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Perfused Phantom Models of 
Microwave Irradiated Tissue 
The theoretical basis, practical design considerations, and prototype testing of a per­

fused model suitable for simulation studies of microwave heated tissue are 
presented. A parallel tube heat exchanger configuration is used to simulate the inter­
nal convection effects of blood flow. The global thermal response of the phantom, 
on a scale of several tube spacings, is shown theoretically to be nearly identical to 
that predicted by Pennes' bioheat equation, which is known to give a reasonable 
representation of tissue under many conditions. A parametric study is provided for 
the relationships between the tube size, spacing and material properties and the 
simulated perfusion rate. A prototype with a physiologically reasonable perfusion 
rate was tested using a typical hyperthermia applicator. The measured thermal 
response of the phantom compares favorably with the numerical solution of the 
bioheat equation under the same irradiation conditions. This similarity sheds light 
on the unexpected success of the bioheat equation for modeling the thermal response 
of real tissue. 

Introduction 

The use of electromagnetic tissue-equivalent physical 
materials, called phantoms, is well established in hyperthermia 
research for estimating the power deposition patterns in 
treated tissue. In this paper a "dynamic" phantom is de­
scribed that has microwave absorption and thermal diffusion 
properties that are both similar to those of living tissue and 
convective heat clearance properties similar to that modeled in 
the bioheat transfer equation (BHTE) [1] 

/IT1 

V'(ktVTt)-Wb(Tt-Ta)+qt = ptct-^- (1) 

where T, is the local average tissue temperature, k, is the tissue 
thermal conductivity, Wb is a perfusion rate dependent 
parameter, Ta is the arterial supply temperature (generally 
assumed to be constant), q, is the volumetric heat generation 
rate, p, is the effective density of the tissue, c, is the effective 
specific heat of the tissue and t is the time. We chose this for­
mulation because it qualitatively describes tissue reasonably 
well and it provides an adjustable parameter Wb that has been 
identified with the blood perfusion rate in real tissues [2, 3]. 

Despite its apparent empirical success, the BHTE has been 
criticized on theoretical grounds. Originally the heat sink term 
in the BHTE was assumed to arise from the thermal equilibra­
tion of the blood in the capillary bed with the surrounding 
tissue. Recent studies, that rigorously relate the blood-tissue 
heat transfer to the vascular organization in tissues, have 
shown that blood thermally equilibrates in relatively large 
countercurrent vessels [4, 5]. They suggest that the BHTE 
seems to work only because it provides enough adjustable 
parameters to fit the available data. 

The present phantom model has a flow geometry quite dif­
ferent from the microcirculatory geometry in tissue, yet is 

closely described in its thermal response by the BHTE. The 
model helps provide insight into the apparently surprising suc­
cess of the BHTE. 

Description of the Phantom 

The phantom consists of a solid matrix of electromagnetic 
tissue-equivalent material in which a parallel array of tubes is 
embedded (Fig. 1). Water passed rapidly through these tubes 
can simulate the convective cooling effects of the blood perfu­
sion in tissue. The matrix itself has bulk electrical and thermal 
properties that are similar to those of tissue. Since the fraction 
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Fig. 1 Configuration of tubes in the phantom. Tubes are arranged in a 
parallel array on equilateral triangular centers. 
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Fig. 2 Region adjacent to a typical tube. The local average temperature 
is the area average of the shaded region. 

of the total volume occupied by the tubes is only a few per­
cent, the bulk properties of the model are little affected by 
their presence. 

We will demonstrate that heat clearance in the phantom is 
closely approximated by a relation analogous to the BHTE 

V . ( * , V Tp)-Wp(Tp-T0)+qp 
dTp 

dt 
(2) 

where Tp is the local average phantom temperature, kp is the 
matrix conductivity (matched to that of tissue), Wp is the 
strength of the heat sink per unit volume per unit temperature 
elevation (matched to Wb) and T0 is the cooling water 
temperature (matched to Ta). A high coolant flowrate can 
assure that the coolant will remain at an essentially constant 
temperature along the length of the tubes. (Subsequently, all 
temperatures will be referenced to T0 or Ta as appropriate.) 
The difference between the reference temperature and the 
local temperature in the solid matrix will simulate the dif­

ference between the tissue and arterial temperatures in the 
BHTE. 

Two length scales exist in the phantom: the local scale, that 
applies to the region from a particular tube to the midpoint 
between tubes, and the global scale, pertaining to distances of 
several tube spacings. In use, the phantom will have 
temperature sensors located only between the tubes, so we 
consider the local average temperature in equation (2) to be 
defined as 

A L TdA (3) 

where A is the area of the hexagonal region around a tube less 
the area of the tube (Fig. 2). (The hexagonal boundary results 
from symmetry due to the equilateral triangular pattern of 
tubes.) The averaging in equation (3) takes place over only the 
region from the outside of the tube to the outer boundary of 
the local region; the region inside the circle of radius r0 has 
been excluded. 

There are some important differences between the phantom 
and a system that exactly satisfies the BHTE. In the BHTE the 
rate at which heat is drawn into the arterial temperature heat 
sink is proportional to the blood perfusion rate and the 
temperature elevation. In contrast, in the phantom the rate of 
heat removal by the coolant tubes depends on the thermal 
resistance between the coolant in the tubes and the solid 
matrix. As long as the flowrate is high enough to avoid 
temperature increases in the direction of flow the simulated 
perfusion rate is independent of the flowrate and depends only 
on the dimensions and material properties of the tubes and 
matrix. 

Design Analysis 

To demonstrate similitude between the phantom and the 
BHTE we must show that the heat sink is isotropic and that 
Wp can be determined from the tube spacing, tube diameter, 
tube wall thickness and thermal properties. The isotropic 
nature of the heat sink might seem surprising in view of the 
directional flow of coolant in the tubes, but will be shown to 

N o m e n c l a t u r e 

A = area of hexagonal region 
around tube k, = 

a„,a„' = constant coefficients of 
separation of variables ktube = 
solution 

b„,b„' = constant coefficients of kw = 
separation of variables 
solution L = 

cb = specific heat of blood m = 
cp = specific heat of phantom Nu = 

material Q = 
c, = specific heat of tissue being 

simulated qp = 
cw = specific heat of water 

G(t) = function of t alone from q, = 
separation of variables 

g = acceleration of gravity R(r) = 
H = equivalent heat transfer 

coefficient based on outer r = 
radius of tube 

h = heat transfer coefficient in- /•,• = 
side tube r„ = 

J„(r) = Bessel function of first kind rs = 
order n argument r 

kp = thermal conductivity of Ta = 
phantom material 

of 

of 

of 

thermal conductivity 
tissue being simulated 
thermal conductivity 
tube 
thermal conductivity 
water 
length of tube 
mass flowrate per tube 
Nusselt number 
volume flowrate of water 
per tube 
volumetric heat generation 
rate in phantom 
volumetric heat generation 
rate in tissue 
function of r alone from 
separation of variables 
radial coordinate measured 
from center of tube 
inner radius of tube 
outer radius of tube 
radius of symmetry be­
tween tubes 
arterial supply temperature 
in tissue 

T0 = temperature of heat sink in 
phantom 

Tp = local average temperature 
in phantom 

Tt = tissue temperature 
t = time 

Wb = perfusion rate-dependent 
heat sink strength in tissue 

wb = perfusion rate in tissue 
Wp = heat sink strength in 

phantom 
x = coordinate normal to tubes 

and to .y-axis 
Yn (r) = Bessel function of second 

kind order n argument r 
y = coordinate normal to tubes 

and to x-axis 
Z(z) = function of z alone from 

separation of variables 
z = coordinate parallel to tubes 
a = thermal diffusivity 
/3 = eigenvalue 
6 = azimuthal position with 

respect to tube 
v = kinematic viscosity of water 
p = density of water 
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be a close approximation when the flowrate is high in the 
tubes. 

To simplify the analysis, the BHTE and the phantom equa­
tion will be considered term by term in the following four 
parts: 1) the steady-state balance of the heat generation 
term with the heat sink in the absence of diffusion; 2) the 
steady-state balance of conduction in the direction transverse 
to the tubes with the heat sink; 3) the steady-state balance of 
conduction in the direction parallel to the tubes with the heat 
sink; 4) and the transient balance of the sensible energy 
storage term and the heat sink. Complications arising from 
boundary and initial conditions are avoided by assuming that 
the heated region is small compared to the total volume of the 
model and that the initial temperature is uniform throughout 
the phantom. Each part of the equation will yield an estimate 
of Wp that will later be shown to be nearly identical despite 
their different mathematical forms and physical origins. 

1 Heat Generation. The first consideration is the balance 
of the heat generation and blood heat sink terms. Physically, 
this corresponds to a situation in which heat is generated 
uniformly throughout the medium and is removed by the 
nearest tube. If the heat generation rate is a constant (q0) 
throughout a tissue and no large-scale conduction takes place, 
the BHTE predicts a steady-state temperature elevation of 
q0/Wb. 

We now consider how the local average temperature in the 
phantom can be made equal to this temperature. Symmetry re­
quires that the hexagonal boundary around a typical tube as 
shown in Fig. 2 be adiabatic. Approximate analysis of this 
geometry can be carried out by replacing the hexagon by a cir­
cle of equal area (rs = 1.907/s) so that the total heat generated 
in the phantom is accounted for. 

The simulated perfusion rate for this case (Wpl) is found by 
solving the heat conduction equation in cylindrical 
coordinates 

cPT 1 dT Qo 

dr2 r dr 

subject to the boundary conditions 

dT 

= 0 

dr 
= 0 

HT(r0)=kB 
dT 

~dV 

(4) 

(5a) 

(56) 

The convection condition at the tube wall (equation (5b)) is 
based on an effective convection coefficient that includes ef­
fects from the thermal resistance of the tube wall and that be­
tween the tube wall and the mixed mean temperature of the 
coolant. The condition at the inside wall of the tube is 

Nufc,„ 
T(n)=ku 

dT 
(6) 

2 r ; dr lr=r; 

where the Nusselt number Nu is Ir^/k^ and assumed equal to 
48/11 for the design analysis. This corresponds to the case 
when the heat flux is uniform along the length of the tube [6]. 
The thermal resistance of the tube wall can be added in series 
to that of the coolant to give the effective convection 
coefficient 

Hj^+^i±\y (7) 
\-Nukw ktubs \ r-, / J 

The solution of the foregoing boundary value problem is 

(8) 

The local phantom temperature T„ is found from the integral 

Heated Region Unheated Region 

O O O O O 

O O O O 

O O O O 
T=(19) 

o o o 

o o o o 

o o o o 

Fig. 3 Conditions for transverse conduction 

2 
T =-1 p 

which yields 

T q° W° 
P W - 2 - 2\ [V 

T(r')r'dr' (9) 

K(r2-r2) 

r0kp r / rs V 
1H L\ r„ / 

ff'') tar0)(/-/-r0
2) 

r L r * -/•*"> 
^ - ( r / I n r , - V l n r 0 ) + - 2 - r ^ J 

(10) 

This provides a local temperature increase from which, by 
comparison with that obtained from the BHTE, the simulated 
perfusion rate can be obtained. 

2 Transverse Conduction. When there is a global 
temperature gradient normal to the tubes, the phantom must 
remove heat at a rate WbTt = WplTp if it is to match the 
BHTE. We analyze this condition by considering the heat 
removed by a tube outside of the region of heat generation 
(Fig. 3). In general, the temperature at rs is a function of the 
aximuthal position. 

To evaluate Wp2 we solve Laplace's equation in cylindrical 
coordinates with both angular and radial dependence 

d2T(r,6) 1 dT(r,6) 1 d2T(r,6) 

dr2 

subject to 
dr 

T(r„6)=AB) 
dT I 

HT(r0,d)=kp-—\ 
dr \r = r„, 

3d2 = 0 (11) 

(12a) 

(126) 

with T(r, d) periodic with period 27r. If we assume that T(r, 6) 
= 9„ (d)R„ (r), equation (11) separates into two ordinary dif­
ferential equations 

d2 I d v2 

-rTR(r)+ — mr)+—r 
dr r dr r 

R(r)=0 

and 

cPQ(e) 

dd2 + e2G(0)=O 

(13a) 

(136) 

The general solution will have the form 

T(r,d)=a0 + a'0\nr+ J ] (a„r2m +a'„r-2m) 
n = l 

(6„cos(27rrt0) +b'„sm(2Tm8)) (14) 
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Fig. 4 Conditions for axial conduction 

where the an,a'n,b„, and b'„ are constants determined by the 
boundary condit ions. The local average temperature in the 
solid matr ix is 

1 P rs P 2 l 

Tp= , . 2 1 T(r,6)rdrdd p ir(r2-r2
0) Jr=r0 Je=o 

Substituting equat ion (14) and integrating gives 

a'a [r$nrs-r
2
0\nr0-] 

Tp=a0-~ + a0[ r]_rl J 

where integrals over sin(2Trn0) and cos(2ir«0) vanish. 
The heat removed by the tube per unit length can be written 

as 
•2x 37- , 

(15) 

(16) 

3r 
d6 = 2-wkpa'0 (17) 

/•„//•( ' T(r0,6)d6 = 2irr0H(a0+a'0\nro) ( 1 8 ) 
J 0 = 0 

where in both cases the angular terms again make no contr ibu­
tion. Thus the heat removed and Tp do no t depend on the 
angular dependence of the outer boundary condit ion. 

To find the full set of coefficients f(d) must be represented 
as a Fourier series. Here we require only the zeroth-order 
terms, which must satisfy 

where the integral is just the angular average of the outer 
boundary temperature which we define as Ts. By applying 
equations (17), (18) and (19), we find the necessary coeffi­
cients are 

a0 = T,-a'0\ar, (20a) 

HT, 

r„ \ r„ / 

(20b) 

In comparison with the B H T E , the heat removed per unit 
volume is WplTp, so the second expression for the p h a n t o m 
perfusion rate can be found from 

W, 
P2-

1kpa'0 

(r2-r2
0)Tp 

from which T. can be eliminated. 

(21) 

3 Axial Conduction. Next we consider the case where 
heat is globally conducted parallel to the tubes. Before analyz­
ing the phantom we look first at how the BHTE would re­
spond under similar circumstances. We consider a region of 
tissue in which no heat generation takes place but that has a 
temperature elevation due to a heat source elsewhere. If the 
temperature varies only in one direction and if the temperature 
is T{ at a plane z = 0, then the BHTE will predict a 
temperature decay according to 

r , U ) = r,exp( -z^fW^k) (22) 

The phantom must simulate this exponential behavior and its 

simulated perfusion rate is based on the decay constant of the 
exponential. 

Figure 4 shows the vicinity of a typical tube in this situation. 
Heat conducting from the end at T{ can either be conducted 
immediately into the tube or be conducted down the length of 
the tube to be absorbed by the tube at some later point. In 
order to determine the length scale over which heat is con­
ducted into the tube we consider the heat conduction equation 

d2T(r,z) . 1 dT(r,z) , d2T{r,z) n 

dr2 

subject to 
dr 

T(r,o) = Tl 

T(r,oo) bounded 

dT 

dz2 = 0 

dr 
= 0 

HT(r0,z)=kp 
dT 

~d7~ 

(24a) 

(246) 

(24c) 

(24d) 
The radial boundary conditions are the same as in the first 
case. 

Proceeding with a separation of variables solution, we 
assume that the solution can be written as the product, T(r,z) 
= R„ (r)Z„ (z). This allows the separation into two ordinary 
differential equations 

d*R„(r) 1 dR„(r) 
dr2 dr 

+ HlR„{r)=0 

and 

cPZn(z) 

dz2 -|3JZ„U)=0 

(25a) 

(25b) 

Equat ions (25a) and (25b) admit solutions / 0 ( /3„ r ) and 
Y0(finr), and exp( + z/3„) and exp( -z j3„) , respectively. The 
positive exponent must be rejected because it diverges at in­
finity. The radial boundary condit ions indicate which eigen­
values are appropr ia te . These are the real roots of 

M-l/iOVo Y,(P„rs) 'i(/Vj] 

n[j0W„r0) Yt(P„rs) ' (0flro)] = 0 (26) 

The general tempera ture solution is the summat ion over all 
simple solutions, given by 

Oo 

T(r,z)= £ (A„J0(p„r)+B,,Y0(l3nr))exp(-pnz) (27) 

The constants A n and B„ can be determined by the boundary 
conditions but are not needed here, since we need only show 
that the leading behavior of the solution is exponential . The 
local average phan tom tempera ture can be expressed as 

T>=MJ^\L[A»J°^ 
•B„Y0((3„r)]rdrexp(-l3nz)] (28) 

Note that since we are averaging only in the r direction, the z 
and r dependence is still separable. If the second and higher 
order eigenfunctions decay sufficiently faster than the first 
then the response to a plane source is propor t ional to 
e x p ( - / 3 , z ) to a high degree of accuracy. When typical design 
values for the parameters are int roduced, the first 8 eigen­
values may be found and are presented in Table 1. The first 
eigenvalue gives a good indication of the behavior of the phan­
tom, since the second eigenvalue is more than five times the 
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Table 1 Eigenvalues for equation (26) assuming baseline 
design parameters 

Eigenvalue (m 
117 
649 

1157 
1674 
2198 
2725 
3255 
3787 

Table 2 Baseline design parameters 
Parameter Symbol Value 

Phantom conductivity 
Water conductivity 
Tube conductivity 
Phantom specific heat 
Blood specific heat 
Tube inner radius 
Tube outer radius 
Radius of symmetry 

^tube 
CP 
cb 
r. 

0.60 W/m-C 
0.60 W/m-C 
0.25 W/m-C 
4184 J/Kg-C 
4184 J/Kg-C 

0.635 mm 
1.143 mm 
7.000 mm 

value with the decay constant found from the BHTE. Thus we 
find W„i is Ar/S?. 

4 Transient Response. The simplest balance of terms in 
the BHTE that will demonstrate the transient response is the 
case where the phantom is initially at a uniform temperature 
elevation T{ and is allowed to decay to the reference 
temperature. The solution of the BHTE under these condi­
tions is 

T, = Tx exp 
V p,c, / 

(29) 

where we see that the time constant is perfusion dependent. 
Since the initial temperature is uniform throughout, the 

same symmetry that was used for the first criterion can be used 
in this analysis also. The boundary/initial value problem to be 
solved on the local scale in the phantom is 

d2T(r,t) 1 dT(r,t) 1 dT(r,t) 

dr2 

subject to 

dr 

dT 

dt 

= 0 

HT(r0,t)-

and initial condition 

dT 

(30) 

(31«) 

(316) 

T(r,0) = Ti (31c) 

Separating variables such that T(r, t) = R„ (r)G„ (t), we find 
the two ordinary differential equations that apply 

cPR„(r) 1 dRn(r) 

dr2 dr + PlR„(r)=0 

and 

dGn(t) 
dt 

= -aPlG„{t) 

02a) 

(326) 

The time-dependent variable admits solutions of the form 
exp(- tct&2„) where the positive exponent has been ignored 
because it diverges for long times. The radial solutions are of 
the form J0U3„r) and Y0(Pnr) and must satisfy the same 
boundary conditions as the radial solution for axial conduc­
tion. Therefore, the eigenvalues are the same as those found 
from the solutions of equation (29). If we equate the time con­
stants from the BHTE and the phantom we find that Wp4 is 
k /3i2, the same as the axial flow criterion with the same limita­
tions. All higher order eigenvalues have been suppressed. In 
the transient case these correspond to time constants that are 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

Local 
Average Temperature 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Radius ( m m ) 
Fig. 5 Local temperature gradients in the vicinity of a typical tube 

at least 25 times greater than the slowest time constant. 
Physically, this means that the phantom very quickly reaches a 
quasi-steady condition where the temperature profile between 
the tubes is of constant shape but continually decreases in 
magnitude. 

Local Temperature Gradients 

The analysis so far has been oriented toward demonstrating 
that the local average temperature approximates solutions to 
the BHTE. An important consideration is the difference be­
tween the maximum temperature at the hot spot between the 
tubes and the temperature at the outer tube wall or the local 
average temperature (Fig. 5). Most applications of the phan­
tom will use sensors such as thermistors or thermocouples that 
sample a much smaller volume than would be necessary to give 
a good indication of the local average temperature. The 
temperature drop between the phantom hot spot (located at 
r = rs) and the coolant can take place in three regions: the solid 
matrix, the tube wall or the fluid itself. If the major 
temperature drop occurs in the solid matrix large errors are 
possible if the sensor is randomly placed in the matrix at an 
unknown distance from the tubes. The error can be corrected 
by knowing the exact location of each sensor with respect to 
the tubes (for example, the midpoint between neighboring 
tubes). Alternatively, the phantom can be designed so that the 
exact location of a sensor is not critical. This is done by plac­
ing the largest thermal resistance either in the tube wall or in 
the fluid. Since the convection coefficient is not well known or 
controllable, it is preferable to design the phantom so that the 
major temperature drop is across the tube wall. The ratio of 
the local maximum temperature to the local minimum 
temperature (located at r - r0) will be calculated in the follow­
ing parametric study as a measure of the local temperature 
gradients. We also calculated the ratio of the maximum local 
temperature to the local average temperature for use as a cor­
rection factor for small sensors located at the midpoint be­
tween tubes. 

Design Parameter Study 

Now that three different criteria for the design of the phan­
tom have been defined we consider what numerical values 
these take on for a range of realistic tube sizes and spacings. A 
set of baseline design parameters found in Table 2 are pro­
posed for the design study. The effects of variation of in­
dividual parameters away from the design values will be 
investigated. 
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Nonperfused: Measured and Simulated 

25 5 10 15 20 
Tube Spacing Center to Center (mm) 

Fig. 6 Parametric dependence of the simulated perfusion rate on the 
tube spacing and tube size. The small difference between the various 
estimates of the simulated perfusion rate demonstrates that the phan­
tom has a highly isotropic response. A constant ratio i0lrj = 1.8 is used. 
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Fig. 7 Parametric dependence of the simulated perfusion rate on the 
tube wall thickness. The magnitude of the local gradients is also plot­
ted. The advantage of a thick-walled tube for reducing the local gra­
dients is demonstrated. 

The property values given in Table 2 pertain to pure water 
and are not exact values for any particular tissue or blood. The 
values given however are sufficiently accurate for a design 
study. 

We must first establish that the three design criteria give 
similar results, given the same input parameters. All three of 
the design criteria (Wpl, Wp2, and Wp3) are plotted in Fig. 6 
and it can be seen that the differences in the three are minimal 
over a wide range of spacings and tube sizes. The difference 
between the design perfusion rates was never greater than a 
few percent. The similarity of Wpl and Wp3 indicates that the 
phantom will have a highly isotropic response. The choice of 
which design criterion to employ is thus a matter of conve­
nience since all three give essentially the same results. 

The simulated perfusion rate was found to be most sensitive 
to the tube spacing, with a lesser dependence on the tube 
radius, for a constant ratio of outer to inner tube radius (Fig. 
6). Variation of the tube wall thickness for a given outer radius 
is considered in Fig. 7. The impact of wall thickness is general­
ly small on the simulated perfusion rate but the local 

10.0 

120 240 360 

Time in Seconds 

480 600 

Fig. 8 Measured and predicted nonperfused response of three ther­
mistors at depths of 0.1 cm (No. 1), 2.3 cm (No. 2), and 4.5 cm (No. 3) in 
the phantom filled with common gelatine (6 percent by weight). Heating 
with a 915-MHz 2.5 by 5 cm waveguide applicator for 120 s at about 20 W 
total absorbed power. 

temperature gradients are undesirably large for very thin-
walled tubes. 

Design Realization 

Several practical aspects of the design must also be con­
sidered. The pumping system and fixtures upstream from the 
tubes must be able to handle the flow resistance of the cooling 
water. Pressure head loss through tubes of length L can be 
estimated from [6] 

h,=-
SvLQ 

Trgrf 
(33) 

where Q is the volume flowrate per tube. The flowrate in the 
phantom must be high enough to prevent a significant 
temperature rise along the length of the tube. This 
temperature rise under steady conditions for a given flowrate, 
heated region of width b, and heat generation rate q0 is given 
by 

irbr2
sq0 

A 7 > (34) 
PwCWQ 

For instance, if a region 5 cm wide lying normal to the tubes 
on the baseline spacing is heated at a uniform 100,000 W/m3 , 
then the flowrate must be 0.37 mL/s in each tube to limit the 
temperature rise in any tube from exceeding 0.5°C. The 
pressure drop through tubes of baseline size at this flowrate 
would be about 0.6 m of water per m of tube. 

The total number of tubes must be also limited, if only by 
the perserverence of the person constructing the phantom. The 
prototype used 144 tubes which gave a perfused region 
measuring about 15 cm on a side. 

Experimental Validation of the Prototype Dynamic 
Phantom 

A prototype phantom built with the baseline design 
parameters (Table 2) was experimentally tested. The valida­
tion of this phantom consists of showing that the global ther­
mal behavior is the same as predicted by the BHTE both with 
the simulated perfusion rate (2.0 kg/m3-s) and with no perfu­
sion. This procedure assures that the predictions of the phan­
tom have an accurate quantitative interpretation in terms of 
the BHTE. 
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Perfused: Measured and Simulated 
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Fig. 9 Measured and predicted perfused response of three ther­
mistors. Perfusion rate set at 2.0 kg/m3-s in numerical simulation; equal 
to the design value for the phantom. 

Validation of this design was accomplished by measuring 
the transient response of three-high resistance thermistors 
placed at depths of 0.1, 2.3 and 4.5 cm under the center axis of 
a typical hyperthermia applicator consisting of a section of a 
2.5 by 5.0-cm ridged waveguide operating at 915 MHz. The 
heat generation pattern (i.e., specific absorption rate) was 
measured by the well-known split phantom thermographic 
technique [7], 

A full three-dimensional and transient numerical simulation 
of the response of these thermistors was done by a finite dif­
ference solution to the BHTE assuming a heat input equal to 
the measured specific absorption rate. The predicted and 
measured response of the thermistors is shown in Fig. 8 for the 
nonperfused case. Figure 9 shows corresponding responses for 
the numerical model with a perfusion rate of 2.0 Kg/m3-s and 
for the phantom with coolant flow. The favorable comparison 
indicates that the phantom behaves as planned. 

Conclusions 
The foregoing results show that a simple model can provide 

a useful thermal analog to the BHTE, and thus to a living 
tissue. Such a dynamic phantom can be useful for studying 
practical aspects of hyperthermia equipment performance that 
would not be anticipated with a purely numerical model. 

The phantom design also sheds light on the apparent success 
of the BHTE itself. Its flow geometry bears little resemblence 
to the vascular geometry of tissue, yet its behavior is closely 

approximated by the BHTE. The highly directional flow in the 
poorly equilibrated tubes in the phantom produces an 
isotropic heat sink similar to that of the BHTE. The possibility 
arises that large, unequilibrated vessels in a real tissue might 
also act as line sinks, producing a thermal response that ac­
cidentally resembles that predicted by the BHTE. Since vessels 
with large flowrates should behave as a heat sink, regardless of 
their orientation, large countercurrent blood vessels would be 
expected to produce a heat sink as well. Smaller countercur­
rent vessels, that are nearly in thermal equilibrium with the 
surrounding tissue, have recently been shown to have an en­
tirely different heat transfer mechanism (incomplete counter-
current exchange) and governing equation [5], These vessels 
produce an apparent increase of the thermal conductivity of 
the tissue, instead of a heat sink. In a real tissue both heat 
transfer mechanisms are likely to be operating simultaneously. 
This situation might help to explain why it has been so dif­
ficult to agree on a suitable model for perfused tissue. 

Simple physical models such as this phantom provide a well-
controlled system in which to examine some of these fun­
damental issues of bioheat transfer. Their further study pro­
mises to contribute to a better understanding of real tissue. 
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