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Abstract 
 
The present set of themes related to the investigations of heat transfer by convection and the transport 
phenomenon in a cylindrical pipe in laminar flow, which is to explore the evolution of the temperature profile 
for a fluid flow in fully developed laminar flow. A numerical method was developed in this work, for 
visualization of the temperature profile, whose strategy of calculation is based on the orthogonal collocation 
method followed by the finite difference method (Crank-Nicholson method). The calculations were effected 
through a FORTRAN computer program and the results show that orthogonal collocation method giving 
better results than Crank-Nicholson method.   
 
Keywords: Temperature profile; Laminar flow; Convection; Orthogonal collocation; Crank-Nicholson method 

 

1. Introduction 
 
The Graetz problem is known as the heat transfer problem of laminar fluid flow in ducts. It has 
many applications and has been studied extensively since Graetz (1885). The classical Graetz 
problem considers the forced convection heat transfer of fluids flowing in ducts while neglecting 
axial conduction in the fluid (Girgin and Turker, 2011). 
 
The mathematical and approximations solutions of the Graetz problem have been obtained in 
numerous previous contributions. Braga et al. (2014) considered an extended version of a Graetz 
problem with axial diffusion in an infinite domain. Two heating variations were studied, firstly step 
change in wall temperatures, and step change in wall heat flux. The solution is expressed in terms of 
an eigenseries expansion using orthogonal Sturm-Liouville eigenfunction expansion of the sought 
solutions. The resulting problem was then solved analytically to yield the eigenvalues and 
eigenvectors. Hua and Kai-Long (2015) studied energy conversion conjugate conduction-
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convection Ohmic mixed heat and mass transfer of an incompressible viscoelastic fluid on thermal 
forming stretching by using a  similarity transformation method to change the partial differential 
equations transform to a set of nonlinear ordinary differential equations, and it has also been used 
an implicit finite-difference method to solve the system’s equations. 
 
Belkacem et al. (2014)  studied the effect of nanofluid for heat transfer on laminar forced 
convection internal flow. Square duct with constant wall temperature was considered, and 
newtonian fluid model for fully hydrodynamically and thermally developed flow was applied. 
Variable thermophysical properties for the fluid and negligible viscous dissipation are assumed. 
The numerical solution of the problem is based on the finite volume method for quadrilaterals 
unstructured mesh. 
 
Hsu (1968) studied the Graetz problem with axial diffusion in circular tube, using a semi- infinite 
domain formulation with a specified inlet condition, while Michelsen and Villadsen (1974) analyzed 
the effects of axial diffusion in a infinite domain formed by an insulated preparation region followed 
by an isothermal wall. Both studies used numerical schemes to complete the solution of the 
problem. Barros and Sphaier (2013) proposed analytical approximations for solving an extended 
version of the Graetz problem with axial diffusion in an infinite domain. The adopted methodology 
consists of transforming the original convection-diffusion partial-differential equations into a 
simpler one-dimensional form, using approximation rules provided by the Coupled Integral 
Equations Approach (CIEA).Neeraj and Gerardo (2015) conducted a study in order to formulate the 
steady-state natural convection analysis in a partial annulus geometry in the general framework of 
weakly compressible flow without the use of the Boussinesq approximation. 
 
In classical Gratez problems, the dimensionless parameter well-known Peclet number is usually 
assumed large such that the heat transport equation is simplified, as the axial diffusion becomes 
negligible. When axial diffusion is taken into account, an extended Graetz problem is obtained. An 
exact solution of this problem was presented by Acrivos (1980), Vick and Özisik (1981) and 
Ebadian and Zhang (1998) for low Péclet numbers and different boundary conditions. Approximate 
solutions were also used (Villadsen and Michelson, 1976). 
 
Oliveira et al. (2004) presented the Graetz problem as a solution of the thermal entry flow in pipes 
for the FENE-P fluid, for imposed constant wall temperature and wall heat flux and in the presence 
of viscous dissipation. 
 
Papoutsakis et al. (1980) presented an analytical solution to the extended Graetz problem with 
prescribed wall flux, based on a self adjoint formalism resulting from the decomposition of the 
convective diffusion equation into a pair of first-order differential equations. The Graetz problem 
for non-Newtonian fluids with constant wall temperature and heat flux was studied numerically by 
Shih and Tsou (1978).  
 
The major objective of this paper is the study of convective heat transfer in a circular tube carrying 
fluid in laminar flow called commonly as the Graetz problem. A mathematical model was developed 
was then solved by orthogonal collocation method. 
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The second objective of the study is the development of a FORTRAN program to solve the problem 
using the orthogonal collocation method followed by the crank-Nicholson method. This latter is 
based on the Lagrange polynomial approximation. The program is able to generate highly accurate 
results with a less instability. The results are discussed and a general conclusion, which is the main 
thrust of this work, is summarized. 
 

2. Mathematical Modeling 
 
2.1 Flow in the conduits in laminar flow 
 
Laminar flow in a circular conduit could be modeled as thin layers of concentric fluid hollow 
cylinders forming the boundary layer, each travelling at different speeds, and a homogenous single 
cylinder out of the boundary layer travelling at free stream velocity. Based on this model, the heat 
transfer between adjacent fluids cylinders is: 
 

1. In directions perpendicular to the cylinder surface, heat transfer occurs only through 
conduction. 

2. In the direction of the flow, the heat transfer occurs through convection and conduction 
simultaneously. In most cases the hollow fluid cylinder is thin enough such that 
conduction could be neglected. 

 
The flow taking place in the z direction, it has the cylindrical symmetry compared to the radius 
vector r:     
                                  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Geometry of a laminar flow in control 
 
Consider the element of the cylindrical volume of radius r, between the planes of abscissa z and z+ 
dz. The balance of the amount of steady motion is: 
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For unidirectional flow, the total pressure p remains constant. Under these conditions U depends 
only on r and the integration of the above equation leads to (Ower,1974): 
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The speed is maximum at the axis of the control volume: 
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The average speed of the control volume could be calculated based on the volume flow 
(Ower,1974): 
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This shows that the speed profile is parabolic according to the normal variable space of flow and 
the maximum speed is equal twice the average speed. 
 
2.2. The heat equation in cylindrical coordinates 
 
The general equation for heat transfer in cylindrical coordinates developed by Bird, Stewart and 
Lightfoot (1960) is as follows; 
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 Considering that the flow is steady, laminar and fully developed flow (Re   2400), and if the thermal 

equilibrium had already been established in the flow, then 0



t
T . The dissipation of energy 

would also be negligible. Other physical properties would also be constant and would not vary with 
temperature. 
After applying the above assumptions, equation (12) reduces to the following form: 
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Given that the flow is fully developed laminar flow, then the velocity profile would have followed 
the parabolic distribution across the pipe section, represented by  
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By replacing the speed term in equation (13), we get: 
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Solving the equations requires the boundary conditions as set in Figure 2, thus 
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After making the necessary arrangements and simplifications, the following simplified equation is 
obtained. 
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where the term 
k

CRu p2
 is the adimensional number known as Peclet number (Pe), which in fact 

is Reynolds number divided by Prandtl number. In steady state condition, the partial differential 
equation resulting from this, in the adimensional form can be written as follows: 
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This equation, if subjected to the new boundary conditions, would be transformed to the followings: 
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To solve equation (19), it is hereby proposed that the orthogonal collocation method could be 
applied, based on orthogonal polynomials.  
 
2.3. Application of the orthogonal collocation method 
 
For this problem, the governing Equation 19 is subject to the following conditions: 
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To evaluate the points of the interior collocation and the two points at the end, the substitution of 
Equation 19 in the governing partial differential equation with initial and boundary conditions, 
leads us to: 
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A partial expansion of the Equation 22 gives: 
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Note that in the above expression (Stewart et al., 1985 , Villadsen,1970) we must use some other 
means to eliminate . That can be done by developing the equation 23 of boundary condition. 
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Solving for, we get (Michelsen,1994): 
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And finally, substitute back in the governing equation and after rearranging, the following equation 
is obtained: 
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It is noticed that orthogonal collocation for infinitesimal x and y for the PDE, i.e. formation of a PDE 
to a series of ODE (ordinary differential equation).To solve this series of ODE the use of the 
traditional Runge-Kutta method of order 6. With this intention, two subroutines FUN and DFUN are 
needed to be able to apply the algorithm STIFF3, which are detailed in the next part. 
 

3. Numerical Solution of the System of Differential Equations 
 
A numerical solution procedure is proposed using the orthogonal collocation method, which is 
based on an approximation of Lagrange polynomials. It is able to deliver highly accurate results 
with stiffness and reduced instability. This method reduces the degree of the equation and can be 
solved step by step manner.  
 
In the following, subroutines that is used in the simulation, which requires the determination of 
several input and output parameters are presented. The language used in the main program is 
FORTRAN which itself contains other subroutines. 
 
3.1. The procedure of the numerical solution  
 
By applying the equations developed to the problem, a more general equation could be written as 
follows; 
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Now, the problem is reduced to solving a system of simultaneous equations in view of obtaining θ at 
each point of the collocation point. It starts from the normal form at this point to fully develop the 
program needed to solve this basic example, such that for the latter example only the discretization 
of the equation is given. In the example, the Lagrange polynomial of the order six were used (that is 
to say that we have six inner roots or collocation points), and both the temperature boundary 
conditions for θ variable were taken into account. For economy of computation time and 
programming, it is recommended to resolve the six internal temperatures θ variable, instead of all 
the eight points (eight equations). Thus, the optimal procedure was to write three short routines 
FUN, DFUN and OUT (Stanley,1984). The main program is written in FORTRAN to solve the above 
equations. This program communicates with other subroutines to perform the calculations needed 
to solve different parameters whose flowchart is shown in Figure 2. This program calculates the 
non-dimensional temperature profiles in the tube with fully developed and laminar flow. 
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Fig.2. Digital simulation Flowchart 

4. Application of the Crank-Nicholson Method 
 
Therefore for this problem there is a non-linear PDEs with the following boundary conditions: 
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A numerical method can be used to solve equation (28). The analog finite difference corrected 
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Where h and k are the mesh sizes of the R and X respectively. The Crank-Nicholson equation is the 
result of successively application of forward and backward difference equations. This is stable for 
all values of the ratio h/k. After the derivatives are replaced, equation (28) becomes: 
 

 MmDUCUBUA mnmmnmmnmm   2,1,11,1,1 , (30) 
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Equation (30) contains three unknowns: Um-1,n+1, Um,n+1, Um+1,n+1. Analogues of finite difference B.C2 
and B.C3 are: 

CL2 11,211,11 DUCUB nn    (31) 

Where 2
1 /2/1 hkB  , 2

1 /2 hC   and nn UhUhkD ,2
2

,1
2

1 )/2()/2/1(  , and  

CL3 MnMMnMM DUBUA   1,1,1  (32) 

Where hhAM 4/12/1 2 , 2/1 hBM   and nMnMM UhUhhD ,
2

,1
2 )/1()2/14/1(   . 

 
The equations 30, 31 and 32 are an M+1 system of algebraic equations with M+1 unknowns. Using a 
known auxiliary condition, which is CL1:  Um,1=1  à  X=0. 
 
The system of equations above can be solved to yield U1,2, U2,2, U3,2, …, UM,2. These values are in turn 
used to calculate U1,3, U2,3, U3,3, …, UM,3. This system of simultaneous equations can be represented by 
a coefficient of tridiagonal matrix and can be solved more effectively by the method of Thomas 
(Rosenberg,1969).  
 
The algorithm of the method first calculates: 
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U values are then calculated back from UM to U1 
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5. Results and Discussion 
 
Figure 3 to Figure 6 illustrates the results obtained by the method of orthogonal collocation in a 
cylindrical model. These results are expressed in different points of internal collocation n. 
Therefore, more number of nodes used, the acuity of results is better. We can see from this figure 
that at most n, the higher the normalized dimensionless temperature evolution of the unit 
decreases exponentially to zero. The value of θ = 1 corresponds to the fluid temperature at the inlet, 
while θ = 0 corresponds to the wall temperature. 
 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

D
im

e
n

s
io

n
le

s
s
 T

e
m

p
e

ra
tu

re
 

Longitudinal Coordinate  Z

 n=8

 n=10

 n=12

 n=14

 n=16

 
Fig.3. Dimensionless temperature, θ profile as a function of Z at various collocation points 

n, for Pe=0.1, R/L=0.1. 
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Fig.4. Dimensionless temperature θ as a function of Z at various collocation points n, for 

Pe=0.1, R/L=0.1. 
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Fig.5. Temperature profile θ according to Z, at Pe = 0.1, R/L = 0.01. 
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Fig. 6. Temperature profile θ according to Z at Pe=0.5, R/L = 0.1. 

 
Figures 7 present the non-dimensional θ distribution as a function of Z at different values of Peclet 
number Pe. The figure shows the influence of the Peclet number in the flow regime. It must be 
remembered that the Peclet number is defined as a measure of the ratio of the power transmission 
rate by convection to energy transport rate by conduction. It is observed that the variations is large 
when the Pe value increases. 
 
Figure 8 shows the temperature variations at specific distances R/L from the intake. The numerical 
solution shows that the iso-temperature lines are almost linear, ie the temperature remains almost 
constant along a streamline far from the intake. We see that the results for R/L = 0.1 are above 
results when R/L = 0.01 and 0.001. In other words, as the distance from the entrance of the tube 
(R/L reducing), the wall temperature value gradually becomes predominant in the liquid stream. 
 
Figures 9 to 11 show the distribution of the non-dimensional temperature U with Z. The curves 
were obtained by the implicit Crank-Nicholson method with different number of mesh. It should be 
noted that for low values of the number of mesh N in the discretization, the influence of N is more 
significant to the the distribution of temperature, compared to when N is high. 
 
Figures 12 to 14 compare the computation results by the orthogonal collocation method and that of 
the implicit Crank-Nicholson method. It can be seen that the two curves deviate significantly when 
the number of collocations or the number of point of mesh are large. This means that the technique 
of orthogonal collocation allowed fast simulations whereas the implicit Crank-Nicholson method, 
would be more reliable even if it requires more intensive computer time. 
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Fig.7. The distribution of the non-dimensional temperature θ with Z at different Peclet 
number. 
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Fig.8. The distribution of the non-dimensional temperatures θ with Z , taking account the 

Influence of the ratio R/L. 
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Fig.9. Variations of U by Crank-Nicholson method for various points of mesh N. 
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Fig.10. Variations of U obtained from Crank-Nicholson Method for different points of mesh N. 
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Fig.11. Variation in the non-dimensional temperature U in X according to the diagram of 

Crank-Nicholson. 
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Fig.12. Comparison of orthogonal collocation (n=12) with Crank-Nicholson method 

(N=13). 
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Fig.13. Comparison of orthogonal collocation (n=16) with Crank-Nicholson method (N=17). 
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Fig.14. Comparison of orthogonal collocation (n=29) with Crank-Nicholson method (N=30). 

 

6. Conclusions 
 
This paper shows how the temperature profile of a fully developed laminar flow in a hot wall tube 
could be determined. Firstly the equation was simplified. Assuming the flow is incompressible, it is 
possible to decouple the thermal and dynamic equations. Then the dimensionless number, the 
Peclet number was introduced. Its influence was in the case of flow in a tube (Graetz problem) was 
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examined. This is the basics of all internal thermal flow problems. This work consists of solving the 
Graetz problem by two different methods however, and it was shown that each has their own merit.  
The operation of two different digital techniques was used to solve the axial dispersion model, or to 
be more precise, by the orthogonal collocation method. 
 
The first method is the collocation method, which proved to be a stable numerical procedure and 
could be considered to advance and excellent, as it produces precise results for the low number of 
mesh numbers, which means low computing time. 
 
The second method is by the finite difference method using the implicit Crank-Nicholson scheme in 
the second order, associated with the Thomas algorithm for matrix inversion, that is by 
simultaneously solving the equations. We can consider that the equation is sufficient to solve many 
physical situations; in fact, this analysis could be used to size a problem, extract a simple 
description and then guiding the numerical resolution which will be done with a high-performance 
code. 
 
The model treated in our study uses the convection concepts, and presents a heat transfer inside a 
circular cylindrical pipe with fully developed laminar flow. The model is composed of a nonlinear 
partial differential equation which is subject to an initial condition and two boundary conditions. 
This type of model requires a simulation method adapted to distributed parameter systems. The 
orthogonal collocation method allowed fast simulations of the system while the finite difference 
method, is more intensive but is more reliable. The results which come from this study show that 
the orthogonal collocation method is particularly good, converging quicker than the implicit Crank-
Nicholson method; although the latter is better if a high accuracy is required.  
 
This study also shows that it would be possible to guide the selection of suitable numerical 
simulation procedures when dealing with a complex problem of convection. This work also showed 
the solution to a form of heat transfer in a fairly simple problem of laminar pipe flow. This problem 
is a fundamental problem, because it is the basis of all possible problems of heat transfer in a pipe 
flow. 
 
The use of exchange coefficients in the method proposed here simplifies the works towards the 
solution. It was also shown that the collocation method would present a solution with a high degree 
of accuracy and with very short computer time if low numbers of collocation points were used. On 
the other hand, if the number of collocation points were used, then the implicit Crank-Nicholson 
method would give a better accuracy. This means that, it is necessary to juggle the accuracy 
required and the available computing power. 
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