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Abstract

Dipolar structures arise as Empirical Orthogonal Functions (EOFs) of extratropical

tropospheric zonal-mean zonal wind in observations, in idealised dynamical models, and

in complex general circulation models. This study characterises the conditions under

which dipoles emerge as EOFs of a jet of fixed shape f(x) which takes a unique localised

extremum but is otherwise arbitrary, characterised by fluctuations in strength, position,

and width of arbitrary distribution. It is shown that the factors which influence the

extent to which a dipole-like structure will arise as an EOF are: (i) the skewness

of position fluctuations, (ii) the dependence of position fluctuations on strength and

width fluctuations, and (iii) the relative strength of position and width fluctuations. In

particular, the leading EOF will be a dipole if jet position fluctuations are not strongly

skewed, not strongly dependent on strength and width fluctuations, and sufficiently

large relative to strength and width fluctuations. As these conditions are generally

satisfied to a good approximation by observed and simulated tropospheric eddy-driven

jets, this analysis provides a simple explanation of the ubiquity of dipolar jet EOFs.
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1 Introduction

The leading Principal Component Analysis (PCA) mode of extratropical zonal-mean zonal

wind variability is known as the zonal index (e.g. Lorenz and Hartmann, 2001). The spatial

structure corresponding to this mode (that is, the Empirical Orthogonal Function (EOF))

is found to be a dipole in observations and in a range of models from randomly-forced

barotropic β-plane dynamics (e.g. Vallis et al., 2004) through dry dynamical cores (e.g.

Fyfe and Lorenz, 2005) to complex general circulation models (e.g. Fyfe et al., 1999), and

is related to (but not identical with; cf. Monahan and Fyfe, 2008) the leading mode of

zonal-mean geopotential height variability (the annular mode). As noted in Wittman et al.

(2005), the ubiquity of this dipolar structure suggests that it reflects some generic feature

of variability of the extratropical atmosphere - in particular, the existence of a jet in zonal-

mean zonal winds characterised by fluctuations in position. The numerical simulation results

presented in Wittman et al. (2005) were confirmed analytically and extended in Monahan

and Fyfe (2006), the central conclusions of which were:

1. A small number of basic shapes contribute to the leading order EOFs, corresponding to

monopole, dipole, and tripole structures. As noted in Monahan and Fyfe (2008), these

shapes are successive derivatives of the jet shape function. All of these basis functions

and EOFs are either symmetric or antisymmetric around the jet axis. Symmetric and

antisymmetric basis functions are mutually orthogonal, but the symmetric basis func-

tions are not orthogonal to other symmetric basis functions. Similarly, antisymmetric

basis functions are not mutually orthogonal.

2. The leading EOF structures corresponding to kinematic degrees of freedom represent-

ing jet fluctuations in strength, position, or width individually can be computed and
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correspond respectively to monopole, dipole, and coupled monopole/tripole structures.

3. If the jet fluctuates in more than one of these kinematic degrees of freedom, the dipole

arises as a distinct EOF mode as a result of fluctuations in jet position (as the leading

EOF if fluctuations in position are sufficiently large compared to those in strength

and width). However, the associated Principal Component (PC) time series mixes

together variability in strength, position, and width: the “zonal index” mode cannot

be uniquely associated with a single kinematic jet degree of freedom.

4. The EOFs associated with the individual kinematic degrees of freedom are not generally

orthogonal, and when more than one degree of freedom is active the EOFs other than

the dipole will generally consist of a mixture of monopole, dipole, and tripole structures.

These conclusions were obtained through a perturbation analysis of the covariance struc-

ture of a jet in zonal-mean zonal wind with idealised spatial structure (Gaussian profile)

and fluctuations in strength, position, and width (all Gaussian distributed). Although these

are reasonable first-order approximations, the observed tropospheric zonal-mean jet is not

exactly Gaussian in profile and the statistics of its fluctuations are not exactly Gaussian.

The present study generalises the results of Monahan and Fyfe (2006) for the case of a jet of

arbitrary (sufficiently smooth) profile with fluctuations of arbitrary distribution (for which a

sufficiently large number of moments exist). The fundamental conclusions of Monahan and

Fyfe (2006) are recovered in generalised form, and new results associated with asymmetric jet

shape and non-Gaussian fluctuations are obtained. In particular, the conditions under which

a dipole-like structure arises as the leading EOF of the fluctuating jet are characterised. The

generalised model is presented in Section 2. Analytic computations of the EOFs of this

model for a number of illustrative special cases are presented in Sections 3 through 7 before
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the general case is considered in Section 8. Conclusions follow in Section 9.

2 Idealised Jet Model

Consider a jet in zonal-mean zonal wind u(x, t) of strength U(t), central position xc(t), and

width σ(t):

u(x, t) = U(t)f

(
x− xc(t)
σ(t)

)
, (1)

where f is a CK (that is, K times continuously differentiable) and localised (that is, with sub-

stantially nonzero values over only part of the domain D = (x1, x2)) but otherwise arbitrary

function. We assume that strength, position, and width are fluctuating quantities:

U(t) = U0(1 + lξ(t)) (2)

xc(t) = hλ(t) (3)

σ−1(t) = 1 + vη(t), (4)

where ξ, λ, and η are random variables of mean zero and unit variance. Other than assuming

that sufficiently many moments of these random variables exist for the following series ex-

pansions to be meaningful, their joint distribution p(ξ, λ, η) is arbitrary. Note that without

any loss of generality we have defined our coordinate system so that the average jet central

position E {xc} is zero and the average jet width E {σ} is one, where the expectation of any

function q(ξ, λ, η) is defined as

E {q} =
∫
q(ξ, λ, η)p(ξ, λ, η) dξdλdη. (5)

We will assume that l, h, and v are all << 1; for the Southern Hemisphere eddy-driven jet

Monahan and Fyfe (2006) obtained the estimates l ∼ 0.1, h ∼ 0.3 and v ∼ 0.2.
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In the following discussion, it will be useful to define the vectors (in “bra and ket nota-

tion”, as discussed in the Appendix)

|fj〉 =
1

Nj

djf

dxj
(6)

and

|Fj〉 =
1

Nj
xj
djf

dxj
, (7)

where

N2
j =

∫ x2

x1

(
djf

dxj

)2

dx (8)

and

N 2
j =

∫ x2

x1

x2j

(
djf

dxj

)2

dx. (9)

We will assume that the function f(x) is sufficiently smooth that enough of the vectors |fk〉

and |Fk〉 exist for the series expansions in the following discussion to be meaningful. Note

that if f(x) is a symmetric function, then the |fj〉 will be alternately odd and even functions,

while |Fj〉 will all be even.

It will be assumed that f(x) is a “jet” characterised by a unique extremum, so its deriva-

tive changes sign only once in the domain and |f1〉 is “dipolar” in structure. Furthermore,

we assume that f(x) is sufficiently localised that the function and its derivatives vanish at

the boundaries of the domain D. It then follows from repeated integration by parts that

∫ x2

x1

(
djf

dxj

)(
dkf

dxk

)
dx = (−1)j−k

∫ x2

x1

(
djf

dxj

)(
dkf

dxk

)
dx, (10)

from which we obtain the selection rule that even and odd indexed vectors |fj〉 are orthogonal:

〈fj|fk〉 = 0 for j − k odd. (11)

This result follows trivially by symmetry for f(x) symmetric as |fj〉 are then alternately odd
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and even functions; it is important for the following discussion that Eqn. (11) holds generally

for localised jet shape functions f(x). No such selection rule exists among the vectors |Fj〉.

By definition, the EOFs
∣∣∣E(k)

〉
of u(x, t) are the eigenfunctions of the covariance “matrix”

(technically, operator)

C = E {|u′〉 〈u′|} (12)

where

|u′〉 = |u〉 − E {|u〉} . (13)

That is,

C
∣∣∣E(k)

〉
= µ(k)

∣∣∣E(k)
〉
. (14)

We now proceed to obtain expressions for the leading EOFs of u(x, t),considering a set of

illustrative special cases before addressing the general case.

3 Fluctuations in Strength Alone

Consider first a jet which fluctuates in strength alone:

u(x, t) = U0(1 + lξ)f(x). (15)

We can write

|u〉 = U0(1 + lξ)N0 |f0〉 (16)

and

E {|u〉} = U0N0 |f0〉 (17)

so

|u′〉 = |u〉 − E {|u〉} = U0N0lξ |f0〉 . (18)
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It follows that the covariance matrix

C = E {|u′〉 〈u′|} = U 2
0N

2
0 l

2 |f0〉 〈f0| , (19)

from which we conclude that |f0〉 is an eigenfunction with eigenvalue U 2
0N

2
0 l

2. A jet fluctuat-

ing in strength alone has a single EOF with nonzero variance, with the spatial pattern of the

mean jet. This result is not surprising, as the jet fluctuating in strength alone is a standing

wave (that is, separable into a product of functions of space and time alone). We also note

that the structure of the EOF is independent of the pdf of ξ. This result is in contrast to

the EOFs of fluctuations in position alone, to which we now turn.

4 Fluctuations in Position Alone

For the case of fluctuations in position alone, we have

u(x, t) = U0f(x− hλ). (20)

We expand u(x, t) as a Taylor series:

u(x, t) =
∞∑

j=0

U0(−hλ)j

j!

djf

dxj
, (21)

or, in bra and ket notation,

|u〉 =
∞∑

j=0

U0(−hλ)j

j!
Nj |fj〉 . (22)

With

|u′〉 = |u〉 − E {|u〉} =
∞∑

j=1

U0(−h)j (λj − E {λj})
j!

Nj |fj〉 (23)

it follows that the covariance matrix is given by

C = E {|u′〉 〈u′|} =
∞∑

j,k=0

U2
0 (−h)j+k

j!k!
NjNkmjk |fj〉 〈fk| , (24)
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where

mjk = E
{
λj+k

}
− E

{
λj
}

E
{
λk
}
. (25)

With h << 1, we have to O(h4) that

C ' N 2
1h

2U2
0 |f1〉 〈f1| −N1N2sλU

2
0

h3

2
(|f1〉 〈f2|+ |f2〉 〈f1|) (26)

+h4

(
N1N3(κλ + 3)U 2

0

6
|f1〉 〈f3|+

N2
2 (κλ + 2)U 2

0

4
|f2〉 〈f2|+

N1N3(κλ + 3)U 2
0

6
|f3〉 〈f1|

)

where sλ and κλ are respectively the skewness and kurtosis of λ: sλ = E {λ3} and κλ =

E {λ4} − 3.

If the pdf of λ is symmetric so that sλ = 0, it follows by the selection rule (11) that |f2〉

is an eigenfunction of C with eigenvalue µ(2) = N2
2 (κλ + 2)U 2

0h
4/4, and that to leading order

in h2, |f1〉 is an eigenfunction with eigenvalue µ(1) = N2
1U

2
0h

2 (the off-diagonal terms of the

covariance matrix will result in O(h4) corrections to µ(1)). The relative variances of these

two PCA modes will depend on the size of h, on the kurtosis of λ, and on the normalisation

factors N1 and N2. Because h is by assumption << 1, |f1〉 will be the leading EOF unless

the kurtosis κλ is very large.

As an example of how the EOF structure is influenced by jet shape, consider a jet with

profile

f(x) = exp




4∑

j=1

Ljx
j


 . (27)

The coefficients Lj are determined so that the jet has spatial mean zero, unit spatial variance,

and spatial skewness S:

∫ x2

x1

xf(x) = 0 ,
∫ x2

x1

x2f(x) = 1 ,
∫ x2

x1

x3f(x) = S (28)

(and L4 < 0 ensures the jet is spatially localised). Plots of f(x) for S = 0 and S = 1 are
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presented in Figure 1. The analysis above predicts that the leading EOFs for sλ = 0 will be:

∣∣∣E(1)
〉

=
1

N1




4∑

j=1

jLjx
j−1


 exp




4∑

j=1

Ljx
j


 (29)

and

∣∣∣E(2)
〉

=
1

N2




4∑

j=2

j(j − 1)Ljx
j−2 +




4∑

j=1

jLjx
j−1




2

 exp




4∑

j=1

Ljx
j


 . (30)

Plots of
∣∣∣E(1)

〉
and

∣∣∣E(2)
〉

for S = 0 and S = 1 for h = 0.5 (a relatively large value selected

for illustrative purposes) as predicted from Eqns (29) and (30) are presented in Figure 2.

Not surprisingly, the jet asymmetry results in EOF patterns that are themselves asymmetric,

although
∣∣∣E(1)

〉
remains identifiably dipolar. The leading EOFs were also computed directly

from a numerical simulation of the fluctuating jet; these EOFs (also presented in Figure 2)

agree very well with the theoretically predicted structures. The envelopes of the numerically

simulated EOFs are somewhat wider than those of the theoretical EOFs, reflecting the fact

that h2 = 0.25 is not strictly much less than one. As h is reduced, the simulated and

predicted EOF patterns (not shown) become indistinguishable.

It is clear from Eqn. (26) that the effect of a skewed distribution of λ is to mix the

vectors |f1〉 and |f2〉 in the EOFs of u(x, t), although this effect is only of order O(h). The

effects of skewness in λ will be considered further in Section 6.1.

5 Fluctuations in Width Alone

We now turn our attention to a jet which fluctuates in width alone:

u(x, t) = U0f [x(1 + vη)] . (31)

We can then write

u(x, t) =
∞∑

j=0

U0(xv)jηj

j!

djf

dxj
, (32)
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or

|u〉 =
∞∑

j=0

U0v
jηj

j!
Nj |Fj〉 . (33)

It follows that

E {|u〉} =
∞∑

j=0

U0v
jE {ηj}
j!

Nj |Fj〉 , (34)

so

|u′〉 = |u〉 − E {|u〉} =
∞∑

j=1

U0v
j (ηj − E {ηj})

j!
Nj |Fj〉 (35)

and

C =
∞∑

j,k=1

U2
0 v

j+kmjk

j!k!
NjNk |Fj〉 〈Fk| , (36)

where

mjk = E
{
ηj+k

}
− E

{
ηj
}

E
{
ηk
}
. (37)

Thus, to O(v4)

C ' U 2
0 v

2N 2
1 |F1〉 〈F1|+

U2
0N1N2v

3sη
2

(|F1〉 〈F2|+ |F2〉 〈F1|) (38)

+v4

(
N1N3(κη + 3)U 2

0

6
|F1〉 〈F3|+

N 2
2 (κη + 2)U 2

0

4
|F2〉 〈F2|+

N1N3(κη + 3)U 2
0

6
|F3〉 〈F1|

)
,

where sη and κη are respectively the skewness and kurtosis of width fluctuations. To O(v2)

the leading EOF structure is |F1〉, with associated eigenvalue µ(1) = U2
0N 2

1 v
2. In contrast

to the case of fluctuations in position alone, we cannot conclude for the case sη = 0 that

the second EOF of fluctuations in width alone is given by |F1〉, as in general 〈F1|F2〉 6= 0.

Instead, the second and higher-order EOFs will necessarily be mixtures of the functions |Fj〉.

Only for the leading EOF can the simple statement be made that (to leading order) it is

given by |F1〉. Note that for the symmetric Gaussian jet considered in Monahan and Fyfe

(2006), |F1〉 could be expressed as a linear combination of |f0〉 and |f2〉; such a decomposition

of |Fj〉 into a small number of |fk〉 will not be possible in general.
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For the asymmetric jet considered in Section 4, this computation predicts that the first

EOF should be

∣∣∣E(1)
〉

=
1

N1




4∑

j=1

jLjx
j


 exp




4∑

j=1

Ljx
j


 . (39)

Plots of
∣∣∣E(1)

〉
for v = 0.15 (both predicted and numerically simulated) are shown in Figure

3 for S = 0 and S = 1. As was the case for fluctuations in jet position alone, fluctuations

in width of the asymmetric jet lead to EOF structures that are themselves asymmetric.

Agreement between the predicted and simulated EOF structures is good, with the primary

difference being in the width of the envelope. As v is reduced, agreement between the

predicted and simulated EOFs improves.

6 Fluctuations in Both Position and Strength

Allowing for fluctuations in both position and strength,

u(x, t) = U0 (1 + lξ) f(x− hλ), (40)

we have

|u〉 =
∞∑

j=0

U0(−h)j(1 + lξ)λj

j!
Nj |fj〉 (41)

from which it follows that

|u′〉 = |u〉 − E {|u〉} =
∞∑

j=0

U0(−h)j [(λj − E {λj}) + l (ξλj − E {ξλj})]
j!

Nj |fj〉 . (42)

The covariance function is then given by Eqn. (24) with

mjk = E
{
λj+k

}
− E

{
λj
}

E
{
λk
}

+ l
[
2E
{
ξλj+k

}
− E

{
λj
}

E
{
ξλk

}
− E

{
ξλj

}
E
{
λk
}]

+l2
[
E
{
ξ2λj+k

}
− E

{
ξλj

}
E
{
ξλk

}]
. (43)

Note that moments of ξ of power higher than two do not affect the covariance structure (in

contrast to those of λ).
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6.1 Independent Fluctuations in Strength and Position

For the simplest case of independent fluctuations in strength and position, we have

mjk =





l2 j = k = 0

E
{
λj+k

}
− E {λj}E

{
λk
}

otherwise.

(44)

It follows that to O(h4), the covariance function is

C ' N 2
0U

2
0 l

2 |f0〉 〈f0|+N2
1U

2
0h

2 |f1〉 〈f1| −N1N2sλU
2
0

h3

2
(|f1〉 〈f2|+ |f2〉 〈f1|) (45)

+U2
0h

4

(
N1N3(κλ + 3)

6
|f1〉 〈f3|+

N2
2 (κλ + 2)

4
|f2〉 〈f2|+

N1N3(κλ + 3)

6
|f3〉 〈f1|

)
.

The EOFs will then be given by

|E〉 = α |f0〉+ β |f1〉+ γ |f2〉 , (46)

where (α, β, γ) is an eigenvector of the matrix

C =




N2
0U

2
0 l

2 0 N2
0U

2
0 l

2F02

−1
2
N1N2sλU

2
0h

3F02 N2
1U

2
0h

2 −1
2
N1N2sλU

2
0h

3

1
4
N2

2 (κλ + 2)U 2
0h

4F02 −1
2
N1N2sλU

2
0h

3 1
4
N2

2 (κλ + 2)U 2
0h

4




, (47)

where

F02 = 〈f0|f2〉 (48)

and the matrix (47) is not symmetric as the basis set is non-orthogonal.

In the case that the pdf of λ is symmetric so that sλ = 0, then the even and odd sectors

of this covariance matrix decouple and to leading order in h, |f1〉 is an eigenfunction with

eigenvalue µ(1) = N2
1U

2
0h

2. The other two eigenfunctions will then take the form

|E〉 = α |f0〉+ γ |f2〉 , (49)
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where (α, γ) is an eigenvector of the matrix

C =




N2
0U

2
0 l

2 N2
0U

2
0 l

2F02

1
4
N2

2 (κλ + 2)U 2
0h

4F02
1
4
N2

2 (κλ + 2)U 2
0h

4


 . (50)

These other leading EOFs will therefore be hybrids of |f0〉 and |f2〉, with eigenvalues

µ± =
N2

0U
2
0 l

2

2

(
1 + δ ±

√
(1 + δ)2 − 4(1− F 2

02)δ
)
, (51)

where

δ =
(κλ + 2)N 2

2

4N2
0

h4

l2
(52)

(for a jet with Gaussian profile and Gaussian fluctuations, δ = 3h4/8l2; cf. Monahan and

Fyfe (2006, 2008)). The degree of hybridisation will depend on the inner product F02 and the

size of the ratio δ. Thus, the three leading EOFs will be given by |f1〉 and the hybrids
∣∣∣E(±)

〉

of |f0〉 and |f2〉 - with ordering
(
|f1〉 ,

∣∣∣E(+)
〉
,
∣∣∣E(−)

〉)
or
(∣∣∣E(+)

〉
, |f1〉 ,

∣∣∣E(−)
〉)

, depending

on δ and F02.

As an illustration of how skewness in λ influences the EOF structure, consider a jet with

symmetric profile

f(x) = exp

(
−x

2

2

)
(53)

with independent fluctuations in position and strength. Fluctuations in λ are assumed to be

skewed, with a centred Weibull distribution:

p(λ; a, b, c) =





b
a

(
λ−c
a

)b−1
exp

(
−
(
λ−c
a

)b)
λ > −c

0 λ ≤ −c
(54)

of mean zero, unit variance, and skewness sλ (this pdf is selected as an illustrative example

of a skewed distribution). As discussed in Monahan (2006), the skewness of this pdf is a

function of the shape parameter b alone; for b ' 3.6, the pdf is approximately Gaussian. For
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the jet profile Eqn. (53) we have

N0 = π1/4 , N1 =

√√
π

2
, N2 =

√
3
√
π

4
, (55)

and F02 = −1/
√

3. Thus, Eqn. (47) predicts that the leading three EOFs will have coeffi-

cients (α, β, γ) given by the eigenvectors of the matrix

C =
√
πU 2

0




l2 0 − 1√
3
l2

1
4
√

2
sλh

3 1
2
h2 −

√
3

4
√

2
sλh

3

−
√

3
16

(κλ + 2)h4 −
√

3
4
√

2
sλh

3 3
16

(κλ + 2)h4




. (56)

The upper and lower panels of Figure 4 show respectively the first and second EOFs obtained

with h = 0.3 and l = 0.185 (values selected for illustrative purposes) and position fluctuation

skewnesses sλ = 0, sλ = 0.75, and sλ = 1.5. In all cases, the first and second EOFs are

respectively a dipole and a monopole. As the skewness of λ increases, these structures become

increasingly asymmetric around x = 0 as |f1〉 mixes with |f0〉 and |f2〉. In particular, one

lobe of the dipole shrinks while the other strengthens, and the midpoints of both the dipole

and monopole move away from x = 0. As the skewness enters to third order in h while the

diagonal terms dominating the leading-order EOF are of second order in this small parameter,

the effects of skewness in position fluctuation on the leading two EOFs are relatively weak.

In this example the leading EOF remains recognisably dipolar; for the mixing of |f1〉 with

|f0〉 and |f2〉 to obscure the dipolar structure of the EOF the skewness of λ would have to

be very large.

6.2 Dependent Fluctuations in Strength and Position

To investigate the effect of statistical dependence of ξ and λ on the covariance structure of

u(x, t), consider the case in which strength and position fluctuations are both Gaussian and
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are perfectly correlated: i.e., λ = ξ. Then, to O(h2):

C ' N 2
0U

2
0 l

2 |f0〉 〈f0| −N0N1U
2
0 lh (|f0〉 〈f1|+ |f1〉 〈f0|) +N 2

1U
2
0h

2(1 + 2l2) |f1〉 〈f1| , (57)

so the EOFs are vectors mixing |f0〉 and |f1〉, with eigenvalues

µ(±) =
N2

0U
2
0 l

2

2

(
1 + ε(1 + 2l2)±

√
(1− ε(1 + 2l2))2 + 4ε

)
, (58)

where

ε =
N2

1h
2

N2
0 l

2
. (59)

The mixing of |f0〉 and |f1〉 in the EOFs will depend on the magnitude of ε. When this ratio

is very large or very small, the eigenvalues µ(±) will be well separated and |f0〉 and |f1〉 will

not be strongly mixed. For intermediate values of ε, the two eigenvalues µ(±) will be of the

same order of magnitude and the mixing will be more pronounced. In the case of a jet which

fluctuates in both strength and position, a mixing of the “dipole” structure |f1〉 with other

basis functions in the EOFs can be induced by either skewness in the position fluctuations

or coupling of the strength and position fluctuations.

7 Fluctuations in Both Position and Width

For a jet that fluctuates in both position and width:

u(x, t) = U0f [(x− hλ)(1 + vη)], (60)

we can write

|u〉 =
∞∑

j=0

U0(vηx− hλ− hvλη)j

j!
Nj |fj〉 . (61)

To leading order in h and v:

|u〉 ' U0N0 |f0〉+ U0N1vη |F1〉 − U0N1(hλ+ hvλη) |f1〉 . (62)
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It follows that

|u′〉 = |u〉 − E {|u〉} ' U0N1vη |F1〉 − U0N1(hλ+ hv[ηλ− cηλ]) |f1〉 , (63)

where cλη = E {λη} is the covariance of η and λ. Assuming for simplicity that fluctuations

in position and width are independent:

C = E {|u′〉 〈u′|} ' U 2
0N 2

1 v
2 |F1〉 〈F1|+ U2

0N
2
1h

2(1 + v2) |f1〉 〈f1| . (64)

In general, the vectors |F1〉 and |f1〉 will not be orthogonal:

〈F1|f1〉 = G11 6= 0. (65)

It follows that EOFs will take the form |E〉 = α |f1〉+ β |F1〉 where (α, β) is an eigenvector

of the matrix:

C =



N2

1h
2(1 + v2) N 2

1h
2(1 + v2)G11

N 2
1 v

2G11 N 2
1 v

2


 . (66)

That is, the “dipole” |f1〉 will not generally be an EOF of a jet that fluctuates in both position

and width unless: (1) the jet shape f(x) is symmetric about the jet axis, so by symmetry

G11 = 0, or (2) position fluctuations are much stronger than those of width h >> v, so the

dipole |f1〉 emerges the leading EOF while the second EOF is some orthogonal hybrid of |f1〉

and |F1〉.

As an example, consider the asymmetric jet given by Eqn. (27) with spatial skewness

S = 1. The leading EOFs obtained for v = 0.1 and h = 0.1, 0.2, and 0.3 are presented in

Figure 5. For the smaller value of h, variability is dominated by width fluctuations and the

leading EOF is |F1〉. As h increases, |F1〉 and |f1〉 mix: the leading EOF for h = 0.2 is a

hybrid of these two structures. As h increases further, position fluctuations dominate over

width and the leading EOF becomes the dipole |f1〉. Note once again that if the jet structure
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f(x) was symmetric then the width tripole and position dipole structures would not couple

in the EOFs. For a jet with independent fluctuations in position and width, the degree of

hybridisation of |F1〉 and |f1〉 depends on how strongly asymmetric the jet shape is and on

the relative magnitude of strength and position fluctuations.

The special case of fluctuations in both strength and width could also be considered (as

in Monahan and Fyfe (2006)), but the leading EOFs will mix |f0〉 and |F1〉 and not project

strongly along the dipole |f1〉. We thus now turn to the general case of fluctuations in all

three kinematic degrees of freedom.

8 Fluctuations in Strength, Position, and Width

For the general case of fluctuations in all of strength, position, and width, the covariance

matrix can be computed as in the special cases considered above. Rather than present the

full (very complicated) covariance matrix, the essential results of the analysis can be obtained

from a qualitative discussion making use of the results of the previous sections. The basis

vectors entering the state vector to leading order in the small parameters l, h and v will be

|f0〉, |f1〉, |f2〉 and |F1〉; note that |f1〉 is orthogonal to the vectors |f0〉 and |f2〉, but it is

not orthogonal in general to |F1〉. Building the covariance matrix from this leading-order

expansion of the state vector demonstrates that the following factors influence the degree

to which the “pure” dipole |f1〉 arises as an EOF of the variability: (i) the skewness of jet

position fluctuations, (ii) the dependence of position fluctuations on either width or strength

fluctuations, and (iii) the relative strength of position and width fluctuations. This analysis

also indicates that asymmetric dipole EOFs can arise due to either asymmetries in the jet

shape f(x) or through mixing of |f1〉 with other basis functions in the EOFs. In particular,
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a symmetric jet can generate asymmetric dipole EOFs if fluctuations in position are skewed

or coupled to fluctuations in strength or width.

9 Conclusions

This study generalises the analysis of Monahan and Fyfe (2006), providing an analytic char-

acterisation of the leading EOFs of a localised jet of arbitrary (smooth and localised) struc-

ture f(x) with fluctuations in strength, position, and width of arbitrary distribution. Gen-

eralisations of the central conclusions of Monahan and Fyfe (2006) listed in the Introduction

have been obtained:

1. A small number of basic shapes contribute to the leading order EOFs, corresponding

to successive derivatives of the jet shape function djf/dxj and products xj djf/dxj.

These basis functions and the EOFs are not generally either symmetric or antisym-

metric around the jet axis. Basis functions produced by even and odd derivatives are

orthogonal, but the even derivative basis functions are not mutually orthogonal (and

similarly for the odd derivative basis functions). No simple orthogonality relationships

exist among the functions xj djf/dxj.

2. The leading EOF structures corresponding to a jet fluctuating in one of strength,

position, or width individually can be computed and for unskewed fluctuations are

respectively f(x), f ′(x), and xf ′(x). These EOF structures will be modified if the

fluctuations in position or width are skewed, but are insensitive to the shape of the pdf

of strength fluctuations.

3. If the jet fluctuates in more than one kinematic degree of freedom, the “dipole” struc-

ture f ′(x) arises as a distinct EOF mode as a result of fluctuations in jet position (as
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the leading EOF if fluctuations in position are sufficiently large compared to those

in strength and width), provided the position fluctuations are not strongly skewed

or dependent on strength or width fluctuations. However, the associated Principal

Component time series mixes together variability in strength, position, and width: the

“zonal index” mode cannot be uniquely associated with a single kinematic jet degree

of freedom.

4. The EOFs associated with individual degrees of freedom are not generally orthogonal,

and may be mixed when more than one degree of freedom is active.

Furthermore, it is clear that asymmetric jet EOFs can arise as a consequence of an asym-

metric jet shape, skewed position or width fluctuations, or coupling of position fluctuations

with other kinematic degrees of freedom.

Returning to the question posed in the title, this analysis has demonstrated that to the

extent that a variable jet can be described as a basic localised functional form f(x) with

a single extremum (so f ′(x) changes sign only once) that fluctuates in strength, position,

and width, the factors which influence the extent to which a dipole-like structure will arise

as an EOF are: (i) the skewness of position fluctuations, (ii) the dependence of position

fluctuations on strength and width fluctuations, and (iii) the relative strength of position

and width fluctuations. In particular, the leading EOF will be a dipole if jet position fluctu-

ations are not strongly skewed, not strongly dependent on position and width fluctuations,

and sufficiently large relative to strength and width fluctuations. That these conditions

appear to be characteristic of the tropospheric zonal-mean eddy-driven jets in observations

and models (e.g. Fyfe and Lorenz, 2005; Monahan and Fyfe, 2006) explains the ubiquity

of dipolar zonal-mean zonal wind EOFs in these systems. As jets are generic features of
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flow on rotating spheres, to the extent that these jets can be characterised as a basic shape

displaying fluctuations in strength, position, and width the results of this study are relevant

to characterisation of variability in the middle atmosphere, in the ocean, and in the atmo-

spheres of other planets. Finally, the present study reinforces in a more general context a

central conclusion of Monahan and Fyfe (2006): in the troposphere, the dipole EOF arises

due to variability in jet position, but its associated PC time series also carries information

about strength and width fluctuations. The statistical analysis provides a picture of the jet

dynamics, but an incomplete one: as through a PCA, darkly.
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Appendix: Notation

For notational convenience, we adopt the “bra-ket” notation for vectors common in quantum

mechanics (e.g. Cohen-Tannoudji et al., 1977). A function f(x) can be considered as a vector

|f〉 (denoted the “ket”) in a vector space H. The “transpose” of this vector (technically the

corresponding element in the dual space of linear functionals; Cohen-Tannoudji et al. (1977))

is written as 〈f | (denoted the “bra”). The inner product of the vectors |f〉 and |g〉 is given

by the “bracket” (thus the terms bra and ket)

〈f |g〉 =
∫ x2

x1

f(x)g(x) dx. (67)

The “dyadic product” A = |f〉 〈g| defines an operator: acting on any vector |e〉:

A |e〉 = |f〉 〈g|e〉 = f(x)
∫ x2

x1

g(x)e(x) dx. (68)
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Figure Captions

Figure 1: Jet shape function f(x) for spatial skewness (Eqn. 28) S = 0 (black curve) and

S = 1 (gray curve).

Figure 2: EOFs of a jet with Gaussian fluctuations in position alone (grey curves:

predicted; black curves: numerically simulated) with h = 0.5 for spatial skewness S = 0

and S = 1. Leftmost two panels: first EOF
∣∣∣E(1)

〉
. Rightmost two panels: second EOF

∣∣∣E(2)
〉
. The dashed lines in the second and fourth panels are respectively the first and

second EOF patterns for the symmetric jet (S = 0).

Figure 3: Leading EOF
∣∣∣E(1)

〉
of a jet with Gaussian fluctuations in width alone (grey

curves: predicted; black curves: numerically simulated) with v = 0.15 for spatial skewness

S = 0 and S = 1. In the right-hand panel, the dashed line is the simulated EOF structure

for S = 0.

Figure 4: EOFs of a symmetric jet with Gaussian strength fluctuations (l = 0.185) and

skewed position fluctuations (h = 0.3) (grey curves: predicted; black curves: numerically

simulated) for skew(λ) = 0, 0.75, and 1.5. In the second and third columns, the dashed line

is the simulated EOF pattern for skew(λ) = 0. Upper panels: first EOF
∣∣∣E(1)

〉
. Lower

panels: second EOF
∣∣∣E(2)

〉
.

Figure 5: Leading EOF
∣∣∣E(1)

〉
of an asymmetric jet (with spatial skewness S = 1) with

Gaussian fluctuations in both width (v = 0.1) and position (h = 0.1, 0.2, 0.3); (grey curves:

predicted; black curves: numerically simulated) In the second and third panels, the dashed

line is the simulated EOF structure for h = 0.1.

23



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
f(x

)
 

 

S = 1
S = 0

Figure 1: Jet shape function f(x) for spatial skewness (Eqn. 28) S = 0 (black curve) and

S = 1 (gray curve).
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Figure 2: EOFs of a jet with Gaussian fluctuations in position alone (grey curves: predicted;

black curves: numerically simulated) with h = 0.5 for spatial skewness S = 0 and S = 1.

Leftmost two panels: first EOF
∣∣∣E(1)

〉
. Rightmost two panels: second EOF

∣∣∣E(2)
〉
. The

dashed lines in the second and fourth panels are respectively the first and second EOF

patterns for the symmetric jet (S = 0).
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Figure 3: Leading EOF
∣∣∣E(1)

〉
of a jet with Gaussian fluctuations in width alone (grey curves:

predicted; black curves: numerically simulated) with v = 0.15 for spatial skewness S = 0

and S = 1. In the right-hand panel, the dashed line is the simulated EOF structure for

S = 0.
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Figure 4: EOFs of a symmetric jet with Gaussian strength fluctuations (l = 0.185) and

skewed position fluctuations (h = 0.3) (grey curves: predicted; black curves: numerically

simulated) for skew(λ) = 0, 0.75, and 1.5. In the second and third columns, the dashed

line is the simulated EOF pattern for skew(λ) = 0. Upper panels: first EOF
∣∣∣E(1)

〉
. Lower

panels: second EOF
∣∣∣E(2)

〉
.
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Figure 5: Leading EOF
∣∣∣E(1)

〉
of an asymmetric jet (with spatial skewness S = 1) with

Gaussian fluctuations in both width (v = 0.1) and position (h = 0.1, 0.2, 0.3); (grey curves:

predicted; black curves: numerically simulated) In the second and third panels, the dashed

line is the simulated EOF structure for h = 0.1.
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