoil at Ma = 0.753 and α = 0 
After defining the input-output vectors, the RBF-NN is 
trained. Firstly, the OLS algorithm was used to select an 
optimal set of centers based on the available training data. 
If the prediction error was no longer reduced by adding 
further neurons, the selection process was terminated. 
Eventually, a total number of 1477 centers were selected 
out of 2122 available regressors. Furthermore, the p-
nearest-neighbor model specified in Eq. (8) was used for 
the spreads in combination with the brute-force scaling 
factor optimization. Lastly, the linear weights are 
determined in order to minimize the mean squared error. It 
is important to highlight that this trained RBF-NN is used for 
all further ROM computations presented below.  
After concluding the training process, a first test was 
conducted to check whether the ROM is able to yield 
adequate results. Therefore, the RBF-NN is excited by the 
combined training and verification APRBS (top plot of Fig. 
6). Because the network was trained with 70% of this data-
set, the ROM results should match the CFD reference 
solution quite well. However, the network training procedure 
minimizes only the prediction error. When a simulation with 
a ROM containing output delays is performed, the former 
calculated outputs are fed back as future network inputs. 
This can cause instabilities even for extremely small one-
step prediction errors. Hence, the distinction between the 
simulation error and the prediction error must be taken into 
account when comparing the results. As shown in Fig. 7 for f���,=, the result nevertheless agrees well with the 

underlying AER-Eu computation. This also holds true for 
the GAF element that is not displayed here. 

Next, the simulation of an arbitrary structural excitation for 
the same underlying system was conducted. In the context 
of unsteady aerodynamic RBF-ROM computations, the 
system is viewed as identical if Ma , α, and ∆τ remain 
unchanged; i.e., in accordance with the initial training data. 
For the following test, an amplified frequency-modulated 
vibration signal is defined for each modal coordinate, as 
shown in the top plot of Fig. 8. 
 

Deutscher Luft- und Raumfahrtkongress 2014

7



 

 

 
Fig. 7: APRBS simulation result of the RBF-ROM for f���,=; NLR 7301 airfoil at Ma = 0.753 and α = 0 
 
Subsequently, the pre-conditioned ROM is excited with the 
generic structural deflection. In order to evaluate the model 
quality, the corresponding AER-Eu solution at Ma = 0.753 
and α = 0 was rendered, and is plotted for f���,< in Fig. 8. It 

is apparent that only slight deviations from the exact 
solution are present. Furthermore, the computation of the 
RBF-NN simulation for this case took approximately 3 
seconds, whereas the full-order CFD solution needed more 
than 28 hours on an Intel Xeon 2.3 GHz processor. 
 
Finally, three harmonic oscillations in each of the two 
eigenmodes were simulated in the time domain for various k��� using the RBF-ROM method, as well as the AER-Eu 
solver. For this test, the modes are not excited 
simultaneously to investigate the separate influence of each 
mode on the generalized aerodynamic forces. The modal 
deflection for this case can be expressed by the normalized 
amplitude 

(11) Θ = sin:ω ∙ (k ∙ ∆τ)@ 					with	k	ϵ	ℕ 

The resulting aerodynamic responses are visualized in Fig. 
9 by way of the respective Lissajous figures. The force f���,=< represents the second GAF component resulting 

from an excitation of the first eigenmode. One can observe 
good agreement between the ROM- and the CFD-
generated Lissajous figures, even if nonlinear 
characteristics are dominant. Thus, the RBF-ROM is suited 
to model dynamic nonlinearities.  
Additionally, the time-domain generalized aerodynamic 
forces resulting from the single-frequency vibrations are 
transformed into frequency domain using the Fourier 
analysis. This process is carried out for both the RBF-ROM 
and the AER-Eu time-series. Hence, the GAF matrix 
introduced in Eq. 3 results for each k���. Further 
comparative solutions are computed with the AER-SDEu 
method. Real and imaginary parts for the frequency domain 
GAFs are depicted in Fig. 10. The diagrams indicate good 
conformity of the three methods, while the ROM solution 
offers a compromise between the nonlinear and the small-
disturbance results. Latter holds true for the fidelity, 
especially, if distinct nonlinearities are present. However, 
higher frequencies (not shown here) are not covered well 
by this employed RBF-ROM due to the fixed discrete time 
step. In order to resolve vibrations of higher k���, a smaller ∆τ must be used throughout the workflow.  
 

 
Fig. 8: Test of the RBF-ROM for a generic vibration signal; 
NLR 7301 airfoil at Ma = 0.753 and α = 0  
 
The computational effort of a ROM simulation (~3000 
discrete time steps) is merely a few seconds on an Intel 
Xeon 2.3 GHz processor. However, for a total cost analysis, 
the generation of the training data (APRBS-CFD simulation; 
here: 20.8 CPU hours) as well as the training cost (0.1 CPU 
hours) must be considered as well. Therefore, about 21 
CPU hours were needed for generating the shown RBF-
ROM. In comparison, the AER-Eu computation based on 
the generic test signal (see Fig. 7) took about 28.3 CPU 
hours. Moreover, the evaluation of the harmonic excitations 
for six k��� with the AER-Eu solver required 21.3 CPU 
hours, while the trained ROM generated the outputs for 21 k��� in less than a minute. Thus, with an increased number 
of intended simulations, the computational advantage of the 
ROM increases substantially.  
 

4. CONCLUSIONS 

In this paper, an aerodynamic reduced-order modeling 
approach based on radial basis function neural networks 
was presented. The related theoretical fundamentals of 
aeroelasticity, artificial neural networks and nonlinear 
system identification were discussed. Additionally, an 
overview of the workflow with respect to network training 
strategies was given. Subsequently, the application of the 
RBF-ROM approach to a 2D aeroelastic problem, namely 
the NLR 7301 supercritical airfoil, has been shown. It was 
demonstrated that the neural network-based approach can 
adequately predict linear as well as nonlinear aerodynamic 
effects. This is of major concern in aerodynamically-driven 
limit-cycle-oscillation analyses or nonlinear response 
calculations, especially, in the transonic flight regime.  
Furthermore, the analysis of the total computational 
demand shows that a great potential for saving simulation 
time exists. 
Future research will focus on a refinement of the presented 
method. This will include the implementation of improved 
parameter optimization algorithms as well as other network 
approaches to yield a further improvement in simulation 
fidelity while maintaining the model stability. Another aim 
will be to integrate the Mach number as a network input 
parameter in order to account for flow variations with a 
single model. Moreover, the application of the RBF-ROM 
method to RANS solutions will be investigated. 

Deutscher Luft- und Raumfahrtkongress 2014

8



 

 

 

  

  

Fig. 9: Lissajous figures of the generalized aerodynamic forces f���,�< resulting from three harmonic excitation cycles of 

the first eigenmode. Comparison of RBF-ROM results with AER-Eu results; NLR 7301 airfoil at Ma = 0.753 and α = 0. 
Top: k��� = 1/3, Bottom: k��� = 5/6   

 

Fig. 10: Real and imaginary parts of the frequency-domain GAF matrix elements over k��� at Ma = 0.753 and α = 0	for 
the NLR 7301 supercritical airfoil. Comparison between AER-Eu, AER-SDEu, and RBF-ROM.
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