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Saddle-nodes and period-doublings of Smale

horseshoes: a case study near resonant

homoclinic bellows

Ale Jan Homburg Alice C. Jukes Jürgen Knobloch

Jeroen S.W. Lamb

Abstract

In unfoldings of resonant homoclinic bellows interesting bifurcation phe-
nomena occur: two suspensed Smale horseshoes can collide and disappear
in saddle-node bifurcations (all periodic orbits disappear through saddle-node
bifurcations, there are no other bifurcations of periodic orbits), or a suspended
horseshoe can go through saddle-node and period-doubling bifurcations of the
periodic orbits in it to create an additional “doubled horseshoe”.

1 Introduction

In these notes we discuss specific homoclinic bifurcations involving multiple ho-
moclinic orbits to a hyperbolic equilibrium with a resonance condition among the
eigenvalues of the linearized vector field about the equilibrium; the resonant homo-
clinic bellows. A homoclinic bellows consists of two homoclinic orbits γ1(t), γ2(t)
to a hyperbolic equilibrium with real leading eigenvalues, that are tangent to each
other as t → ±∞. If the homoclinic orbits are symmetry related through the action
of a Z2 symmetry, the homoclinic bellows is a bifurcation of codimension one (we
review the bifurcation theory in § 2); the additional resonance condition makes it a
bifurcation of codimension two.

The resonant homoclinic bellows is an organizing center for an interesting bifur-
cation phenomenon involving suspended Smale horseshoes (this is our motivation

1991 Mathematics Subject Classification : 37G20, 37G30.
Key words and phrases : homoclinic loop, horseshoe, bifurcation.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 833–850



834 A.J. Homburg – A.C. Jukes – J. Knobloch – J.S.W. Lamb

for studying the bifurcation). In it, two suspended horseshoes collide through col-
lisions of periodic orbits from one horseshoe with periodic orbits from the other
horseshoe in saddle-node bifurcations. All periodic orbits disappear through saddle-
node bifurcations. Or, starting from Morse-Smale dynamics one finds suspended
Smale horseshoes being created, where the periodic orbits appear through saddle-
node bifurcations alone. This creation of a horseshoe is much simpler than involved
scenarios involving homoclinic tangencies (see e.g. [13]), but needs four dimensional
state space to occur.

In the context of maps one can take the following simple geometric model il-
lustrating the bifurcations: generic perturbations from a product map (x, y) 7→
(F (x), Gµ(y)) in R

2 × R of a map x 7→ F (x) on R
2 possessing a two dimensional

hyperbolic horseshoe with a family of maps y 7→ Gµ(y) on R that unfolds a saddle-
node bifurcation. Although it would be interesting to study this scenario directly,
and discuss issues such as measure of the bifurcation set, in these notes we restrict
to describing an organizing center that contains this scenario.

A related phenomenon lies in generic perturbations from a product map (x, y) 7→
(F (x), Gµ(y)) in R

2 × R with F possessing a hyperbolic horseshoe and Gµ unfold-
ing a period-doubling bifurcation. Resonant homoclinic bellows also serve as an
organizing center for this bifurcation scenario, if an invariant plane bundle of center
directions along the bellows is not orientable. Here we find that periodic orbits of
odd period undergo period-doubling bifurcations, and periodic orbits of even period
undergo saddle-node bifurcations. Because of the symmetry of the vector field, we
will find pitchfork bifurcations instead of saddle-node bifurcations for some of the
periodic orbits (namely the symmetric ones). These bifurcations lead to a ‘doubled
horseshoe’, described by a symbolic dynamics on the doubled number of symbols
(i.e. four symbols).

The bifurcation problem studied in this paper was first considered in the doc-
toral thesis [8] by A.C. Jukes. In this thesis resonance bifurcations of homoclinic
loops in D3-symmetric systems are treated. Depending on the action of the sym-
metry, one of the occurring cases gives a bellows (with the minor difference that
it contains three or six homoclinic orbits instead of two). The other cases, with
multiple leading eigenvalues, are more complicated to study but seem to give rise to
similar bifurcation phenomena (and more). It is straightforward to generalize the
study of this paper to bellows in vector fields equivariant under the action of finite
groups other than Z2. The description of the dynamics as used in this paper with
symbolic dynamics on two symbols, for the two homoclinic orbits, is then replaced
by symbolic dynamics on k symbols if there are k homoclinic orbits in a bellows
configuration, compare [8].

Other scenarios along these lines, which we won’t consider, could be Hopf-
bifurcations of horseshoes, and further generalizations appear if horseshoes are re-
placed by other hyperbolic sets (attractors might also be possible). Moreover, other
codimension two homoclinic bifurcations of bellows, such as inclination-flips and
orbit-flips might lead to similar phenomena.

In the following section we start with the set-up of this paper, giving conditions
that define a homoclinic bellows and recalling the bifurcation result for codimension-
one homoclinic bellows in Z2-equivariant vector fields: a suspension of a hyperbolic
horseshoe appears in an unfolding. After that we treat resonant homoclinic bellows.
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Resonant bifurcations of single homoclinic orbits (with real leading eigenvalues)
were considered by S.-N. Chow, B. Deng and B. Fiedler [1], in which the authors
showed the appearance of saddle-node or period-doubling bifurcations depending on
orientability of an invariant plane bundle. In resonant bellows the two phenomena,
occurrence of horseshoes and saddle-node or period-doubling bifurcations, combine
and lead to bifurcations of suspended horseshoes. Our bifurcation results are con-
tained in § 3, the sections thereafter contain the bifurcation analysis. The techniques
for the bifurcation analysis are borrowed from [6], to which we frequently refer for
details. Resonant bifurcations of multiple homoclinic loops (without an assumption
of Z2-equivariance) have been studied by R.W. Ghrist [3], who however did not
consider homoclinic bellows.

We are grateful for obtained support from the Netherlands Organisation for Sci-
entific Research (NWO), The Royal Society, and the UK Engineering and Physical
Sciences Research Council (EPSRC).

2 Nonresonant bellows

The purpose of this section is to introduce conditions that determine a homoclinic
bellows and to present the result that an unfolding of a homoclinic bellows features
the creation of suspended horseshoes. This result is due to D.V. Turaev [19] (that
the horseshoes are hyperbolic can be concluded from the results in [6], see below).
In the next section we continue the analysis with resonant bellows, focussing on the
resulting bifurcations of the suspended horseshoes.

Starting point for all results is a Z2-equivariant vector field. Let

ẋ = f(x, λ) (2.1)

be a smooth family of differential equations on R
n, depending on a real parameter

λ ∈ R.

Hypothesis 2.1 (Equivariance). The differential equation ẋ = f(x, λ), x ∈ R
n, is

equivariant with respect to a linear involution S:

Sf(Sx, λ) = f(x, λ). (2.2)

Recall that the leading eigenvalues at a hyperbolic equilibrium are those closest
to the imaginary axis.

Hypothesis 2.2 (Real leading eigenvalues). At λ = 0, the equilibrium at the origin
is hyperbolic and has real simple leading eigenvalues µs, µu.

The leading stable and unstable directions, that is the eigendirections corre-
sponding to µs and µu, are thus one dimensional. At λ = (0, 0), (2.1) possesses two
homoclinic orbits γ1, γ2 = Sγ1 to the origin. That is, for i = 1, 2,

lim
t→±∞

γi(t) = 0.

A coexistence of homoclinic loops can lead to suspended subshifts of finite type in
the unfolding. The next hypothesis poses the existence of several homoclinic orbits
approaching the origin from the same direction for positive time, and similarly for
negative time.
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Hypothesis 2.3 (Homoclinic bellows). The homoclinic orbits γi approach the origin
from the same direction for positive time and for negative time:

lim
t→±∞

γ1(t)/‖γ1(t)‖ = lim
t→±∞

γ2(t)/‖γ2(t)‖.

We will formulate conditions ensuring that the bifurcation is of codimension one.
The resulting geometric configuration is called a homoclinic bellows, see [6]. All
conditions apply to both homoclinic orbits by symmetry. The following hypothesis
states that the homoclinic orbit is nondegenerate.

Hypothesis 2.4 (Nondegenerate homoclinic orbits). At λ = 0, the tangent spaces
of the unstable manifold W u(0) and of the stable manifold W s(0) intersect along γi

only along the vector field direction.

As a consequence, the subspace Zi ⊂ Tγi(0)R
n perpendicular to the tangent spaces

of W s(0) and of W u(0) is one dimensional.
A local center unstable manifold W cu(0) is a locally invariant manifold with as

tangent space at 0 the direct sum of the unstable and the leading stable directions.
Likewise, a local center stable manifold W cs(0) is a locally invariant manifold with as
tangent space at 0 the direct sum of the stable and the leading unstable directions.
Local center (un)stable manifolds are not unique, but possess unique tangent spaces
along the (un)stable manifold.

Hypothesis 2.5 (Codimension one). For a nondegenerate homoclinic orbit with
unique real leading eigenvalues, the following items, all at λ = 0, define a bifurcation
of codimension one:

(i) Nonresonance condition: the leading eigenvalues satisfy β = −µs/µu 6= 1. By
changing the direction of time, if necessary, this yields the condition

β > 1. (2.3)

(ii) No orbit-flip condition: γi is not within the strong stable manifold or strong
unstable manifold of the origin:

γi 6⊂ W ss(0), γi 6⊂ W uu(0). (2.4)

(iii) No inclination-flip condition:

W s(0) ⋔γi
W cu(0), W u(0) ⋔γi

W cs(0). (2.5)

See [1] for homoclinic bifurcation problems with resonant eigenvalues. Condition
(2.4) excludes an orbit-flip condition, see [16], while (2.5) excludes the inclination-flip
condition, see [7, 9]. By the no orbit-flip condition, the homoclinic orbits approach
the equilibrium along the leading directions, both for positive and negative time.

Hypothesis 2.6 (Generic unfolding). W u(0), W s(0) split up with positive speed in
λ.
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The following bifurcation theorem is a consequence of the geometric reductions
presented in § 4.1.

Theorem 2.1. Suppose that Z2 symmetric differential equations (2.1) unfold a ho-
moclinic bellows: Hypotheses 2.1-2.6 are met. Then a hyperbolic set equivalent to
a suspended full shift on 2 symbols exists for parameters on one side of λ = 0 and
converges to the homoclinic orbits γ1 ∪ γ2 as λ → 0.

Under the assumption of Hypotheses 2.2, 2.4, 2.5(ii),(iii), there exists a continu-
ous plane bundle Ec along γ1 ∪ γ2 ∪{0}, invariant under the first variation equation
and equal to the sum of the leading direction at the origin (see e.g. [5, 14]). The
plane bundle can be either orientable or nonorientable. Orientability of the bundle
of center directions plays no role for the conclusion of the above result. It will be an
essential factor in the next section, discussing homoclinic bellows near resonance.

3 Resonant homoclinic bellows

We state bifurcation results for two coexisting homoclinic orbits in a bellows configu-
ration at resonant eigenvalues. The bifurcation analysis is in § 4 (treating reductions
leading to bifurcation equations) and § 5 (analyzing the bifurcation equations).

For vector fields that are equivariant with respect to the linear action of an invo-
lution, this is a codimension two bifurcation problem in case the homoclinic orbits
are related by symmetry. The parameter λ = (λ1, λ2) will be from an open neigh-
borhood of (0, 0) ∈ R

2. At λ = (0, 0), there are two homoclinic orbits γ1, γ2 = Sγ1

to the origin forming a homoclinic bellows. Specifically we assume that Hypothe-
ses 2.2, 2.3, 2.4, 2.5(ii),(iii) are met. We assume however that Hypothesis 2.5(i) is
violated:

Hypothesis 3.1 (Resonance). At λ = (0, 0), β = −µs/µu = 1.

As before, the following genericity conditions apply to γ1, γ2 simultaneously.

Hypothesis 3.2 (Generic unfolding). The bifurcation is generic and unfolds gener-
ically:

(i) At λ = (0, 0),
∫

∞

−∞ div2(γi(t))dt 6= 0, where div2 denotes the rate of change of
area within the plane field Ec

γi(t)
. By changing the direction of time if necessary,

we may assume

B = e
∫

∞

−∞

div2(γi(t))dt
> 1, (3.1)

(ii) W u(0), W s(0) split up with positive speed in λ1,

(iii) ∂
∂λ2

β 6= 0.

The conditions formulated in Hypothesis 3.2 enable a reparameterization of the
parameter plane, so that λ1 unfolds the homoclinic bifurcation and λ2 unfolds the
resonance condition.
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Lemma 3.1. Consider a two parameter family ẋ = f(x, λ), λ = (λ1, λ2), of ordi-
nary differential equations unfolding a Z2-symmetric bellows at resonance: Hypothe-
ses 2.1, 2.2, 2.4, 2.5(ii), (iii), 3.1 and 3.2 are met. By a reparameterization of the
parameter plane,

(i) the primary homoclinic orbits γ1, γ2 exist along {λ1 = 0},

(ii) β = 1 + λ2.

We treat dynamics in a small tubular neighborhood U of the homoclinic orbits
γ1 and γ2. It is convenient to assign a symbolic coding to orbits in the recurrent set
in U associated to the two loops. This is introduced by considering a first return
map on two cross sections, as follows. Let Σ1 and Σ2 be cross-sections of γ1 and γ2,
respectively. Write pi = γi ∩ Σi. By

Ψ : Σ1 ∪ Σ2 → Σ1 ∪ Σ2

we denote the first return map defined on a subset of Σ1 ∪ Σ2. Associated to an
orbit x = {x(i)}, x(i + 1) = Ψ(x(i)) for i ∈ Z, in the recurrent set of Ψ, there is an
itinerary Υ(x) : Z → {1, 2} defined by

Υ(x)(i) = j, if x(i) ∈ Σj .

Obviously one can associate this itinerary to the corresponding orbit of the vector
field. Let B2 be the set of itineraries Z 7→ {1, 2}, endowed with the product topology.
The shift operator σ : B2 → B2 is, as usual, given by σy(k) = y(k+1). Orbits in the
recurrent set in U that do not lie in the stable or unstable manifold of the origin,
give rise to two sided infinite itinerary. When we speak of the period of a periodic
itinerary, we will always mean the minimal period. The other orbits have a one-
sided infinite itinerary or, for a homoclinic orbit, a finite itinerary. For instance the
code (12) stands for a homoclinic orbit that follows closely γ1 and then γ2 before
converging to the origin. We call a homoclinic orbit with an itinerary of k symbols
a k-homoclinic orbit (apart from the primary homoclinic orbits γ1 and γ2, only
2-homoclinic orbits occur in our bifurcation study).

The symmetry S induces an action S on B2 by interchanging symbols 1 and 2.
A periodic itinerary y of period k is symmetric if Sy = σsy for some s. It is not
hard to see that necessarily k is even and s = k/2.

Recall from the previous section that the bundle of center directions Ec can be
either orientable or nonorientable. We formulate two bifurcation theorems for these
two possible cases. We start with bifurcations from a nontwisted resonant bellows,
where Ec is an orientable bundle.

Theorem 3.1. Consider a two parameter family ẋ = f(x, λ), λ = (λ1, λ2), of
ordinary differential equations unfolding a Z2-symmetric bellows at resonance: Hy-
potheses 2.1-2.4, 2.5(ii), (iii), 3.1 and 3.2 are met. Suppose the bundle of center
directions Ec along γ1 ∪ γ2 ∪ {0} is orientable. Up to a reparameterization of the
parameters given by Lemma 3.1 the bifurcation diagram is as depicted.

Homoclinic bellows occur along {λ1 = 0}. The recurrent set consists in the
different regions of the following:
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I

II

III

λ1

λ2

Bellows

Saddle-nodes

I: the equilibrium and two hyperbolic sets each equivalent to a suspended full shift
on the two symbols 1,2,

II: the equilibrium,

III: the equilibrium and a single hyperbolic set equivalent to a suspended full shift
on the two symbols 1,2.

The suspended horseshoes in region I disappear through bifurcations that take place
in the wedge between regions I and II.

There is λ0
2 > 0 so that for each periodic itinerary η there is a smooth curve

{(sη(λ2), λ2)}, 0 < λ2 < λ0
2, inside the wedge and with a flat tangency at λ2 = 0,

of generically unfolding saddle-node bifurcations of periodic orbits with itinerary η.
The curves have the same asymptotics

lim
λ2→0

sη(λ2)

λ2(1/B)1/λ2

=
1

e
.

Bifurcations from a twisted resonant bellows, with nonorientable bundle Ec, are
treated in the following theorem. The bifurcation statements are weaker then in
the previous theorem on nontwisted resonant bellows. We do not provide proofs
that the period-doubling and pitchfork bifurcations are generically unfolding and
occurring along smooth curves. We note though that the arguments below establish
that for each periodic orbit with a period-doubling or pitchfork bifurcation, the
bifurcation occurs along a smooth curve. We have however no uniform bound on
the lenght of these curves, so that this information does not help to explain the
bifurcations of entire horseshoes. Moreover, the saddle-node bifurcations are close
to degenerate saddle-node bifurcations, we expect them to be either of codimension-
one or codimension-two. They may therefore not occur along smooth curves.

Theorem 3.2. Consider a two parameter family ẋ = f(x, λ), λ = (λ1, λ2), of
ordinary differential equations unfolding a Z2-symmetric bellows at resonance: Hy-
potheses 2.1-2.4, 2.5(ii), (iii), 3.1 and 3.2 are met. Suppose the bundle of center
directions Ec along γ1∪γ2∪{0} is nonorientable. Up to a reparameterization of the
parameters given by Lemma 3.1 the bifurcation diagram is as depicted.

The recurrent set consists in the different regions of the following:

I: the equilibrium and a hyperbolic set equivalent to a suspended full shift on the
two symbols 1,2,
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I

II
III

IV

λ1

λ2

Bellows

Period-doublings, Pitchforks,
Saddle-nodes

Bellows of 2-homoclinic orbits

II: the equilibrium and two hyperbolic sets, one equivalent to a suspended full shift
on the two symbols 1,2 the other equivalent to a suspended full shift on four
symbols corresponding to the four 2-homoclinic orbits (12), (21), (11), (22).

III: the equilibrium and a single hyperbolic set equivalent to a suspended full shift
on the two symbols 1,2.

IV: the equilibrium.

The suspended horseshoe in region I doubles through bifurcations that take place
in the wedge between regions I and II. The doubled horseshoe disappears through
homoclinic bifurcations in the wedge between regions II and III.

Homoclinic bellows occur along {λ1 = 0}. Homoclinic bifurcations of n-homoclinic
orbits, n ≥ 2, can take place only in an exponentially flat wedge of the following
asymptotics: a curve (s(λ2), λ2) inside the wedge satisfies

lim
λ2→0

s(λ2)

λ2(1/B)1/λ2

= 1.

Bifurcations of 2-homoclinic bellows occur along two smooth curves in this wedge
branching from λ = 0; a curve (s11(λ2), λ2) of homoclinic orbits with itineraries
(11) and (22), and a curve (s12(λ2), λ2) of homoclinic orbits with itineraries (12)
and (21).

Bifurcations involving nonhyperbolic periodic orbits take place in an exponentially
flat wedge of the following asymptotics: a curve (s(λ2), λ2) inside the wedge satisfies

lim
λ2→0

s(λ2)

λ2(1/B)1/λ2

=
1

e
.

There is λ0
2 > 0 so that the following bifurcation statements hold.

For each periodic itinerary with odd period, there is for each λ2 with 0 < λ2 < λ0
2

a value dη(λ2), inside the wedge, of possibly degenerate period-doubling bifurcations
of periodic orbits with itinerary η.

For each symmetric periodic itinerary η of period 2k with k odd, there is for
each λ2 with 0 < λ2 < λ0

2 a value dη(λ2), inside the wedge, of possibly degenerate
pitchfork bifurcations of periodic orbits with itinerary η.

For all other periodic itineraries of period 2k (nonsymmetric or symmetric with
k even), there is for each λ2 with 0 < λ2 < λ0

2 a value dη(λ2), inside the wedge, of
a possibly degenerate saddle-node bifurcation of a periodic orbit with itinerary η.
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We do not know the mutual position of the curves of 2-homoclinic bellows; they
have the same asymptotics and we cannot exclude that they intersect each other.
We also do not have precise statements on possible bifurcations of n-homoclinic
bellows, n > 2. Such bifurcations may for instance be absent for values of λ2 where
the curves of 2-homoclinic orbits coincide.

4 Geometric and analytic reductions

Combining geometric techniques (constructions of invariant manifolds) and ana-
lytic techniques (derivation of reduced bifurcation equations applying a Lyapunov-
Schmidt argument) proves the bifurcation theorems. In this section we discuss both
approaches.

The context of this section is, as in the bifurcation theorems above, of a two pa-
rameter family of differential equations unfolding a Z2-symmetric homoclinic bellows
at resonance (defined by Hypotheses 2.1-2.4, 2.5(ii), (iii), 3.1 and 3.2).

4.1 Cantor books of center manifolds

The clearest insight in the geometry of the flow is obtained from the construction
of invariant center manifolds. We recall a result from [6] (also applicable in the
context here) in which a collection of center manifolds, indexed by itineraries on two
symbols, is constructed. The recurrent set near the homoclinic bellows is contained
in the collection of center manifolds. For λ = (0, 0), when the homoclinic bellows
exist, this leads to a Cantor book of two dimensional center manifolds all containing
the homoclinic bellows (as spine of the book). The center manifolds persist for
small λ. They are normally hyperbolic, so that hyperbolicity of a periodic orbit is
deduced from hyperbolicity within a center manifold. They are however in general
only continuously differentiable (the precise smoothness depends on spectral gap
conditions on the spectrum of the linearized vector field about the origin). This
renders them useless for a detailed study of bifurcations of nonhyperbolic periodic
orbits. In the next section we show how smooth bifurcation formulas are obtained
from Lin’s method. The geometric information from the center manifolds and the
analytic information from Lin’s method combined provide the information needed
to prove the bifurcation results.

The following theorem shows that the recurrent set of Ψ is contained in a Cantor
book of center manifolds.

Theorem 4.1 ([6]). For each small λ and each η ∈ B2, there is a one-dimensional
normally hyperbolic center manifold W c

η for Ψλ, so that any orbit x with itinerary
Υ(x) = η, satisfies x(0) ∈ W c

η . The manifold W c
η is continuously differentiable,

depends differentiable on λ, and depends continuously on η. It satisfies W c
σ(η) =

Ψλ(W
c
η ).

Fix a sequence η : Z → {1, 2}. Let x(j + 1) = Ψ(x(j)), j ∈ Z, be an orbit of Ψ
contained in the recurrent set of Ψ, with

x(j) ∈ Ση(j) (4.1)
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(we suppress the dependence of x on η from the notation). For the following analysis
we use coordinates as in [6]. In particular we parameterize a center manifold by a
coordinate xu corresponding to the real leading unstable direction. It follows from
[6], see also [5], that points x(j) on W c

σjη, parameterized by xu(j), satisfy

xu(j + 1) = G̃σjη(xu(j), λ)

where G̃σjη is a continuously differentiable function with asymptotics

G̃σjη(xu(j), λ) = a + b (xu(j))
β + o(xu(j)

β),

where b 6= 0. In fact, |b| equals the integral in (3.1) and the sign of b corresponds to
the orientation of the homoclinic center manifold [14, 15]. Further,

d

dxu(j)
G̃σjη(xu(j), λ) = b (xu(j))

β−1 + o(xu(j)
β−1),

where these asymptotics hold uniformly in η.
By a smooth reparameterization we may assume a = λ1 and β = 1 + λ2, so that

G̃σjη(xu(j), λ) = λ1 + bxu(j)
1+λ2 + o(xu(j)

1+λ2). (4.2)

4.2 Reduced bifurcation equations from Lin’s method

We continue the bifurcation study with the description of reduced bifurcation equa-
tions (for homoclinic and periodic orbits) obtained from Lin’s method [10, 12, 16, 21]
(the general theory of this method simplifies under the conditions of this paper, see
[6]). In lowest order terms the formulas are the same as those given by the center
manifold reduction in the previous section. However, reminiscent of reduced bi-
furcation equations in local bifurcation theory obtained from a Lyapunov-Schmidt
reduction (see e.g. [2]) the reduced bifurcation equations will be smooth.

Recall that Ψ is the first return map on Σ1 ∪Σ2. Fix a sequence η : Z → {1, 2}.
Let x(j + 1) = Ψ(x(j)), j ∈ Z, be an orbit of Ψ contained in the recurrent set of Ψ,
with x(j) ∈ Ση(j) (again supressing the dependence of x on η from the notation).
Treat the equality x(j + 1) = Ψ(x(j)), j ∈ Z, as an equation on l∞(Rn) of bounded
sequences x : Z → R

n. We quote from [6] that reduced bifurcation equations are
given by

xu(j + 1) = Gσjη(xu(j), xu, λ) (4.3)

where G is a smooth function with asymptotics

Gσjη(xu(j), xu, λ) = a + bxu(j)
β + Rj(xu, λ) (4.4)

where the remainder terms Rj(xu, λ) are smooth in xu > 0 and λ and satisfy esti-
mates

|Dk
xu

Dm
λ Rj(xu, λ)| ≤ Cj,m|xu(j)|

β+ω−k, (4.5)

for some ω > 0, uniformly in η. Note that the higher order terms depend on the
entire sequence xu(i), i ∈ Z.
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As in the previous section, after a reparameterization of the parameter plane,

Gσjη(xu(j), xu, λ) = λ1 + bxu(j)
1+λ2 + O(|xu(j)|

1+ω) (4.6)

(where the higher order terms are understood in the sense of (4.5)). Note that a
periodic orbit of periodic k, is determined by k equations of the form

xu(j + 1) = Gσjη(xu(j), xu, λ) (4.7)

with indices taken modulo k.
For later use we add a few words on the derivation of the reduced bifurcation

equations. A Shil’nikov variable approach leads to bifurcation equations for orbits
x = (xss, xu, xuu), of the form

(xss(j + 1), xu(j + 1), xuu(j)) − T (xss(j), xu(j), xuu(j + 1)) = 0, j ∈ Z, (4.8)

for a map T , smooth when xu > 0, with asymptotic expansions

xss(j + 1) −O(xu(j)
β+ω) = 0,

xu(j + 1) − a − bxu(j)
β + O(xu(j)

β+ω) = 0, (4.9)

xuu(j) −O(xu(j + 1)1+ω) = 0.

The asymptotics apply in suitable smooth coordinates on the cross sections on which
the return map Ψ acts. Let l∞

Rk be the space of bi-infinite sequences of elements of
R

k equipped with the supremum norm. Then equation (4.8) can be considered as
an equation in l∞

Rqss × l∞
R

× l∞
Rquu . In the same way the first and third equation in

(4.9) can be seen. The first and third equation of this system can be solved for
(

xss(j), xuu(j)
)

j∈Z

(

(xu(j))j∈Z

)

.

Plugging this into the second equation of (4.9) we arrive at (4.3).

5 Bifurcations of horsehoes

We combine the different reduction results to prove the bifurcation theorems. We
focus on the bifurcations of the horseshoes, it is easy to complete the bifurcation
picture. Compare also the analysis of resonant homoclinic orbits in [1].

5.1 Nontwisted resonant bellows

Here we treat the saddle-node bifurcation of horseshoes, as presented in Theorem 3.1.
Fix a periodic itinerary η of periodic k. First we consider the center manifold

reduction. A periodic point xu with itinerary η satisfies the k equations

xu(i + 1) = G̃σiη(xu(i), λ),

with indices taken modulo k. For a saddle-node bifurcation, we moreover have

k−1
∏

i=0

(

G̃σiη
)′

(xu(i), λ) = 1.
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Straightforward continuity arguments, making use of the asymptotic expansions
(4.2), give the following: for each small positive λ2 and each periodic itinerary η
there exists λ1 for which a saddle-node bifurcation of a periodic orbit with itinerary
η occurs. Note that

xu(j) ∼
1

e

(

1

b

)1/λ2

(5.1)

in the sense that all xu(j) are contained in a small interval [1 − ǫ, 1 + ǫ]1
e

(

1
b

)1/λ2

.

With no more at our disposal then continuous differentiability of G̃, more can not
be deduced at this point.

If the center manifolds W c
η are C2 (and depending continuously on η in the

C2 topology) one can use the center manifold reduction to prove uniqueness by
estimating second order derivatives. Indeed, one has

(

d

dxu(0)

)2

G̃σk−1η ◦ · · · ◦ G̃η(xu(0)) =
k−1
∑

i=0

(

G̃σiη
)′′

(xu(i))
i−1
∏

j=0

(

G̃σjη
)′

(xu(j)), (5.2)

which is positive as all terms are. For C2 regularity however gap conditions on
the spectrum of Df(0, 0) (derivative with respect to the state variable) are needed.
Such higher regularity of center manifolds, depending on spectral conditions, is not
considered in [6] (for results on higher regularity of center manifolds, see [17, 20]).
For the general case we rely on the reduced bifurcations from Lin’s method.

Recall the reduced bifurcation equations (4.7) obtained from Lin’s method. Take
a periodic orbit x(i) of periodic k, satisfying the reduced bifurcation equations

xu(1) = Gη(xu(0), xu, λ),

xu(2) = Gση(xu(1), xu, λ),
... =

...

xu(0) = Gσk−1η(xu(k − 1), xu, λ). (5.3)

We remark that system (5.3) can be solved successively, to end up with a single
equation for xu(0), as follows. The implicit function theorem allows to solve the first
equation for

xu(1) = x∗

u(1)(xu(0), xu(2), . . . , xu(k − 1), λ).

Plugging this into the second equation allows one to solve for

xu(2) = x∗

u(2)(xu(0), xu(3), . . . , xu(k − 1), λ).

The final equation yields a fixed point equation

xu(0) = Gη,k(xu(0), λ). (5.4)

Add a defining equation for the saddle-node bifurcation,

1 =
d

dxu(0)
Gη,k(xu(0), λ). (5.5)

We already know that (5.4), (5.5) can be solved for some xu(0), λ1 (for each given λ2

small and positive) and we claim this solution to be unique. A uniform treatment in
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η is required for the conclusion that the curves of saddle-node bifurcations branch
a distance uniformly away from 0 in η.

One strategy for showing uniqueness would be to mimic the computation (5.2).
A slightly different approach, which we will adopt, is to trace the graph of the map
defined by the system of equations (5.3). Define

Gη
u(xu(0), . . . , xu(k − 1)) =









Gη(xu(0), xu, λ) − xu(1)
...

Gσk−1η(xu(k − 1), xu, λ) − xu(0)









. (5.6)

Fix λ for which x is a periodic orbit at a saddle-node bifurcation. Local uniqueness
of x follows from

〈

Mu, D
2Gη

u(xu)[Nu, Nu]
〉

> 0, (5.7)

where Nu, Mu are the right and left eigenvectors respectively for the single zero
eigenvalue of DGη

u(xu) (see [4, 18]). As Mu is perpendicular to the image of DGη
u(xu),

(5.7) expresses transversality of D2Gη
u(xu)[Nu, Nu] to the image of DGη

u(xu). A
generic unfolding is guaranteed by

〈

Mu,
∂

∂λ1

Gη
u(xu)

〉

> 0. (5.8)

Let us indicate how the computation goes when Gη
u is replaced by the map

obtained when ignoring the higher order terms:

Hu(x̃u(0), . . . , x̃u(k − 1)) =









λ1 + bx̃u(0)1+λ2 − x̃u(1)
...

λ1 + bx̃u(k − 1)1+λ2 − x̃u(0)









. (5.9)

Note that Hu does not depend on η. Compute its derivative

DHu(x̃u(0), . . . , x̃u(k − 1)) =














b(1 + λ2)x̃u(0)λ2 −1 0 0

0
. . .

. . . 0

0 0
. . . −1

−1 0 0 b(1 + λ2)x̃u(k − 1)λ2















.

A simple calculation shows that Hu(x̃u) = x̃u, det DHu(x̃u) = 0 has the solution

x̃u(i) = ( 1
b(1+λ2)

)1/λ2 , 0 ≤ i < k, at the following value for λ1: λ1 =
(

1
b(1+λ2)

)1/λ2 λ2

1+λ2

.

Further, DHu(x̃u) has one dimensional kernel spanned by Nu = (1, . . . , 1). Let Mu

be the left eigenvector of DHu(xu); Mu = (1, . . . , 1). Computing second order
derivatives gives

〈

Mu, D
2H̃u(x̃u)[Nu, Nu]

〉

= kλ2(1/b)
−1/λ2 > 0 (5.10)

(it is in fact much larger than 0). As a consequence, the graph of Hu has a quadratic
tangency to 0 at x̃u.
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Now, fix λ for which x is a periodic orbit at a saddle-node bifurcation. Recall that
λ is fixed such that x is a periodic orbit at a saddle-node bifurcation and xu(i) ∼
1
e
(1/b)1/λ2 . Note that DGη

u(x) is a k × k-matrix near DHu(x). The asymptotic
expansion identity (4.6) allows for many (if k is large) small nonzero entries in
DGη

u(x), which might complicate the analysis. For better control of the higher order
terms we work with the full bifurcation equations (4.8), (4.9) instead of directly
with the reduced bifurcation equations. With reference to the bifurcation equations
(4.8), define

Gη(x(0), . . . , x(k − 1)) =








T (xss(0), xu(0), xuu(1)) − (xss(1), xu(1), xuu(0))
...

T (xss(k − 1), xu(k − 1), xuu(0)) − (xss(0), xu(0), xuu(k − 1))









.

The lowest order terms yield the map

H(x̃(0), . . . , x̃(k − 1)) =








(−x̃ss(1), λ1 + bx̃u(0)1+λ2 − x̃u(1), x̃uu(0))
...

(−x̃ss(0), λ1 + bx̃u(k − 1)1+λ2 − x̃u(0), x̃uu(k − 1))









for which DH(x̃) (with x̃(i) = (0, x̃u(i), 0)) has left and right eigenvectors for the
nullspace N, M = ((0, 1, 0), . . . , (0, 1, 0)).

By the center manifold theorem, the right eigenvector N = (Ni) of DGη(x) is
such that

Ni ∈ Tx(i)W
c
σiη.

Thus, writing Ni = (vss
i , vu

i , vuu
i ), we obtain vss

i , vuu
i as function of vu

i alone with
moreover |vss

i |, |vuu
i | = O(|xu(i)|

ω)|vu
i |. Plugging this into the equations for the

kernel of DGη(x) leads to equations for Nu in the kernel of DGη
u(x). These equations

are of the form αiv
u
i − αi+1v

u
i+1 = 0 with αi close to 1 (recall that for the kernel of

DHu(x̃u), Nu is given by equations vu
i − vu

i+1 = 0). It follows that each entry in Nu

is positive, the other entries of N are small in comparison.
Now we consider the left eigenvector M = (Mi) of DGη(x). First note that TxW

c
η

is a center manifold, indexed by η, for v 7→ DΨ(x)v and can be constructed with
the procedure in [6]. Similarly one constructs center manifolds, indexed by η, for
v 7→ DΨ∗(x)v. These center manifolds contain the left eigenvector M , which is thus
obtained similarly as N and satisfies analogous properties (in particular Mu has all
positive entries and the other entries are small in comparison).

Having computed Nu and Mu, one checks that DGη(x) has one dimensional
kernel and

〈

M, D2G̃η(x)[N, N ]
〉

> 0. (5.11)

The graph of Gη therefore has a quadratic tangency to 0 and the solution to Gη(x) =
0 is locally unique. Since the partial derivative of Gσi−1η(xu(i), xu, λ) with respect
to λ1 is positive,

〈

M,
∂

∂λ1

Gη(x)

〉

> 0 (5.12)
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and there is a unique value of λ1 for which a saddle-node bifurcation occurs. This
proves that the saddle-node bifurcations of all periodic orbits are codimension one
and unfold generically. Note also that the saddle-node bifurcations occur along
smooth curves that extend a uniform distance (uniform in the period) in the λ2

coordinate.

5.2 Twisted resonant bellows

The analysis of period-doubling and pitchfork bifurcations of periodic orbits in the
suspended horseshoe follows the arguments of the saddle-node bifurcations in the
previous section, with obvious changes to cope with the different defining and gener-
icity conditions. We will indicate but not pursue the analysis, as the necessary
computations become tedious.

We start with period-doubling bifurcations of periodic orbits with odd period.
Take a periodic orbit x(i) of period k (that is, x(j + k) = x(j)), satisfying the
reduced bifurcation equations

xu(0) = Gσk−1η(xu(k − 1), xu, λ),

xu(1) = Gη(xu(0), xu, λ),
... =

...

xu(k − 1) = Gσk−2η(xu(k − 2), xu, λ). (5.13)

The center manifold reduction yields the existence of a parameter value λ1, for
each small positive λ2, for which (5.13) has a solution x with itinerary η at a period-
doubling bifurcation. Note that the period of x(i) has to be odd for this to be true
(the product of the derivatives at the points of the periodic orbit has to be -1).

As in the previous section, one can trace the graph of the map defined by the
system of equations (5.13). Define

Gη
u(xu(0), . . . , xu(k − 1)) =









Gη(xu(0), xu, λ) − xu(1)
...

Gσk−1η(xu(k − 1), xu, λ) − xu(0)









. (5.14)

Fix λ for which x is a periodic orbit with itinerary η at a period-doubling bifurca-
tion. Let Nu, Mu are the right and left eigenvectors respectively for the single zero
eigenvalue of DGη

u(xu).
Consider the equation Gη

u(xu) = xu defining xu as function of λ1 for a fixed
small positive value of λ2. A generic unfolding of the period-doubling bifurcation is
implied by

∂

∂λ1
DGη

u(xu)Nu 6= 0 (5.15)

at the bifurcating orbit xu (note that both xu and Nu depend on λ1). For a proof
that the period-doubling bifurcation is of codimension-one, and not degenerate, one
has to check the condition (see [11, Chapter 5])

〈

Mu, D
3Gη

u(xu)[Nu, Nu, Nu]
〉

−
〈

Mu, D
2Gη

u(xu)[Nu, (DGη
u(xu))

−1 D2Gη
u(xu)[Nu, Nu]

〉

6= 0. (5.16)
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We will not go into the required tedious estimates. Note though that for fixed k the
equations are more tractable when one considers sufficiently small parameter values.
As in the previous section, estimates that hold uniformly in k are harder to obtain.

An analogous analysis can be performed for a symmetric periodic orbit x(i) with
itinerary η of period 2k with k odd. The center manifold reduction explains the
occurrence of a pitchfork bifurcation: the composition S ◦ Ψk maps one half of the
center manifold W c

η bounded by x(0) to the other half. Note that this symmetry
argument breaks down if the periodic orbit is symmetric but of period 2k with
k even. There is hence a (possibly degenerate) saddle-node bifurcation for such
periodic orbits.

The statements on the 2-homoclinic orbits follow just as in [1] for bifurcations
near a single resonant homoclinic orbit. The equations are of the form

xu(1) = λ1 + R1(xu(1), λ),

0 = λ1 + xu(1)1+λ2 + R2(xu(1), λ),

where the higher order terms R1, R2 contain a dependence on the itinerary. Clearly
the itineraries (12), (21) are symmetry related, as are (11) and (22). All periodic
orbits from the basic set in region II that is equivalent to a suspended full shift on
four symbols must likewise disappear through homoclinic bifurcations. We do not
have precise knowledge on this scenario.

The suspended basic set that exists in parameter region II, can be described
using symbolic dynamics on four symbols, corresponding to each of the four homo-
clinic orbits that exists along the curves of doubled bellows. A straightforward and
convenient way to code orbits is by distinguishing two symbols 1+, 1− that replace
the symbol 1 and two symbols 2+, 2− that replace the symbol 2. Here one makes
use of the observation that the xu coordinates of points in a recurrent orbit of Ψ are
close to two different numbers: the symbols 1+, 1−, and likewise 2+, 2−, correspond
to the larger and smaller of these numbers. This gives a full shift on four symbols.



Saddle-nodes and period-doublings of Smale horseshoes 849

References

[1] S.-N. Chow, B. Deng, and B. Fiedler. Homoclinic bifurcation at resonant eigen-
values. J. Dynam. Differential Equations, 2(2):177–244, 1990.

[2] S.-N. Chow and J. K. Hale. Methods of bifurcation theory, volume 251 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Science]. Springer-Verlag, New York, 1982.

[3] R. W. Ghrist. Resonant gluing bifurcations. Internat. J. Bifur. Chaos Appl.
Sci. Engrg., 10(9):2141–2160, 2000.

[4] J. Guckenheimer and P. J. Holmes. Nonlinear oscillations, dynamical systems,
and bifurcations of vector fields, volume 42 of Applied Mathematical Sciences.
Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983
original.

[5] A. J. Homburg. Global aspects of homoclinic bifurcations of vector fields. Mem.
Amer. Math. Soc., 121(578):viii+128, 1996.

[6] A. J. Homburg and J. Knobloch. Multiple homoclinic orbits in conservative
and reversible systems. Trans. Amer. Math. Soc., 358(4):1715–1740, 2006.

[7] A. J. Homburg, H. Kokubu, and M. Krupa. The cusp horseshoe and its bifur-
cations in the unfolding of an inclination-flip homoclinic orbit. Ergodic Theory
Dynam. Systems, 14(4):667–693, 1994.

[8] A. C. Jukes. On homoclinic bifurcations with symmetry. PhD thesis, Imperial
College, 2006.

[9] M. Kisaka, H. Kokubu, and H. Oka. Bifurcations to N -homoclinic orbits and
N -periodic orbits in vector fields. J. Dynam. Differential Equations, 5(2):305–
357, 1993.

[10] J. Knobloch. Lin’s method for discrete and continuous dynamical systems and
applications. 2004.

[11] Yu. A. Kuznetsov. Elements of applied bifurcation theory, volume 112 of Applied
Mathematical Sciences. Springer-Verlag, New York, third edition, 2004.

[12] X.-B. Lin. Using Melnikovs method to solve Shil′nikovs problems. Proc. Roy.
Soc. Edinburgh, 116A:295 – 325, 1990.

[13] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at ho-
moclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 1993. Fractal dimensions and
infinitely many attractors.

[14] R. C. Robinson. Homoclinic bifurcation to a transitive attractor of Lorenz type.
Nonlinearity, 2:495–518, 1989.



850 A.J. Homburg – A.C. Jukes – J. Knobloch – J.S.W. Lamb

[15] R. C. Robinson. Homoclinic bifurcation to a transitive attractor of Lorenz type.
II. SIAM J. Math. Anal., 23:1255 – 1268, 1992.

[16] B. Sandstede. Verzweigungstheorie homokliner Verdopplungen. PhD thesis,
Free University Berlin, 1993.

[17] B. Sandstede. Center manifolds for homoclinic solutions. J. Dynam. Differential
Equations, 12(3):449–510, 2000.

[18] J. Sotomayor. Generic bifurcations of dynamical systems. In Dynamical systems
(Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 561–582. Academic Press,
New York, 1973.

[19] D. V. Turaev. Bifurcations of a homoclinic “figure eight” of a multidimensional
saddle. Russian Math. Surveys, 43:264 – 265, 1988.

[20] D. V. Turaev. On dimension of non-local bifurcational problems. Internat. J.
Bifur. Chaos Appl. Sci. Engrg., 6(5):919–948, 1996.

[21] A. Vanderbauwhede and B. Fiedler. Homoclinic period blow-up in reversible
and conservative systems. Z. angew. Math. Phys., 43:292 – 318, 1992.

KdV Institute for Mathematics, University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
e-mail: A.J.Homburg@uva.nl

Department of Mathematics, Imperial College London
180 Queen’s Gate, London SW7 2AZ, United Kingdom
email: alice.jukes@imperial.ac.uk

Department of Mathematics, TU Ilmenau
Weimarer Straße 25, 98693 Ilmenau, Germany.
e-mail: juergen.knobloch@tu-ilmenau.de

Department of Mathematics, Imperial College London
180 Queen’s Gate, London SW7 2AZ, United Kingdom
email: jeroen.lamb@imperial.ac.uk


