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ABSTRACT

In the present study, we have derived an expression
for transport coefficients such as viscosity, from the
equation of motion of dissipative particles. Inthe
concrete, we have shown the Fokker-Planck equationin
phase space, and macroscopic conservation equations
such as the equation of continuity and the equation of
momentum conservation. The basic equations of the
single-particleand pair distribution functionshave been
derived using the Fokker-Planck equation. The
solutions of these distribution functions have
approximately been solved by the perturbation method
under the assumption of molecular chaos. The
expression of the viscosity dueto dissipativeforces has
been obtained using the approximate solutions of the
distribution functions. Also, we have conducted
non-equilibrium dynamics simulations to investigate
theinfluence of the parameters, which have appearedin
defining the equation of motion in the dissipative
particle dynamics method.

1. INTRODUCTION

The hydrodynamic solution for a three-particle
system has to be combined into a simulation method in
order to take into account multi-body hydrodynamic
interactions among colloidal particles more precisely.
However, itishighly difficult even to solveanalytically
the flow field for athree-particle system [1,2], and,
therefore, it seemsto be almost hopel ess to obtain the

analytical solution for a non-spherical particle system
such as a system composed of rodlike particles. Thus,
we have a choice to take another approach to develop a
more precise simulation method for colloidal
dispersions. If both colloidal particles and solvent
molecules are simulated, we can obtain the particle
motion and the solution of the flow field
simultaneously. However, if moleculesthemselvesare
treated in simulations, we cannot devel op an effective
simulation method, since the characteristic timefor the
motion of colloidal paniclesis significantly different
from that of solvent molecules. In other words, this
kind of molecular-dynamics-like method is unrealistic
asasimulation technique of acolloidal dispersionfrom
a simulation time point of view. To circumvent this
difficulty, the concept of fluid particles seems to be
promising. Hoogerbrugge and Koelman [3,4] have
devel oped the dissipative particle dynamics method in
terms of fluid particles. In their theory, afluidis
regarded as being composed of such virtual particles,
and the flow field is solved by simulating these
particles. Thefluid particles interact with each other,
exchange momentum, and should make random motion
like Brownian particles. From now on, such fluid
particles are called dissipative particles.

For the simulation of the flow field for a colloidal
dispersion, the motion of colloidal particlesis
dependent on theinteraction between colloidal particles
themselves, the interaction between colloidal particles
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and dissipative particles, and the interaction between
colloidal particles and an applied field such as a
magneticfield. Hence, inthissimulation technique, the
solution of pair or three-body hydrodynamic
interactions is unnecessary to be combined into, in
order to simulate colloidal particles. Thisisin highly
contrast with the ordinary simulation methods such as
Stokesian dynamics methods [5-8]. Multi-body
hydrodynamicinteractionsamongcolloidal particlesare
automatically taken into account from the interactions
of colloidal particles with dissipative ones.

The present study attempts firstly to derive an
analytical expression of transport coefficients such as
viscosity using the equation of motion, secondly to
obtain thenumerical dataintermsof dissipative particle
dynamics simulations, and finally to compare the
simulation results with the analytical solutions.

2. DYNAMICSOF DISSIPATIVE PARTICLES
2.1. Kinetic Equation of Dissipative Particles

We concentrate our attention on particle i and
consider the forces acting on this particle. The
following three kinds of forces may be physically
reasonable as forces acting on particlei: arepulsive
conservative force F;© exerted by the other particles, a
dissipative force F;® providing a viscous drag to the
system, and a random or stochastic force F;? inducing
the thermal motion of particles. With these forces, the
equation of motion of particle i can be written as[9-
11]

YR RS ®
a & e e
in which misthe mass of particlei, v; isthe velocity,
and, concerning the subscripts, for example, F;©isthe
force acting on particle i by particle .

Now we have to embody specific forms of the
above-mentioned forces. It may be reasonable to
assume that the conservative force F;© dependsonly on
the relative position r;; (=r;-r;), and not on the particle
velocities. Anexplicit expression for thisforcewill be
shown later. Since the Galilean invariance has to be
satisfied, the dissipative force F;° and therandom force
F,;7 should not be dependent on the position r; and
velocity v, themselves, but should be functions of the
relative position r;; and relative velocity v;; (=v;-v)), if
necessarily. Additionally, it may be reasonable to
assume that the random force F;? does not depend on
the relative velocity but the relative position r;; alone.
Furthermore, we have to take into account the isotropy
of the particle motion and the decreasein the magnitude
of forces with particle-particle separation. The

following expressions for F;° and F;" satisfy these
physical requirements[9-11]:

Fil]? = 7’YWD(rij) (e” V”) e”' ) (2)

F i =owg(r)e, &, (©)

inwhich r;=|r;|, and g isthe unit vector denoting the
direction of particle i from particle j, expressed as
e;=r/r;. Also{;isarandom variable inducing the
random motion of particles and has to satisfy the
following stochastic properties:

(Gi0)=0, (GOG))=(8;8;+8;8;,)3-t). (4)

Thisvariablesatisfiesthe characteristic of thesymmetry
Gi; =G;i» which ensures that the total momentum of the
systemis conserved. The wp(r;) and wi(r;;) are weight
functions to reproduce the decrease in forces with
particle-particle separation, and y and ¢ are constants
specifying the magnitude of forces. These constants
can be related to the system temperature and friction
coefficient, which will be shown later.

Thesubstitution of Egs. (2) and (3) into Eq. (1) leads
to the following equation:

m% =) Fi(j:(rij) -3 YW (r) (8- Vi) §;

dt 0 eD) (5)

+_(Z) OWR(r;) ;G-
J(#1

If this equation isintegrated with respect to time over a
small time interval from t to t+At, then the finite
difference equations governing the particle motion in
simulations can be obtained as

Ar; =VAt, (6)

1
Avi==| 3Ry - 3 wo(ry) (6v;) € | At
m J(*i)l i(+1) 7
+Ej§) oWg(r,;) &;6,V/AL,
inwhich 0; has to satisfy the following stochastic
properties:

<9ij>:O, <eijei/j/>:(6ii/6jj/+6ij/6ji/)' (8)

2.2. Fokker-Planck Equation

We use the notation r; for the position vector of
particle i and v, for the velocity vector. Also, for
simplicity of expression, the vector v is used for
describing the velocity vectors of all the particles and
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similarly r” isfor the position vectors of all the
particles. If the probability that a particle position and
velocity are found within the range from (r *,v") to (r
+Ar”, v¥+Av?) is denoted by W(r ¥,v",t)dr “dv", then
the probability density function W(r V,v"t) satisfies the
following Fokker-Planck equation in phase space:

8W+ IJ
ot 4 v ar X.:XJ: m av
(i#))
DR AR ©

('*J)
1 1 0 0
+= — G4, e — e — | W.
B

(i#))

2.3. Final Expression of Equation of Motion and Its
Non-dimensional Form

If a system composed of dissipative particlesisin
equilibrium, then the equilibrium distribution W,,
becomes the canonical distribution for an ensemble
whichisspecified by agiven particlenumber N, volume
V, and temperature T. The equilibrium distribution W,
hasto satisfy the Fokker-Planck equation in phase space
in Eq. (9). Sincetheleft-hand side in EQ. (9) vanishes
for the substitution of W,,, the right-hand side also has
to become zero. Thisisaccomplished by the following
reguirements:

WD(rij) :Wé(rij) )

in which k is Boltzmann's constant.

F,;© (ry) is a repulsive force for preventing
unphysical excessive overlaps between particles, and
Wi(r;) hasto be set so that inter-particle forces decrease
with increasing particle-particle separations. These
requirements are satisfied by the following
exXpressions:

02 =2ykT, (20)

F *aWR(r e (11)

IJ’

1 —ﬁ for ry<r,
Wi(ry) = re ! (12)
0 for ry>r,
inwhich a isaconstant representing the magnitude of
the repulsive forces. By substituting these equations
into Egs. (6) and (7) with considering Eqg. (10), thefinal
non-dimensional expression for the equation of motion
of the dissipative particle dynamics can be written as

Ar; =Vv;At", (13)

AV, =a ZWR(rIJ)e”At vy WR(ru)(e., Vi) g At”

j(#1) j(#1) 14
+(2y)"2Y WR(r”)e GIJ\/E (14)

i(#)

in which
N 1Ty for rj<1,
wo(r) = 15
R( IJ) { 0 for rij>1, ( )
@ty (16)
kT (mkT)¥2

To non-dimensionalize each quantity, the following
representative values have been used: ( kT/m)* for
velocities, r, for distances, r (mVkT)* for time, (1/r.°)
for number densities, etc.

3. TRANSPORT EQUATIONS

If an arbitrary physical quantity A(r",v") is not
dependent on time explicitly, thetime average<A> can
be expressed, using the probability density function W
which satisfies Eq. (9), as

(A :ffAW(r NvNtdr Nav N, (17)
in which
ffW(r NvNtdrNavN=1. (18)

Hence, the time variation of <A> can be expressed,
fromEq. (9), as

2(A)szAﬂvdrNva < v, .9A

i or;
B ., 9A A
EXJ: m v, X.:E Woli) (87, & ov,  (19)
(i#) (i#))
1 1 0 0 0
s aoanlsdod 3
(i)
If Alisdefined by the following equation:
N
A:; ma(r -r,), (20)

then the average <A> which is evaluated from Eq. (17)
isequal to alocal density p(r). Thatis,

N
(A)—<z; mS(r—ri)>—p(r). (21)
If Aistaken as
N
A=Y mv3(r-r,), (22)
i-1

then the average <A> isnow
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(A =pMur), (23)

inwhich u(r) isamacroscopic fluid velocity.
Thesubstitution of Eq. (20) into Eq. (19) leadstothe
following expression:

0 0
= () =0, (24)

Thisis no other than the equation of continuity.
Next the substitution of Eq. (22) into Eq. (19) leads
to the following equation:

d _
E(PU)*
9 us(ror ) + . 9 (v5(r-r.
<2|: mv, ari(vi6(r r)) 2.:21: Fi aVi(V,5(r r))
(i)
PR PICRD {
| ]
(i)

_ZZ_G Wi, [ o ]eij

i Gy,
('*l)

A9 (wsr-r )) - 2 (v.s(r-
{aVi(viS(r r.)) aVj(v].a(r rj))}>.

d
& -a—Vi(viB(rri))}

(25)

Thus, by taking into account Eq. (2), Eg. (25) can be
simplified as

9 9
9 S Va(r-r.
at(pu) < p” {.Z mv,v,3(r rl)}
53> (F§+F5’)5(rri)>. (26)
)
By taking account of therelation F;,°=F;" g, (similarly,
for F;©), Eq. (26) canfinally be written as

—(p )——— (puu)+ — (@), 27)
in which

K= _<XI: m(vi—u)(vi—u)S(r—ri)>,

(28)
ZZ (Fy +Fy )e”e”fﬁ(r rovée;)de ).
(I*J)
If the equation of continuity in Eq. (24) istaken into

consideration, Eq. (27) reduces to the momentum
equation of the fluid:

ou auj o N
P( P Ug)ar (x+1Y), (29)

4. EXPRESSIONS FOR TRANSPORT
COEFFICIENTS
4.1. Distribution Functions

Thelocal number density n(r t) at positionr at time
t can be expressed using W(r™,vt) as[12]

n(r,t)—<i 3(r ri)>—f---fz (r-r )W(r NvN,tydr NavN
i=1 i
= Nf---fW(r,rz,---,r WV dr,dr dv,

Similarly, the pair correlation function g(r,r’,t) can be
written as[12]

9(r,r ) =— f fZZS(r r)8(r /= JW(r v t)dr Nav!
No
(l*l)
CNIN-D e o W Ddrdr dv,
7 [ i (31)

(30)

in which n, is the mean number density, given by n,
=N/V.
If thedistribution function f(r,v,t) isdefined as[11]

f(r,v,t) —<i S(r-r i)8(vvi)>,
i-1

f(r,v,t) can be written, using W(r¥v\t), as

(32)

f(rv,t) = Nf---f\/\/(r,rz,---,r NV V) dr dv,-dvy, . (33)

By comparing Eqg. (33) with Eqg. (30), it is seen that
thereis arelationship between f(r,v,t) and n(r,t):
n(r,t) = f f(r,v,t)av. (34)
Similarly,

n(r,Hu(r,t) = <2’|\‘: v.3(r-r i)>—fvf(r,v,t)dv. (35)

Next, if we define the pair distribution @ (r,r',v,
V') by the following equation [11]:

fOrr/ vv't)= <226(r r)3(r /=1 )3(v-v,)5(v/-v)

i=1i=1
(i+])
= N(N—l)f---fVV(r,r (PN SRRVAVLAVARIIRVAN 3o [JRETe/g's VAR VAR
(36)

then the pair distribution can be related to the pair
correlation function g(r,r’t) as

neg(r.r',b) :fff @(rr’v,v/ t)dvav’. (37)

It is clear from Eqg. (19) that the average of an
arbitrary quantity A(r™,v") can be evaluated using
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f(r,v,t) and f @(r,r’,v,v’,t) without obtaining the
expressionof W(r™vM,t). Hence, weherefirst show the
basic equationsfor f and f, and then solve analytically
the equations to obtain the approximate solutions.

If we set A=) 3(r-r)d(v-v,) in Eq. (19), and
reform the equation with the formulae of vector
operations, the following equation can be obtained:

if(r,v,t) - if(r,v,t)

v f fWD(R)RR _{(v v £O(rr+Rv,v/t)}dRdv’

a f(z)(r r+R,v,v/,t)dRdv’.

(38)

It has been assumed in deriving this equation that there
are no conservative forces. In Eq. (38), R isthe unit
vector, denoted by R=R/ |R|. Itisseenfrom Eq. (38)
that the pair distribution function f(r,r’,v,v’ t) is
necessary for obtaining the solution of f (r,v,t), and,
similarly, the multi-body distribution functions more
than the pair distribution is required to get the solution
of f @, Thisclearly shows that Eq. (38) is not closed,
but a hierarchy equation. To close the equation for f,
the following assumption of molecular chaos is
introduced [11]:

fOr,r/ v/ 1) =f(r v fr/ v/ ). (39)

This assumption theoretically enables us to solve the
equation of the distribution function. The substitution
of Eq. (39) into Eq. (38) leads to the following non-
dimensional equation:

if (revet) +v*-i
ot”

xf*(r*+R*v/" t )RR:
ov*

fr(revit *):y*no*fwa(R*)
{(v VY v )R v

+Y*n0*”wD(R ) (r +R* v/ t )RR

fr(r v t")dR"dv’",
oviov

(40)

in which the distribution function f has been non-
dimensionalized as f *=(Uny) (KT/m)¥*f. If we set

E=1/y'n, and assume & to be much smaller than unity,
the perturbation method is applicable. Hence, f"is
expanded, with the perturbation parameter &, as

f*(r*,V*,t *):fo*(r*,v*,t *)JrE_,fl*(r*,V*,t *)JrE_,Zfz*(r*,V*,t *)+(41)
By substituting this equation into Eq. (40) and

neglecting the higher-order terms, we can obtain the
following expression:

9 o
é{at* ° } éz{at } J[oel®)

><{fc?(r ROV +ER (r*+R*,v’*,t )}RR
v Y () B Y ) JR v
ov*
of wa(R*){fO*(r*+R*,v/*,t Y (R )RR

2
& fh v ) e ) R
ov'ov*

(42)

The equation for the zero-th order of & can
straightforwardly be solved as

f(rvt)n( )mexp{ =(v* u)} (43)

The equation for thefirst-order of & can be obtained as

a * a * kagiiag
fg +vi-—IF,; = [n"(r"+R"t )W, (R)RR
ot ° o / P
a { * * * * o\ gk 4ok *
:[ TR IN GRS dR".
ov*
(44)

If it isassumed that n'(r"+R’,t") (= n/ny) isindependent
of the position and is constant, and the integration is
carried out using the polar axis coordinates of R, then
Eq. (44) can be simplified as

I
—f+v —f (v -u)f(rvith
ot ar*O 3 |ov' { } 45)
0
ov* av
inwhich [w] isdefined as
1 1
W] = [wydR" = (W 4nR “dR". (46)
fros |

The left-hand side of Eq. (45) can finally be reformed,
by taking account of Eq. (43), as

t
I ARV A NVRTR {a *+(iu*] } (47)

at* ar* 2° or* or*

in which the notation U”, defined by U= (v'-u’), has
been used. Also, the superscript t means a transposed
tensor. The solution of Eq. (45) can straightforwardly
be seen to be the following expression:

Copyright © 2004 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1 -{u*u*fo* —%U*Zfo*l }

t (48)
I B
3 ()]

We now have obtained the zero-th and first order
solutions of f*:

fr=fy +&f) (49)

4.2. Viscosity due to Dissipative For ces
With the following Taylor series expansion of the
Dirac deltafunction:

S(r—r.+§e.):S(r—r.)+§e.-i8(r—r.)
. (50)
—é i i 8—8—5(r r)+:

the stresstensor dueto dissipative forces can bewritten
as

g :% < XP Xl: W (1) (8 Vi) &1y O(F _ri)>
(i#]) (51)
%ai <2': 2': W) (8 Vi) €7 T S(r 1) | + -
(i)
The second term on theright-hand side in this equation

isnegligibleunlessthereisasignificant non-uniformity
of the system. Equation (51) is, therefore, rewritten as

D* *2 * /%
T :_n0 [ [RWwo(R* ¥R (v v/ IRR 2
><f(2) (rr=+R=v=v/ t")dRdv*dv’".
By the assumption of molecular chaos, written in Eq.
(39), with Eq. (49) for f *, the expression for f@* can
be written as
fFO(rer vt =f, (vt (r v

= A (AR B ) AN (EARVIAR B (53)
SR (RARVEAR B | A (VAR B B A (VAR B R AN (SARVIAR SO B
By evaluating Eq. (52) with Eq. (53), the expression for
t”" can be obtained. After some mathematical
manipulation, the expression for T can finally be
obtained as

07 = 'Yno [R 2W] { +( 0 *)t} (54)
ar’ ar’

Hence, the expression for the viscosity n”" due to
dissipative forces can be written as

)
AL . 2T 2 .,

= R*2w] = N, v*. 55

n ) [ | 1575 © Y ( )

5. EVALUATION OF VISCOSITY BY
SIMULATIONS

The Green-Kubo expressions for transport
coefficients are widely used for evaluating them for a
molecular system by means of molecular simulations.
The viscosity is evaluated from the integration of the
mean values of the correlation function [12,13]:

nw:ﬁ [(3,03,0)et, (56)
0
in which

N
It = Z {mv, (v, (0 Y, (OF ()}

(57)
- Z mv”(t)le(t) Z Z yu(t)Fux(t)

i=1 j=1
@i<j)

and F;;, isthe x-component of the force vector F;.

The theory of the non-equilibrium molecular
dynamics method [13] for a molecular system is
applicable to the present case, if asimple shear flow is
considered asaflow field. Inthiscase, theviscosity n,,
isevaluated from the following equation in simulations
[12,13]:

1
My~ _7.}', JVX he’ (58)

inwhichy isthe shear rate, <J,,> isthetime average
of J,, under circumstances of a simple shear flow,
which is assumed to act in the x-axis direction.

6. RESULTS

Figures 1 shows the influence of thevaluesof " on
the viscosity, which were obtained by the non-
equilibrium dynamics method. Similar results are
shown in Figs. 2, which were obtained from the Green-
Kubo expression by means of equilibrium
simulations.

It is seen from Fig.1 that the results obtained by the
non-equilibrium dynamics simulations are in good
agreement with the theoretical solutions shown in Eqg.
(55) for both casesof a'=y’/10 and o' =y". However, for
the cases of small number densitiessuchasn,’=0.5, the
simulation resultshavesignificant errorsand, therefore,
qualitative properties are relatively difficult to be
notified. That the number density n,” is smaller than
unity meansthat asufficiently large number of particles
do not exist around an arbitrary particlewithin therange
of theradiusr,fromits center. In thissituation, the
accuracy of the viscosity datais strongly dependent on
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whether or not there are other particles which interact
with the particle of interest. Hence such a situation
causes significant errors of the simulation results of
viscosity, which hasbeen seenfor n,’=0.5inFig.1. We
may conclude from this fact that it is desirable to take

the number density as n,"»1.0 in simulating a flow
problem by means of the dissipative particle dynamics
method. Itisclearly seen from Fig. 2 that the simulation
results of n””', which were obtained by the Green-K ubo
expression, aresignificantly smaller thanthetheoretical

solutions. This dependence becomes more significant
with increasing the values of number density. As
shown before, the viscosity due to dissipative forcesis
evaluated by the integral of the average of the time
correlation according to the Green-Kubo method. Inthe
dissipative particle dynamics method, since random
forces are included in the equation of motion and,
therefore, have influence on the motion of dissipative
particles, the time correlation of dissipative forces are
presumed to decrease more significantly with timethan

in the case of no random forces. We may conclude that
this causes more significant discrepancy between the
simulation and theoretical results with increasing the
values of number density.

7. CONCLUSIONS

In order to investigate the validity of the dissipative
particle dynamics method, which is a mesoscopic
simulation technique, we have derived the expression
for transport coefficients such as viscosity, from the
eguation of motion of the dissipative particles. Inthe
concrete, we have shown the Fokker-Planck equationin
phase space, and macroscopic conservation equations
such as the equation of continuity and the equation of
momentum conservation. The basic equations of the
single-particle and pair distribution functionshave been
derived using the Fokker-Planck equation. The
solutions of these distribution functions have
approximately been solved by the perturbation method
under the assumption of molecular chaos. The
expression of theviscosity dueto dissipativeforces has
been abtained using the approximate solutions of the
distribution functions. Also, we have conducted
non-equilibriumdynamicssimulationstoinvestigatethe
influence of the parameters, which have appeared in
defining the equation of motion in the dissipative
particle dynamics method. The results obtained here
are briefly summarized as follows. The theoretical
values of the viscosity due to dissipative forces arein
good agreement with the simulation results obtained by
the non-equilibrium dynamics method, except in the
range of small number densities. The results obtained

from the Green-Kubo expression by equilibrium
simulationsaresignificantly smaller than thetheoretical
Oones.
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FIG. 1 Influence of y" on viscosity due to dissipative forces obtained by non-equilibrium dynamics method: (a) for o'=
v'110 and (b) for a'=vy" (Error bars: Ch?®, =+(5.2, 1.5) for n, %" =(10000,1000), respectively, for n,” =10, (1.5, 0.32)

for n,%y" =(1000,100), respectively, for n,” =3.16, and +(0.049, 0.022) for n,>y" =(25,2.5), respectively, for n,” =0.5, in
Fig. 1(a); similar errorsareincluded in Fig.1(b) ).
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FIG. 2 Influence of y* on viscosity due to dissipative forces obtained by Green-Kubo expression: (a) for o'=y" /10 and
(b) for «’=y" (Error bars: bh®, =+(0.015,0.0033) for n,%y" =(10000,1000), respectively, for n, =10, +(0.0052,0.00055)

for n,">y" =(1000,100), respectively, for n,” =3.16, and +(0.00012, 0.000016) for n,?y" =(25,2.5), respectively, for n,
=0.5, in Fig. 2(a); similar errors are included in Fig.2(b) ).
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