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Abstract. We consider a parametric stochastic quasi-variational inequality problem (SQVIP for
short) where the underlying normal cone is defined over the solution set of a parametric stochastic
cone system. We investigate the impact of variation of the probability measure and the parameter
on the solution of the SQVIP. By reformulating the SQVIP as a natural equation and treating the
orthogonal projection over the solution set of the parametric stochastic cone system as an optimization
problem, we effectively convert stability of the SQVIP into that of a one stage stochastic program with
stochastic cone constraints. Under some moderate conditions, we derive Hölder outer semicontinuity
and continuity of the solution set against the variation of the probability measure and the parameter.
The stability results are applied to a mathematical program with stochastic semidefinite constraints
and a mathematical program with SQVIP constraints.
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1 Introduction

Let X, Y and Z be Banach spaces equipped with norm ‖ ·‖X , ‖ ·‖Y and ‖ ·‖Z respectively. For x0 ∈ X
and a closed convex set Y ⊂ Y , we consider the following stochastic quasi-variational inequality
problem (SQVIP): for a fixed parameter x0 ∈ X, find y ∈ Y such that

0 ∈ EP [F (x0, y, ξ(ω))] +NΓP (x0,y)(y), (1.1)

where F : X × Y × Ξ → Y is a continuous function, ξ : Ω → Ξ is a random vector defined on a
probability space (Ω,F ,P) with support set Ξ ⊆ IRk, EP [·] denotes the expected value with respect
to the probability measure P and ΓP : X × Y → 2Y is a closed set-valued mapping which depends
on the random variable ξ(ω) and the probability measure P , and NΓP (x0,y)(z) is the normal cone of
ΓP (x0, y) at z in the sense of convex analysis. Throughout the paper, we assume that EP [F (x0, y, ξ)]
is well defined for any (x, y) ∈ X × Y . To ease notation, we will use ξ to denote either the random
vector ξ(ω) or an element of IRk depending on the context.

In practice, ΓP may take a closed form in the sense that it has an explicit structure such as
Aumann’s integral of a random set-valued mapping [3]. It could also be implicitly defined as the set of
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solutions to a stochastic system of equalities and inequalities. Here we consider the latter case but in
a slightly more general fashion where ΓP (x, y) is the set of solutions to the following stochastic cone
system:

ΓP (x, y) = {z ∈ Y : EP [G(x, y, z, ξ)] ∈ K}. (1.2)

Here Y and K are closed convex set and closed convex cone in the spaces of Y and Z respectively. To
simplify discussion, we assume that ΓP (x, y) is a convex set for each (x, y). A sufficient condition is
that for each (x, y, ξ) ∈ X × Y × Ξ, G(x, y, ·, ξ) : Y → Z is a (−K)-convex function (see [18]) on Y,
that is, for z1, z2 ∈ Y and t ∈ (0, 1), we have

tEP [G(x, y, z1, ξ)] + (1− t)EP [G(x, y, z2, ξ)]−K ⊆ EP [G(x, y, tz1 + (1− t)z2, ξ)]−K.

The SQVIP model (1.1) is an extension of deterministic QVIPs ([7, 17, 16]) to address underlying
uncertainties in various equilibrium problems in economics, transportation, structural balance and
electrical power flow networks [11].

In a particular case when ΓP (x, y) is independent of EP [·], x and y, (1.1) reduces to stochastic VIP
(SVIP for short) which has been intensively studied over the past few years from numerical scheme
such as stochastic approximation method and Monte Carlo method to the fundamental theory and
applications; see for instance [11, 24, 25, 14, 19, 13] and the references therein. At this point, we
should remind the readers that the SVIP models we are discussing here are expected value based and
they should be distinguished from another class of SVIP models proposed by Chen and Fukushima
[8] where a deterministic solution is sought through minimization of the expected residual of scenario
based SVIP, see [9] for the recent development of the latter.

When the cone system (1.2) satisfies some appropriate constraint qualifications and G is continu-
ously differentiable in z, it is possible to transform SQVIP (1.1) into a standard SVIP, see discussions
by Pang and Fukushima [17] for deterministic case. To avoid overlap with the existing research on
SVIP, here we concentrate our discussion on the case when it is difficult to transfer the SQVIP to a
SVIP either because G is not continuously differentiable or it is difficult to represent NΓP (x0,y)(y) in
terms of the normal cone of K. Specifically we address the complications arising from the dependence
of ΓP (x, y) on the underlying probability distribution, parameter x and variable y when we come down
to numerical schemes and the underlying theory for the SQVIP.

One of the main challenges in dealing with stochastic optimization or stochastic equilibrium prob-
lems is to tackle the mathematical expectation because in practice it is often difficult to obtain a
closed form of the expected value of a random function. Various approximation schemes such as
sample average approximation or numerical integration have been proposed to address the challenge,
see an excellent overview by Römisch [21]. Instead of looking into a particular numerical scheme for
the SQVIP, here we consider variation of the probability measure P and its impact on the set of the
solutions. This allows our results to cover a wide range of approximation schemes for the SQVIP and
it is in alignment with standard stability analysis of stochastic programming.

Let Q denote a perturbation of the probability measure P . We consider the following perturbed
stochastic quasi variational inequalities: given a parameter x ∈ X, find a decision vector y ∈ Y such
that

0 ∈ EQ[F (x, y, ξ)] +NΓQ(x,y)(y), (1.3)

where ΓQ : X × Y → 2Y is defined by

ΓQ(x, y) = {z ∈ Y : EQ[G(x, y, z, ξ)] ∈ K}. (1.4)
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Let SP (x0) and SQ(x) denote the set of solutions to problems (1.1) and (1.3) respectively. We investi-
gate the relationship between SQ(x) and SP (x0) as Q approximates P under some appropriate metric
and parameter x converges to x0. To this end, we reformulate SQVIP (1.1) and its perturbation (1.3)
respectively as

Fnat
P (x0, y) := ΠΓP (x0,y)(y − EP [F (x0, y, ξ)])− y = 0 (1.5)

and

Fnat
Q (x, y) := ΠΓQ(x,y)(y − EQ[F (x, y, ξ)])− y = 0, (1.6)

where Π denotes the orthogonal projection, Fnat
P (x0, y) and Fnat

Q (x, y) are natural maps associated
with the respective SQVIPs.

One of the advantages of the reformulation is that the projection map ΠΓQ(x,y)(y−EQ[F (x, y, ξ)])
is single and finite valued and hence it is relatively easier to handle compared to the normal cone
NΓQ(x,y)(y) (which is set-valued and unbounded). A key step for the stability analysis is to quantify
the gap between ΠΓQ(x,y)(y−EQ[F (x, y, ξ)]) and ΠΓP (x0,y)(y−EP [F (x0, y, ξ)]). Since the projection can
be reformulated as the solution to a parametric stochastic minimization problem with cone constraints
(1.2), we quantify the gap by investigating stability of the optimal solutions of the latter. As far as
we are concerned, the main contributions of this paper can be summarized as follows.

• We carry out quantitative stability analysis for a deterministic parametric minimization problem
with cone constraints. Under Slater constraint qualification, we derive Hölder continuity for
the feasible solution set mapping (Lemma 2.2 ) and the optimal solution set mapping against
variation of the parameter over Banach space (Theorem 2.1). In comparison with the existing
stability results for parametric programming (see e.g [6, Chapter 4], [23], [22] and [2]), our
results are established without any assumption on continuous differentiability of the underlying
functions or reducibility of K.

• We apply the stability result to quantify the discrepancy between ΠΓP (x0,y)(y − EP [F (x0, y, ξ)])
and ΠΓQ(x,y)(y − EQ[F (x, y, ξ)]) and consequently the gap between the solutions of (1.5) and
(1.6) under the Slater constraint qualification of parametric cone system (1.2). Moreover, under
some metric regularity conditions and Lipschitz homeomorphism of the natural mapping, we
obtain a liner error bound for the solution set mapping with respect to variation of the prob-
ability measures under pseudometric, see Theorem 4.1. Prior to the stability analysis, we also
investigated sufficient conditions for existence of solutions to perturbed SQVIP (1.3) through
(1.5), see Theorem 3.1.

• We apply the stability results to a mathematical program with stochastic semidefinite constraints
and a mathematical program with SQVIP constraints. The former provides a new stochastic
model which has potential applications in portfolio optimization and the latter extends existing
research on stochastic mathematical programs with equilibrium constraints, see details in Section
5.

The rest of the paper is organized as follows. Section 2 sets out some preliminary concepts and
results in set-valued analysis and stochastic programming needed in this paper. It also presents some
main quantitative stability results for a deterministic parametric minimization problem with cone
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constraints to be used for the stability analysis of SQVIP. Section 3 addresses existence of solutions
to the perturbed SQVIP (1.3) followed by the main stability analysis in Section 4. Section 5 outlines
applications of the established stability results in Section 4 to two new class of stochastic optimization
models.

2 Preliminaries

2.1 Notation

Throughout this paper we use the following notation. By convention, IRn stands for n-dimensional
Euclidean space. For a Banach space X, we write 〈u, x〉 for dual pairing of x ∈ X and u from the dual
space of X. In the case when X is finite dimensional, the dual pairing reduces to scalar product. For
a set-valued mapping Φ, we write gph Φ for its graph and by convention intS, clS bdS the interior,
closure, and boundary of S. We use BX(x, δ) to denote the closed ball with center x ∈ X and radius
δ and BX specifically for the closed unit ball in X. We let d(x, S) := infx′∈S ‖x − x′‖X denote the
distance from point x ∈ X to a set S ⊂ X. For two sets S1, S2 ⊂ X,

D(S1, S2) := inf{t ≥ 0 : S1 ⊂ S2 + tBX}

signifies the deviation of S1 from S2 and H(S1, S2) := max(D(S1, S2),D(S2, S1)) the Hausdorff distance
between the two sets. Finally, for a sequence of subsets {Sk} in a metric space, we follow the standard
notation (see [4, Definition 1.1.1]) by using lim supk→∞ Sk to denote its upper limit, that is,

lim sup
k→∞

Sk = {x : lim inf
k→∞

d(x, Sk) = 0}

and lim infk→∞ Sk to denote its lower limit, that is,

lim inf
k→∞

Sk = {x : lim
k→∞

d(x, Sk) = 0}.

It is well known that lim infk→∞ Sk ⊆ lim supk→∞ Sk, see [4].

2.2 Some basic concepts and results in set-valued and variational analysis

Let Ψ : X → 2Y be a set-valued mapping. Recall that Ψ is said to be closed at x̄ if xk ∈ X, xk → x̄,
yk ∈ Ψ(xk) and yk → ȳ implies ȳ ∈ Ψ(x̄). Ψ is said to be upper semi-continuous (usc for short)
at x̄ ∈ X if and only if for any neighborhood U of Ψ(x̄), there exists a positive number δ > 0 such
that for any x′ ∈ BX(x, δ) ∩X, Ψ(x′) ⊂ U . When Ψ is closed at x̄ and Ψ(x̄) is compact, Ψ is upper
semicontinuous at x̄ if and only if for every ε > 0, there exists a constant δ > 0 such that

Ψ(x̄+ δBX) ⊂ Ψ(x̄) + εBY .

Ψ is said to be lower semi-continuous (lsc for short) at x̄ ∈ X if and only if for any ȳ ∈ Ψ(x̄) and
any sequence {xk} ⊂ X converging to x̄, there exists a sequence {yk}, where yk ∈ Ψ(xk), converging
to ȳ. The lower semicontinuity holds if and only if for any open set U with U ∩ Ψ(x̄) 6= ∅, the set
{x ∈ X : U ∩Ψ(x) 6= ∅} is a neighborhood of x̄. Ψ is said to be continuous at x̄ if it is both usc and
lsc at the point; see [4] for details.
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Note that in the literature of set-valued analysis, there are other notions describing semi-continuity
of a set-valued mapping. For instances, Rockafellar and Wets [20, Definiton 5.4] introduce the concept
of inner semicontinuity and the outer semicontinuity and assert that when a set-valued mapping is
locally bounded, usc coincides with outer semicontinuity and lsc agrees with inner semicontinuity, see
commentary of [20, Chapter 5].

One of the main tasks of set-valued and variational analysis is to detect the stability of a nonlinear
system when perturbations of the data occur. For this purpose, we need the notion of metric regularity
which is well established in the literature (see e.g. [6]).

Definition 2.1 Let Ψ : X → 2Y be a set-valued mapping. Ψ is said to be metrically regular at a
point (x0, y0) ∈ gph(Ψ), with radius C, if for all (x, y) in a neighborhood of (x0, y0),

d(x,Ψ−1(y)) ≤ Cd(y,Ψ(x)). (2.1)

A powerful result arising from metric regularity is Robinson-Ursescu theorem which effectively
relates the well known Slater type constraint qualification to metric regularity of a set-valued mapping.

Lemma 2.1 (Robinson-Ursescu stability theorem [6]) Let Ψ : X → 2Y be a closed convex set-valued
mapping. Then Ψ is metrically regular at (x0, y0) ∈ gph(Ψ) if and only if the regularity condition

y0 ∈ int(range Ψ). (2.2)

More precisely, there exist positive constants ν and η such that (2.2) implies (2.1) with C = 4ν/η
when

‖x− x0‖X ≤
1

2
ν; ‖y − y0‖Y ≤

1

8
η.

When Ψ is single-valued, we need the following concept of locally Lipschitz Homeomorphism.

Definition 2.2 A continuous function Ψ : O ⊆ X → X is said to be locally Lipschitz invertible near
x ∈ O if there exists an open neighborhood N ⊆ O of x such that the restricted map Ψ|N : N → Ψ(N )
is bijective and its inverse is Lipschitz continuous. F is said to be a locally Lipschitz homeomorphism
near x if Ψ is locally Lipschitz invertible near x and Ψ itself is locally Lipschitz continuous near x.

2.3 Quantity stability analysis for deterministic parametric programs

Let U be a metric space equipped with norm ‖ · ‖U , let φ and ψ be continuous functions from Y × U
to IR and Z respectively. We consider the following parametric minimization problem:

(Pu)

min
z∈Y

φ(z, u)

s.t. ψ(z, u) ∈ K,
z ∈ Y,

(2.3)
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where u ∈ U is a fixed parameter, Y ⊂ Y is a compact set4 and K is a closed convex cone in the space
of Z. Unless specified otherwise, we do not assume differentiability of ψ or φ.

Let Ψ(u), Z(u) and ϑ(u) denote respectively the feasible solution set, the set of the optimal
solutions and the optimal value of Pu. Assume Ψ(u) 6= ∅ for each u concerned. Since Y is a compact
set, and φ(·, u) and ψ(·, u) are continuous functions, then Z(u) is a nonempty compact set and ϑ(u)
is finite valued.

We investigate stability of the parametric program by considering a perturbation of parameter u
in a neighborhood of ū and quantifying its impact on the optimal value and the optimal solutions.
At this point, we note that quantitative stability analysis of parametric programs is well documented,
see excellent monograph by Bonnans and Shapiro [6]. Here we concentrate on the case when the
underlying functions are not necessarily differentiable.

To this end, we first study stability of the feasible set Ψ(u). If we regard Ψ(·) as a set-valued
mapping, then the research is in essence down to characterizing continuity of the set-valued mapping
at ū and quantifying the difference between Ψ(u) and Ψ(ū) when u is sufficiently close to ū. Without
loss of generality, we assume that ū and its perturbation u are restricted to a compact set U ⊂ U .

Lemma 2.2 Assume: (a) ψ(·, u) : Y → Z is a continuous (−K)-convex function; (b) ψ(z, u) is
continuous in u at ū uniformly w.r.t. z; (c) problem (2.3) satisfies the following Slater constraint
qualification (SCQ for short) for u = ū:

0 ∈ int {ψ(Y, ū)−K}, (2.4)

where ψ(Y, ū) := {ψ(z, ū) : z ∈ Y}. Then

(i) Ψ(·) is continuous at ū;

(ii) if, in addition, (d) ψ(z, u) is Hölder continuous in u at ū uniformly w.r.t. z, i.e., there exist
some positive constants σ > 0 and ν ∈ (0, 1) such that

‖ψ(z, u)− ψ(z, ū)‖Z ≤ σ‖u− ū‖νU

for u close to ū, then
H(Ψ(u),Ψ(ū)) = O(‖u− ū‖νU ) (2.5)

for all u close to ū. Here and later on, we write f(t) = O(t) for existence of some positive
constant C such that |f(t)| ≤ C|t| when t is close to 0.

Proof. Part (i). Observe that (2.4) implies that Ψ(ū) 6= ∅, and under uniform continuity w.r.t. u
further that Ψ(u) 6= ∅ when u is sufficiently close to ū.

It is well known (see [4, Definition 1.4.6]) that

lim inf
u→ū

Ψ(u) ⊆ cl Ψ(ū) ⊆ lim sup
u→ū

Ψ(u).

4Instead of using notation Z, here we use Y in order to be consistent with the domain of variable z in the cone system
(1.2).
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Since Ψ(ū) is closed, to show continuity of Ψ(·) at ū, it suffices to show that the set-valued mapping
is both upper and lower semicontinuous at ū, that is,

lim sup
u→ū

Ψ(u) ⊆ Ψ(ū) ⊆ lim inf
u→ū

Ψ(u). (2.6)

The upper semicontinuity can be easily verified under the continuity of ψ and closeness of K. Hence
it suffices to show the lower semicontinuity. In the case when Y is a singleton, Ψ(u) reduces to being
single valued and consequently upper semicontinuity coincides with lower semicontinuity. In what
follows, we consider the general case when Y is a set.

Observe that condition (2.4) and continuity of ψ(·, ū) imply that int Ψ(ū) 6= ∅. Moreover, since
ψ(z, u) is uniformly continuous w.r.t. u under condition (b), it is easy to show that for any z ∈ int Ψ(ū),
we can set u sufficiently close to ū such that z ∈ Ψ(u). This allows us to claim that

int Ψ(ū) ⊆ lim inf
u→ū

Ψ(u). (2.7)

Moreover, since Ψ(ū) is convex and closed, we have

Ψ(ū) = cl (int Ψ(ū)) ⊆ cl (lim inf
u→ū

Ψ(u)) ⊆ cl (Ψ(ū)) = Ψ(ū).

Let z∗ ∈ cl (lim infu→ū Ψ(u))\ lim infu→ū Ψ(u). Then z∗ ∈ bd Ψ(ū). It is adequate to show that

z∗ ∈ lim inf
u→ū

Ψ(u) (2.8)

in that (2.8) means bd Ψ(ū) ⊆ lim infu→ū Ψ(u) and in a combination with (2.7), we effectively demon-
strate equality holds in the second inclusion of (2.6).

Let {zk} ⊂ int Ψ(ū) such that zk → z∗. Let {us} ⊂ U be any sequence converging to ū. For each
fixed zk, it follows from (2.7) that there exists a sequence {zsk} converging to zk with zsk ∈ Ψ(us). This
means that for any sequence {us} converging to ū, we can find a sequence {zks} converging to z∗ with
zks ∈ Ψ(us), which is, by definition, the inclusion (2.8).

Part (ii). Since Ψ(ū) is compact and Ψ(·) is closed at ū, the continuity of Ψ(·) at ū means that for
any number δ > 0, there exists ε > 0 such that when ‖u− ū‖U ≤ ε,

H(Ψ(u),Ψ(ū)) ≤ δ

or equivalently

Ψ(u) ⊆ Ψ(ū) + δBY and Ψ(ū) ⊆ Ψ(u) + δBY . (2.9)

In what follows, we use Lemma 2.1 (Robinson-Ursescu’s theorem) to derive an error bound for set-
valued mapping Ψ(·) at ū under condition (d) and Slater constraint qualification (2.4).

Let

Fu(z) :=

{
ψ(z, u)−K for z ∈ Y,

∅ for z /∈ Y.

Condition (a) ensures that Fu(z) is closed and convex set-valued over its domain Y. Moreover,

Ψ(u) = F−1
u (0), (2.10)

7



and z ∈ Ψ(u) if and only if (z, 0) ∈ gph Fu. Furthermore, it follows from (2.4)

0 ∈ int(range Fū). (2.11)

Let z ∈ Ψ(ū) be fixed, that is, (z, 0) ∈ gph Fū. By Lemma 2.1, there exist positive numbers δz, ηz
and cz (depending on z) such that

d(z′,F−1
ū (q)) ≤ czd(q,Fū(z′)). (2.12)

for each z′ ∈ BY (z, δz) ∩ Y and q ∈ BZ(0, ηz). In particular,

d(z′,Ψ(ū)) = d(z′,F−1
ū (0)) ≤ czd(ψ(z′, ū),K). (2.13)

Under condition (d), we have

d(ψ(z′, ū),K) ≤ ‖ψ(z′, ū)− ψ(z′, u)‖Z + d(ψ(z′, u),K) ≤ σ‖u− ū‖νU . (2.14)

for z′ ∈ Ψ(u).

On the other hand, since z is arbitrarily chosen from Ψ(ū), the set Ψ(ū) may be covered by the
union of a collection of δ-balls, i.e.,

Ψ(ū) ⊆
⋃

z∈Ψ(ū)

int BY (z, δz).

Let δ be a positive constant defined as in (2.9) and δz ≤ 2δ. Since Ψ(ū) is a compact set, by the finite
covering theorem, there exist a finite number of points z1, z2, · · · , zk ∈ Ψ(ū) and positive constants
δzi , czi , i = 1, · · · , k such that

Ψ(ū) + δBY ⊆
k⋃
i=1

int BY (zi, δzi) (2.15)

and
d(z′,Ψ(ū)) ≤ czid(ψ(z′, ū),K) (2.16)

for any z′ ∈ BY (zi, δzi) ∩ Y. Let : C = max{cz1 , · · · , czk}. Combining (2.15) and (2.16), we obtain

d(z′,Ψ(ū)) ≤ Cd(ψ(z′, ū),K) (2.17)

for all z′ ∈ [Ψ(ū) + δBY ] ∩ Y. Through (2.9) and (2.14), we arrive at

D(Ψ(u),Ψ(ū)) ≤ Cd(ψ(z, ū),K) ≤ Cσ‖u− ū‖νU

for all z′ ∈ Ψ(u).

To complete the proof of (2.5), it suffices to show

D(Ψ(ū),Ψ(u)) ≤ Cσ‖u− ū‖νU . (2.18)

For any z ∈ Y, let q = ψ(z, ū)−ψ(z, u). Under condition (d), ‖q‖Z ≤ σ‖u− ū‖νU . Moreover, it is easy
to see that Ψ(u) = F−1

ū (q). Let z ∈ Ψ(ū), δz be defined as in (2.12) and ε be defined at the beginning
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of the proof of this part with σεν ≤ δz. Under condition (d), we have ‖q‖ ≤ δz. It follows from (2.12)
(by setting z′ = z) that

d(z,Ψ(u)) = d(z,F−1
ū (q)) ≤ czd(q,Fū(z)). (2.19)

Since z ∈ Ψ(ū), then 0 ∈ Fū(z) and hence

d(q,Fū(z)) ≤ ‖q‖Z ≤ σ‖u− ū‖νU .

Combining the two inequalities above, we obtain

d(z,Ψ(u)) ≤ czσ‖u− ū‖νU

for any z ∈ Ψ(ū) and ‖u − ū‖U ≤ ε. Utilizing the second inclusion in (2.9), we can apply the finite
covering theorem to set Ψ(ū) (similar to previous discussion) and find a positive constant C such that
(2.18) holds. The proof is complete.

It is important to note that both convexity of ψ(·, u) (w.r.t. −K) and Slater constraint qualification
are essential for the continuity of Ψ(·). Indeed, we can easily find a counter example that continuity
may fail in the absence of either condition.

Example 2.1 Consider the following simple parametric cone system

ψ(z, u) ∈ K, (2.20)

where

ψ(z, u) =

{
|z| − 1 for z ≤ 1,
u(z − 1)2 for z ≥ 1,

u is a parameter, and K = (−∞, 0]. It is easy to see that ψ(·, u) is not convex. Let u ∈ U = [0, 1] and
z is restricted to take values from Y := [−2, 2]. Then

Ψ(u) := {z ∈ Y : ψ(z, u) ≤ 0} =

{
[−1, 1] for u > 0,
[−1, 2] for u = 0.

(2.21)

It is easy to verify that Ψ(·) is usc at 0 but it is not lsc at the point. However, problem (2.20) satisfies
SCQ.

To see the necessity of SCQ, let us change ψ(z, u) to the following:

ψ(z, u) =


|z| − 1 for z < −1,
0 for z ∈ [−1, 1),
u(z − 1)2 for z ≥ 1.

Consequently problem (2.20) fails to satisfy SCQ because its solution set does not have an interior.
On the other hand, ψ(·, u) is convex. The solution set Ψ(u), however, remains the same as defined in
(2.21), which means Ψ(·) is not continuous at 0.

With Lemma 2.2, we are now ready to present quantitative stability results of parametric mini-
mization problem (2.3). Let Z(u) and Z(ū) denote the respective set of optimal solutions and ϑ(u)
and ϑ(ū) the corresponding optimal values.
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Theorem 2.1 Let conditions (a)-(d) in Lemma 2.2 hold. Assume the objective function φ satisfy the
following: (a) φ(z, u) is Hölder continuous in u at ū uniformly w.r.t. z, i.e., there exist some positive
constants % and γ ∈ (0, 1) such that

|φ(z, u)− φ(z, ū)| ≤ %‖u− ū‖γU
for u close to ū; (b) φ(z, u) is globally Lipschitz continuous in z with modulus L; (c) φ(·, ū) satisfies
second order growth condition at the optimal solution set Z(ū), that is, there exists a positive constant
α > 0 such that

|φ(z, ū)− ϑ(ū)| ≥ αd (z,Z(ū))2 , ∀ z ∈ Ψ(ū).

Then

(i) there exists a positive constant c′ such that

D (Z(u),Z(ū)) ≤ c′‖u− ū‖βU (2.22)

for u close to ū, where β = 1
2 min(ν, γ), ν is defined as in Lemma 2.2.

(ii) If the second order growth condition holds uniformly for all u close to ū, then

H (Z(u),Z(ū)) ≤ c′‖u− ū‖βU . (2.23)

Proof. Part (i). First we show that

D (Z(u),Z(ū)) ≤ max
z∈Z(u)

‖z −ΠΨ(ū)(z)‖Y +R(u), (2.24)

where ΠΨ(ū)(z) denotes orthogonal projection of z on Ψ(ū),

R(u) :=

(
1

α

[
2%‖u− ū‖γU + L

(
max
z∈Z(u)

‖z −ΠΨ(ū)(z)‖Y + min
z∈Z(ū)

‖z −ΠΨ(u)(z)‖Y
)]) 1

2

. (2.25)

Let z(u) ∈ Z(u) and z(ū) ∈ Z(ū). Under conditions (b) and (c)

ϑ(u)− φ(ΠΨ(ū)(z(u)), ū) = φ(z(u), u)− φ(ΠΨ(ū)(z(u)), ū)

≥ −L‖z(u)−ΠΨ(ū)(z(u))‖Y − %‖u− ū‖γU (2.26)

for u close to ū. On the other hand, since ΠΨ(u)(z(ū)) ∈ Ψ(u) and z(u) is an optimal solution to Pu,
we have

ϑ(u) ≤ φ
(
ΠΨ(u)(z(ū)), u

)
.

Using this inequality and the growth condition (c), we have

ϑ(u)− φ(ΠΨ(ū)(z(u)), ū) = φ(z(u), u)− φ(z(ū), u) + (φ(z(ū), u)− φ(z(ū), ū))

−(φ(ΠΨ(ū)(z(u)), ū)− φ(z(ū), ū))

≤ φ(ΠΨ(u)(z(ū)), u)− φ(z(ū), u) + %‖u− ū‖γU
−αd

(
ΠΨ(ū)(z(u)),Z(ū)

)2
≤ L‖ΠΨ(u)(z(ū))− z(ū)‖Y + %‖u− ū‖γU
−αd

(
ΠΨ(ū)(z(u)),Z(ū)

)2
(2.27)
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for u close to ū. Combining (2.26) and (2.27), we obtain

d
(
ΠΨ(ū)(z(u)),Z(ū)

)
≤
(
[L‖z(u)−ΠΨ(ū)(z(u))‖Y + 2%‖u− ū‖γU + L‖z(ū)−ΠΨ(u)(z(ū))‖Y ]/α

) 1
2 , (2.28)

which yields (2.24) through the triangle inequality below

d (z(u),Z(ū)) ≤ ‖z(u)−ΠΨ(ū)(z(u))‖Y + d
(
ΠΨ(ū)(z(u)),Z(ū)

)
(2.29)

because z(u) and z(ū) are arbitrarily taken from the set of optimal solutions. Since Z(u) ⊆ Ψ(u), it
follows by Lemma 2.2 that there exists a constant ε > 0 such that

max

{
max
z∈Z(u)

‖z −ΠΨ(ū)(z)‖Y , min
z∈Z(ū)

‖z −ΠΨ(u)(z)‖Y
}

= O(‖u− ū‖νU ) (2.30)

when ‖u− ū‖U ≤ ε. Combining (2.24) and (2.30), we obtain (2.22).

Part (ii). We only need to show that

D (Z(ū),Z(u)) ≤ c′‖u− ū‖βU .

From the proof of Part (i), we can see that we can swap u with ū except that the first inequality in
formulae (2.27) requires second order growth condition of φ(·, u) over the optimal solution set Z(u).

Theorem 2.1 gives rise to quantitative stability analysis for the parametric minimization problem
(2.3) under standard conditions (see Klatte [12]) including uniform Hölder continuity of the constraint
function ψ w.r.t. parameter u, Slater constraint qualification and second order growth condition of
the objective function. Specifically, it says that the set of the optimal solutions is locally upper Hölder
continuous at ū if ψ(·, u) is convex, and locally Hölder continuous at ū if the second order growth
condition is uniform w.r.t. parameter u. Compared to existing stability results (see e.g [6, Chapter
4], [23], [22] and [2]), the strength of this theorem is that it is established without any assumption on
continuous differentiability of the underlying functions or reducibility of K. The result has potential
to be applied to semidefinite programming by setting Z to a matrix space and K to the cone of
semidefinite matrices albeit it is not our primal goal in this paper.

Let us now consider a special case of problem (2.3)

min
z∈Y

φ(z, u) := 1
2‖z − g(u)‖2Y ,

s.t. ψ(z, u) ∈ K,
z ∈ Y,

(2.31)

where g(u) is a continuous function of z and u. It is easy to observe that the optimal solution to (2.31)
is the orthogonal projection of g(u) on the feasible set Ψ(u), namely ΠΨ(u)(g(u)).

Corollary 2.1 Consider parametric minimization problem (2.31). Assume that conditions (a)-(d) in
Lemma 2.2 hold. Assume also that g : U → Y is Hölder continuous at ū, that is, there exist positive
constants % and γ ∈ (0, 1)

‖g(u)− g(ū)‖Y ≤ %‖u− ū‖γU
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for u close to ū. Then

‖ΠΨ(u)(g(u))−ΠΨ(ū)(g(ū))‖Y = O(‖u− ū‖βU ) (2.32)

for any u close to ū, where β = 1
2 min(ν, γ), ν is defined as in Lemma 2.2.

Proof. It suffices to verify conditions of Theorem 2.1. Observe first that the set of optimal solutions
Z(u) is a singleton because Ψ(u) is a convex set and Z(u) = {ΠΨ(u)(g(u))}. Since the conditions on
the constraints are identical to those in Theorem 2.1, we only need to verify the conditions for the
objective function φ. Here

φ(z, u) =
1

2
(‖z‖2Y − 2〈z, g(u)〉+ ‖g(u)‖2Y ).

It is easy to see that φ(·, u) is Lipschitz continuous with modulus being bounded by supz∈Y,u∈U (‖z‖+
‖g(u)‖), where U is a compact neighborhood of ū. φ(z, ·) is Hölder continuous at ū, that is,

|φ(z, u)− φ(z, ū)| ≤ % sup
z∈Y,u∈U

(‖z‖Y + ‖g(u)‖Y )‖u− ū‖γU

when u close to ū. This verifies conditions (a) and (b) of Theorem 2.1. To see the growth condition,
the orthogonal project of g(u) over the convex set Ψ(ū) means that〈

ΠΨ(ū)(g(ū))− g(ū), z −ΠΨ(ū)(g(ū))
〉
≥ 0, ∀z ∈ Ψ(ū).

With the inequality, we can obtain

φ(z, ū)− ϑ(ū) =
1

2
‖z − g(ū)‖2Y −

1

2
‖ΠΨ(ū)(g(ū))− g(ū)‖2Y

≥ 1

2
‖z −ΠΨ(ū)(g(ū))‖2Y

Note that the second order growth holds when ū is replaced by any u. The proof is complete.

2.4 Pseudometric

Let F (x, y, ξ) and G(x, y, z, ξ) be defined as in (1.1) and (1.2). Let B denote the sigma algebra of all
Borel subsets of Ξ (the support set of ξ) and P be the set of all probability measures of the measurable
space (Ξ,B). Let

F := {F (x, y, ξ(·)) : x ∈ X , y ∈ Y},

G := {G(x, y, z, ξ(·)) : x ∈ X , y ∈ Y, z ∈ Y}.

For any probability measures P,Q ∈P, define the distances

DF (Q,P ) := sup
f∈F
‖EP [f(ξ)]− EQ[f(ξ)]‖Y ,

DG(Q,P ) := sup
g∈G
‖EP [g(ξ)]− EQ[g(ξ)]‖Z ,

and
DH(Q,P ) := max{DF (Q,P ),DG(Q,P )}.
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It is easy to see that DF (Q,P ) = 0 if and only if EP [f(ξ)] = EQ[f(ξ)] for all f ∈ F but it does not
necessarily mean P = Q unless the set F is sufficiently large. Similar comments apply to DG(Q,P ).
This type of distance is widely used for stability analysis of stochastic programming and is known
as pseudometric in that it satisfies all properties of a metric except that DF (Q,P ) = 0 does not
necessarily imply P = Q unless the set of functions F is sufficiently large. For a comprehensive
discussion of the concept and related issues, see [21, Sections 2.1-2.2].

3 Existence of a solution to the perturbed SQVIP

In this section, we discuss existence of solutions to the perturbed SQVIP (1.3) before we move on to
stability analysis in the next section. To this end, we assume that Y is a compact set throughout this
section and make the following assumptions.

Assumption 3.1 Consider (1.2). There exists x0 ∈ X such that

0 ∈ int{EP [G(x0, y,Y, ξ)]−K}, ∀y ∈ Y, (3.1)

where EP [G(x0, y,Y, ξ)] := {EP [G(x0, y, z, ξ)] : z ∈ Y}.

Condition (3.1) is a stochastic analogue of Slater constraint qualification which we use in Section
2.3. Note that the condition implicitly assumes ΓP (x0, y) 6= ∅ for any y ∈ Y.

Assumption 3.2 Let x0 be defined as in Assumption 3.1 and P̂ ⊂P be a set of probability measures
such that P,Q ∈ P̂. Let G(x, y, z, ξ) be defined as in (1.2). The following hold.

(a) For each fixed ξ ∈ Ξ, G(x, y, z, ξ) is uniformly locally Lipschitz continuous in x at x0 and
globally Lipschitz continuous in z on Y with Lipschitz modulus being bounded by κ(ξ), where
supP∈P̂ EP [κ(ξ)] <∞.

(b) For each fixed (y, z) ∈ Y × Y, supP∈P̂ ‖EP [G(x0, y, z, ξ)]‖Z <∞.

(c) For each fixed ξ ∈ Ξ, F (x, y, ξ) is uniformly locally Lipschitz continuous in x at x0 with Lipschitz
modulus being bounded by κ(ξ) and continuous in y on Y, where supP∈P̂ EP [κ(ξ)] <∞.

(d) For each fixed y ∈ Y, supP∈P̂ ‖EP [F (x0, y, ξ)]‖Y <∞.

Assumption 3.2 (b) ensures well definedness of EQ[G(x0, y, z, ξ)] for each (y, z) ∈ Y ×Y. Together
with Assumption 3.2 (a), it also guarantees well definedness of EQ[G(x, y, z, ξ)] for x near x0. Moreover,
through Lebesgue dominance convergence theorem, EQ[G(x, y, ·, ξ)] is continuous on Y for each fixed
Q close to P and y ∈ Y. Similar comments apply to EQ[G(x0, y, z, ξ)] under Assumptions 3.2 (c) and
(d). With Assumptions 3.1 and 3.2, we can easily obtain the following.

Proposition 3.1 Let Assumptions 3.1 and 3.2 hold and x0 ∈ X be given as in Assumption 3.1. Then
the following assertions hold.
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(i) Both EQ[G(x, y, z, ξ)] and EQ[F (x, y, z, ξ)] are uniformly Lipschitz continuous in Q (independent
of x and y) and uniformly continuous in x at x0 (independent of Q and y), that is,

‖EQ[G(x, y, z, ξ)]− EP [G(x0, y, z, ξ)]‖Z ≤ DG(P,Q) + sup
P∈P̂

EP [κ(ξ)]‖x− x0‖X (3.2)

and
‖EQ[F (x, y, ξ)]− EP [F (x0, y, ξ)]‖Y ≤ DF (P,Q) + sup

P∈P̂
EP [κ(ξ)]‖x− x0‖X (3.3)

for any (y, z) ∈ Y × Y and x ∈ X close to x0.

(ii) The perturbed cone system 0 ∈ EQ[G(x0, y, z, ξ)] − K satisfies Slater Constraint Qualification,
that is,

0 ∈ int{EQ[G(x0, y,Y, ξ)]−K}, ∀ y ∈ Y, (3.4)

when Q is close to P .

(iii) ΓQ(x, y) is nonempty for Q close to P and x close to x0, and ΓQ(x, ·) is continuous over Y.

(iv) For any y0 ∈ Y,

lim
y→y0

ΠΓP (x,y)(z) = ΠΓP (x,y0)(z).

Proof. Part (i). Let X be a compact neighborhood of x0. Observe first that for each fixed x ∈ X and
y ∈ Y, EP [G(x, y, z, ξ)] is continuous w.r.t. variation of probability measure P under the pseudometric
D defined in Section 2. In fact, for any P,Q ∈ P̂

‖EP [G(x0, y, z, ξ)]− EQ[G(x0, y, z, ξ)]‖Z ≤ DG(P,Q) (3.5)

for any (y, z) ∈ Y × Y. Under Assumption 3.2 and the compactness of X , we have

sup
x∈X ,P∈P̂

‖EP [G(x, y, z, ξ)]‖Z <∞

for any (y, z) ∈ Y × Y. On the other hand, for any x ∈ X close to x0,

‖EQ[G(x, y, z, ξ)]− EQ[G(x0, y, z, ξ)]‖Z ≤ sup
Q∈P̂

EQ[κ(ξ)]‖x− x0‖X (3.6)

for any (y, z) ∈ Y × Y. Combining (3.5) and (3.6), we obtain (3.2). We obtain (3.3) in the same way.

Part (ii). For any ε > 0, there exists δ > 0 such that

−EP [G(x0, y, z, ξ)] +K ⊂ −EQ[G(x, y, z, ξ)] +K + εBZ (3.7)

for all (y, z) ∈ Y × Y when max{DG(P,Q), ‖x− x0‖X} ≤ δ. This shows

−EP [G(x0, y,Y, ξ)] +K ⊂ −EQ[G(x, y,Y, ξ)] +K + εBZ .

By Assumption 3.1, there exists τ > 0 such that

τBZ ⊆ −EP [G(x0, y,Y, ξ)] +K.
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Let ε := τ/2. By (3.7), there exists positive number δ′ < δ such that

τ

2
BZ ⊆ −EQ[G(x, y,Y, ξ)] +K (3.8)

for any y ∈ Y when max{DG(P,Q), ‖x− x0‖X} ≤ δ′.

Part (iii). The nonemptiness comes from Part (ii). We make use of Lemma 2.2 (i) to show the
continuity by treating (EQ[·], x, y) as a parameter. The convexity of EQ[G(x, y, z, ξ)] in z is obvious
under our generic assumption that G is convex in z for each x, y, ξ in the definition of SQVIP in Section
1. Part (i) of this proposition addresses condition (b) of the lemma whereas the Slater condition is
explicitly assumed here. Therefore all conditions for Lemma 2.2 (i) are verified.

Part (iv). The conclusion follows by Part (ii) and [20, Proposition 4.9].

Proposition 3.1 paves the way for us to state our main result in this section which asserts existence
of solutions to the perturbed SQVIP (1.3).

Theorem 3.1 Under Assumptions 3.1-3.2, SQ(x) is a nonempty and compact set for Q close to P
under pseudometric D and x close to x0.

Proof. We prove the result by making use of [17, Theorem 1]. It therefore suffices to verify the
conditions of the theorem. From Proposition 3.1, we know that for fixed Q close to P and x close to
x0, ΓQ(x, y) is a nonempty convex set for any y ∈ Y and ΓQ(x, ·) is continuous on Y. The closedness
of ΓQ(x, y) is due to continuity of EQ[G(x, y, ·, ξ)] for fixed x and y and closeness of K.

In the literature of deterministic QVIP, conditions for existence have been well investigated. For
instance, under compactness assumptions, Pang and Fukushima [17] established an existence result
without assuming any special structure of ΓP (x, y). Existence results without compactness condition
are obtained by Facchinei and Pang [10]. Our Theorem 3.1 may be regarded as an analogue of [17,
Theorem 1] for the stochastic QVIP (1.3).

4 Stability of SQVIP

In this section, we return to the main topic of the paper, that is, quantitative stability analysis of
SQVIP (1.1). Specifically we investigate the relationship between the set of solutions to the perturbed
SQVIP (1.3) and its true counterpart when parameter x varies locally at certain fixed point x0 and
the probability measure Q is close to P under the pseudometric DH(Q,P ) defined in Section 2.3. As
explained in the introduction, we plan to do so through the normal equations (1.6) and (1.5). A key

step is to estimate the discrepancy between Fnat
Q (x, y) and Fnat

P (x0, y) which can be quantified by

‖ΠΓQ(x,y)(y − EQ[F (x, y, ξ)])−ΠΓP (x,y)(y − EP [F (x0, y, ξ)])‖Y . (4.9)

Observe that for fixed (x, y) ∈ IRn× IRm and Q ∈ P̂, ΠΓQ(x,y)(y−EQ[F (x, y, ξ)]) is the unique optimal
solution to the following convex minimization problem

min
z∈Y

1
2 ‖z − y + EQ[F (x, y, ξ)]‖2Y

s.t. EQ[G(x, y, z, ξ)] ∈ K,
(4.10)
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where z is the only decision variable, whereas x and y are parameters. In other words, the quantity
to be estimated in (4.9) is essentially the deviation of the optimal solution of problem (4.10) from its
true counterpart if we regard Q and x as a perturbation from P and x0.

Along this line, we may carry out stability analysis of SQVIP (1.1) through problem (4.10). On
the other hand, the latter may be treated as a special case of parametric minimization problem (2.31)
and this is indeed one of the underlying reasons for us to present the stability analysis for generic
parametric minimization problems. To see this argument clearly, let u = (EQ[·, ·], x, y). The only
thing we need to explain is that the mathematical expectation operation EQ[·] can indeed be treated
as a parameter in the metric space of probability measure P. Let

M := {Q ∈P : DH(Q,P ) ≤ δ}.

For any nonnegative measure µ defined over Ω, let

〈µ, h〉 :=

∫
Ω
h(ξ(ω))µ(dω).

Then EQ[F (x, y, ξ)] may be written as 〈EQ, F (x, y, ξ)〉. In doing so, we can effectively treat operation
EQ[·] as a parameter in the space of probability measures P equipped with the pseudometric.

Using Corollary 2.1, we are able to present quantitative stability analysis for problem (4.10) which
is one of the main technical results in this section.

Proposition 4.1 Let Assumptions 3.1-3.2 hold. Then there exist positive constants ρ and β ∈ (0, 1)
such that

‖Fnat
Q (x, y)− Fnat

P (x0, y)‖Y ≤ ρ(DH(Q,P ) + ‖x− x0‖X)β (4.11)

for any y ∈ Y, x close to x0 and Q close to P (under pseudometric DH defined in Section 2.4).

Proof. We use Corollary 2.1 to prove the result. Note that the corollary has two set of conditions:
one for the objective function while the other for the constraints.

Let g(u) := EQ[y − F (x, y, ξ)] and ψ(z, u) := EQ[G(x, y, z, ξ)] where u is a parameter comprising
three components: x, y and EQ[·]. Let g(ū) := EP [y − F (x0, y, ξ)] and ψ(z, ū) := EP [G(x0, y, z, ξ)]
with ū representing x0, y and EP [·].

Conditions concerning the constraints are essentially about−K-convexity of ψ(·, u), uniform Hölder
continuity ψ in u and Slater condition. In this context, convexity is straightforward, while the other
two properties are either addressed in Proposition 3.1 (i) or explicitly assumed.

The condition concerning the objective function is even simpler because g(u) is indeed Lipschitz
continuous by Proposition 3.1 (i).

With Proposition 4.1, we are ready to state the main stability result of this section.

Theorem 4.1 Let X ⊆ X and Y ⊆ Y be compact set. Under Assumptions 3.1-3.2, the following
assertions hold.
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(i) There exist δ > 0, γ > 0 and β ∈ (0, 1) such that

D(SQ(x), SP (x0)) ≤ R−1
(
2γ(DH(Q,P ) + ‖x− x0‖X)β

)
(4.12)

for any (x,Q) ∈ BX(x0, δ)× U(P, δ), where for any small positive number ε > 0,

R(ε) = inf
y∈Y, d(y,SP (x0))≥ε

∥∥∥Fnat
P (x0, y)

∥∥∥
Y
,

U(P, δ) = {Q ∈ P : DH(Q,P ) < δ}, R−1(ε) = min{t ∈ IR+ : R(t) = ε} and R−1(ε) → 0 as
ε ↓ 0.

(ii) If Fnat
P (x0, y) is metrically regular at each y∗ ∈ SP (x0) for 0, then there exist positive constants

c and δ such that
D(SQ(x), SP (x0)) ≤ c

(
DH(Q,P ) + ‖x− x0‖X

)β
(4.13)

for any (x,Q) ∈ BX(x0, δ)× U(P, δ).

(iii) If Fnat
P (x0, y) is a locally Lipschitz homeomorphism at y∗ ∈ SP (x0), then there exist positive

constants c, δ and a neighborhood V of y∗ such that

‖y − y∗‖Y ≤ c
(
DH(Q,P ) + ‖x− x0‖X

)β
(4.14)

for any y ∈ SQ(x) ∩ V with (x,Q) ∈ BX(x0, δ)× U(P, δ).

Proof. Part (i). By the definition of R(ε), R(0) = 0 and R(ε) is nondecreasing on [0,+∞). We show
that R(ε) > 0 for ε > 0. Assume for the sake of a contradiction that R(ε) = 0 for some ε > 0. Then
there exists a sequence {yk} ⊆ Y such that d(yk, SP (x0)) ≥ ε and

lim
k→∞

∥∥∥Fnat
P (x0, yk)

∥∥∥
Y

= 0. (4.15)

Since Y is a compact set, we may assume without loss of generality that yk → ȳ as k → ∞. Then
ȳ ∈ Y and by Proposition 3.1 (iv)

lim
k→∞

∥∥∥Fnat
P (x0, yk)− Fnat

P (x0, ȳ)
∥∥∥
Y

= 0,

which, together with (4.15), yield Fnat
P (x0, ȳ) = 0 and hence ȳ ∈ SP (x0). This leads to a contradiction

as desired because d(ȳ, SP (x0)) ≥ ε > 0. The discussion manifests that R−1(ε)→ 0 as ε ↓ 0.

In what follows, we show (4.12). Let ε be a fixed small positive number and y ∈ Y with

d(y, SP (x0)) > ε. Then
∥∥∥Fnat

P (x0, y)
∥∥∥
Y
≥ R(ε). Moreover, by Proposition 4.1, there exist constants

δ̄ > 0, γ > 0 and β ∈ (0, 1) such that∥∥∥Fnat
Q (x, y)

∥∥∥
Y
≥

∥∥∥Fnat
P (x0, y)

∥∥∥
Y
−
∥∥∥Fnat

Q (x, y)− Fnat
P (x0, y)

∥∥∥
Y

≥ R(ε)− ρ(DH(Q,P ) + ‖x− x0‖X)β (4.16)

for any Q ∈ P with DH(Q,P ) ≤ δ̄ and x ∈ X with ‖x − x0‖X < δ̄. Let δ̄ be sufficiently small such
that

ρ(DH(Q,P ) + ‖x− x0‖X)β ≤ R(ε)/2.
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Then we arrive at
∥∥∥Fnat

Q (x, y)
∥∥∥
Y
≥ R(ε)/2 > 0 which implies y 6∈ SQ(x). This shows

DH(SQ(x), SP (x0)) ≤ ε (4.17)

for any Q ∈ P with DH(Q,P ) < δ̄ and x ∈ X satisfying ‖x − x0‖X < δ̄. The rest follows from the
definition of R−1.

Part (ii). Since Fnat
P (x0, y) is metrically regular at y∗ for 0 with modulus α > 0 and from Part

(i) SQ(x) is upper semicontinuous w.r.t. (Q, x) at (P, x0), there exist positive constants δ1, δ2 and α
such that

d(y, SP (x0)) ≤ αd(0,Fnat
P (x0, y)) = α‖Fnat

P (x0, y)‖Y (4.18)

for all y ∈ SQ(x)∩BY (y∗, δ1) with x ∈ BX(x0, δ2) and Q close to P . Let y ∈ SQ(x). Then Fnat
Q (x, y) =

0 and ∥∥∥Fnat
P (x0, y)

∥∥∥
Y

=
∥∥∥Fnat

Q (x, y)− Fnat
P (x0, y)

∥∥∥
Y

(4.19)

Combining (4.18) and (4.19), and making use of Proposition 4.1, we obtain

d(y, SP (x0)) ≤ α
∥∥∥Fnat

Q (x, y)− Fnat
P (x0, y)

∥∥∥
Y
≤ αρ(DH(Q,P ) + ‖x− x0‖X)β

for any y ∈ SQ(x) ∩BY (y∗, δ1) with Q close to P and x close to x0. Analogous to the second part of
the proof of Lemma 2.2, we can show by exploiting the compactness of SP (x0) that there exists ε > 0
such that

d(y, SP (x0)) ≤ αρ(DH(Q,P ) + ‖x− x0‖X)β (4.20)

for every y ∈ SQ(x) ∩ (SP (x0) + εBY ). The conclusion is apparent in that we have shown in Part (i)
SQ(x) ⊆ SP (x0) + εBY .

Part (iii). The locally Lipschitz homeomorphism of Fnat
P (x0, y) at y∗ implies that there exist

positive constants δ, ε and a unique locally Lipschitz continuous function ỹ(·) : BY (0, δ) → BY (y∗, ε)
such that

ỹ(0) = y∗, {y∗} = SP (x0)
⋂
BY (y∗, ε) and Fnat

P (x0, ·)−1(q)
⋂
BY (y∗, ε) = ỹ(q)

for every q ∈ BY (0, δ). For each Q and x, let

∆Q(x, y) := Fnat
Q (x, y)− Fnat

P (x0, y)

It is easy to see that ∆Q(x, y) is a continuous vector-valued function of y parameterized by Q and x.
By Proposition 4.1, there exists positive number δ1 such that

sup
x∈BX(x0,δ1),Q∈U(P,δ1),y∈BY (y∗,ε)∩Y

‖∆Q(x, y)‖Y < δ,

which implies that ∆Q(x, y) ∈ BY (0, δ). Thus for each ŷ ∈ SQ(x) ∩ BY (y∗, ε) with x ∈ BX(x0, δ1)

and Q ∈ U(P, δ̂1), ŷ satisfies Fnat
P (x, ŷ) = ∆Q(x, ŷ), or equivalently, Fnat

P (x, ·)−1(∆Q(x, ŷ)) = ŷ. By
the definition of ỹ(·) and Proposition 4.1, we have ỹ(∆Q(x, ŷ)) = ŷ and there exists K > 0 and µ > 0
such that

‖ŷ − y∗‖Y = ‖ỹ(∆Q(x, ŷ))− ỹ(0)‖Y ≤ K‖∆Q(x, y)‖Y
≤ K sup

x∈BX(x0,δ1),Q∈U(P,δ1),y∈BY (y∗,ε)∩Y
‖∆Q(x, y)‖Y

≤ Kµ(DH(Q,P ) + ‖x− x0‖X)β.

The proof is complete.
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5 Applications

In this section, we discuss application of the stability results for the SQVIP. Since the SQVIP can
be used to represent first order optimality conditions of many one stage stochastic optimization or
equilibrium problems with stochastic cone constraints, we restrict our discussion to problems where
there is a clear advantage to use our results over other existing results on SVIP.

5.1 One stage stochastic programs with stochastic semidefinite constraints

Let us start with a mathematical program with matrix cone constraints:

min
y∈IRm

EP [v(x, y, ξ)]

s.t. (EP [g(x, y, ξ)]− µ0)Σ−1
0 (EP [g(x, y, ξ)]− µ0) ≤ γ,

EP
[
(g(x, y, ξ)− µ0)(g(x, y, ξ)− µ0)T

]
� Σ0,

y ∈ Y,

(5.21)

where v, g are continuous functions mapping from IRn × IRm × Ξ to IR and IRp respectively, ξ is a
random variable and Y is a closed convex subset of IRm, µ0 is a fixed vector and Σ0 is a symmetric
positive definite matrix. Here and later, for a matrix M we write M � 0 and M � 0 for M being
negative semidefinite and positive semidefinite and M ≺ 0 and M � 0 for M being negative definite
and positive definite.

In portfolio optimization, we may interpret g(x, y, ξ) as a vector of returns from several portfolios,
µ0 as the targeted mean value and Σ0 a specified level of covariance. The model differs from existing
models in the literature of portfolio optimization where g is often a real valued function representing
aggregate return from a single portfolio of investments. By considering g as a vector valued function,
the model allows one to divide the portfolio into a number of groups according to the nature of the
assets and the constraint on covariance restricts correlation between the groups of assets. Through a
simple mathematical maneuver, we can reformulate (5.22) as

min
y∈IRm

EP [v(x, y, ξ)]

s.t. EP
[

Σ0 g(x, y, ξ)− µ0

(g(x, y, ξ)− µ0)T γ

]
� 0,

EP [(g(x, y, ξ)− µ0)(g(x, y, ξ)− µ0)T ] � Σ0,
y ∈ Y.

(5.22)

Let Sp and Sp+ denote the space of p× p symmetric matrices and the cone of positive semidefinite
matrices in Sp respectively. Problem (5.22) can be recast as a one stage stochastic semidefinite
programming (SSDP):

min
y∈IRm

EP [v(x, y, ξ)]

s.t. EP [G(x, y, ξ)] ∈ K,
y ∈ Y,

(5.23)

where

G(x, y, ξ) =

[
Σ0 g(x, y, ξ)− µ0

(g(x, y, ξ)− µ0)T γ

]
⊗
[
Σ0 − (g(x, y, ξ)− µ0)(g(x, y, ξ)− µ0)T

]
,

19



and K = S2p
+ ⊗ S

p
+, where “⊗” denotes the Cartesian product. In the case when g(x, ·, ξ) is linear

function in y for any fixed x ∈ X and ξ ∈ Ξ, we can show that

ΓP (x) := {z ∈ Y : EP [G(x, z, ξ)] ∈ K} (5.24)

is a convex set for any fixed x ∈ X . Consequently, the solution set of SSDP can be represented
as the solution set of SQVIP (1.1) with ΓP (x, y) := ΓP (x) being defined in (5.24) and F (x, y, ξ) :=
∇yv(x, y, ξ).

Evidently, if the integral involved in the mathematical expectation can be evaluated either ana-
lytically or numerically, then the SSDP can be solved by existing numerical methods. However, in
many situations, exact evaluation of the expected value is either impossible or prohibitively expensive.
Consequently, some approximation methods such as sample average approximation (SAA) are needed
to deal with the mathematical expectation and it is necessary to assess the impact on the optimal
value and optimization solution. Here we take a general step by looking into stability of the problem in
terms of variation of probability measures which should cover abroad class of approximation schemes
with practical interest. Specifically, we consider

min
y∈IRm

EQ[v(x, y, ξ)]

s.t. EQ[G(x, y, ξ)] ∈ K,
y ∈ Y,

(5.25)

where probability measure Q is an approximation of P under some appropriate metric.

Assumption 5.1 Let P̂ ⊂ P be a set of probability measures such that P,Q ∈ P̂. The following
hold.

(a) For each fixed ξ ∈ Ξ and x ∈ X , ∇yv(x, y, ξ) is uniformly Lipschitz continuous in y with Lipschitz
modulus being bounded by κ(ξ), where supP∈P̂ EP [κ(ξ)] <∞.

(b) For each fixed ξ ∈ Ξ and x ∈ X ,∇yv(x, y, ξ) is θ-monotone on IRm for some θ > 1, i.e., there
exists c(ξ) > 0 such that

(∇yv(x, y, ξ)−∇yv(x, y′, ξ))T (y − y′) ≥ c(ξ)‖y − y′‖θ

holds for any y, y′ ∈ Y and each fixed x ∈ X and ξ ∈ Ξ with supP∈P̂ EP [c(ξ)] < ∞. Unless
specified otherwise, ‖ · ‖ denotes the Euclidean norm in a finite dimensional space throughout
this section.

Theorem 5.1 Let ŜP (x) and ŜQ(x) denote the set of solutions to problems (5.23) and (5.25) respec-
tively. Let X ⊆ IRn and Y ⊆ IRm be compact sets. Assume: (a) g(x, ·, ξ) be a linear function in y
for any fixed x ∈ X and ξ ∈ Ξ, (b) Assumption 3.2 holds for F (x, y, ξ) ≡ ∇yv(x, y, ξ) and G(x, y, ξ)
defined in (5.23), (c) for a fixed x0 ∈ X , there exists ŷ ∈ Y such that[

Σ0 g(x0, ŷ, ξ)− µ0

(g(x0, ŷ, ξ)− µ0)T γ

]
� 0 and EP [(g(x0, ŷ, ξ)−µ0)(g(x0, ŷ, ξ)−µ0)T ] ≺ Σ0. (5.26)

Then the following assertions hold.
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(i) There exist δ > 0, ρ > 0 and β ∈ (0, 1) such that

D(ŜQ(x), ŜP (x0)) ≤ R−1
(
2ρ(DH(Q,P ) + ‖x− x0‖)β

)
for any (x,Q) ∈ B(x0, δ)× U(P, δ), where for any small positive number ε > 0,

R(ε) = inf
y∈Y, d(y,ŜP (x0))≥ε

∥∥ΠΓP (x0)(y − EP [∇yv(x0, y, ξ)])− y
∥∥ ,

R−1(ε) = min{t ∈ IR+ : R(t) = ε} and R−1(ε)→ 0 as ε ↓ 0.

(ii) If, in addition, ∇yv(x, y, ξ) satisfies Assumption 5.1, then ŜQ(x) and ŜP (x0) reduce to singleton
and there exist positive constants α, ρ and β such that

D(ŜQ(x), ŜP (x0)) ≤ ρ(DH(Q,P ) + ‖x− x0‖)α

for any (x,Q) ∈ B(x0, δ)× U(P, δ),

where DH(Q,P ) is defined as in Section 2.3 with F = ∇yv and G being defined as in this theorem.

Proof. The thrust of the proof is to apply Theorem 4.1. Let X,Y and Z in Theorem 4.1 be defined
as IRn, IRm and S2p ⊗ Sp equipped with Euclidean norm for X and Y and Frobenius norm for Z.

Recall that K = S2p
+ ⊗S

p
+. It is easy to see that int K is nonempty and EP [G(x0, ·, ξ)] is −K-convex.

Moreover, condition (c) is equivalent to EP [G(x0, ŷ, ξ)] ∈ intS2p
+ ⊗ S

p
+, and by [6, Proposition 2.106],

it coincides with the Slater condition (3.1). The conclusion follows from Theorem 4.1 (i).

Part (ii). Assumption 5.1 (b) implies that EP [∇yv(x0, y, ξ)] is θ-monotone over Y. By [10, Theorem

2.3.3], ŜP (x0) is a singleton, denoted by {y∗}. Moreover, there exists constant κ > 0 such that

‖y − y∗‖ ≤ κ
∥∥ΠΓP (x0)(y − EP [∇yv(x0, y, ξ)])− y

∥∥ 1
θ−1 ,∀y ∈ Y.

Thus for any y ∈ ŜQ(x),

‖y − y∗‖ ≤ κ
∥∥∥ΠΓQ(x)(y − EQ[∇yv(x, y, ξ)])−ΠΓP (x0)(y − EP [∇yv(x0, y, ξ)])

∥∥∥ 1
θ−1

. (5.27)

Furthermore, under Assumptions 3.2 and 3.2, it follows by Proposition 4.1 that there exist positive
constants L and β ∈ (0, 1) such that∥∥∥ΠΓQ(x)(y − EQ[∇yv(x, y, ξ)])−ΠΓP (x0)(y − EP [∇yv(x0, y, ξ)])

∥∥∥ ≤ L(DH(Q,P ) + ‖x− x0‖)β.

The conclusion follows.

Remark 5.1 A sufficient condition for EP [(g(x0, ŷ, ξ) − µ0)(g(x0, ŷ, ξ) − µ0)T ] ≺ Σ0 is the smallest
eigenvalue of Σ0 being greater than ‖EP [g(x0, ŷ, ξ)]− µ0‖2.
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5.2 Mathematical programs with SQVIP constraints

Let us now consider a mathematical program with SQVIP constraint:

min
x,y

f(x, y)

s.t. 0 ∈ EP [F (x, y, ξ)] +NΓP (x,y)(y),
(x, y) ∈ X × Y,

(5.28)

where f, F are continuous functions mapping from IRn × IRm and IRn × IRm × IRk to IR and IRm

respectively, ξ is a random variable and ΓP (x, y) is defined as in (1.2). In the case when ΓP (x, y) is a
constant convex set, (5.28) is known as a one stage stochastic mathematical program with equilibrium
constraint which has been well investigated over the past decade, see for instance [5].

Our interest here is in the case when ΓP (x, y) does depend on either P, x, y or at least one of
them so that our discussion does not overlap with the existing research in the literature. Indeed, the
novelty and challenge of model (5.28) lie in the SQVIP which may represent an equilibrium arising
from a generalized stochastic game or the first order optimality conditions of a stochastic programming
problem. Stochastic leader multiple followers problems, stochastic bilevel programming problems can
all be put in this framework.

To maximize the coverage of our results, we consider ΓP (x, y) to be defined as in (1.2), that is,

ΓP (x, y) := {z ∈ Y : EP [G(x, y, z, ξ)] ∈ K}

but leave F (x, y, ξ) unspecified as to whether it arises from optimality of a single stochastic decision
making problem or a stochastic game. In what follows, we present a quantitative stability result
for (5.28) by exploiting the established stability results for SQVIP in the preceding sections. The
result has a potential to provide a theoretical foundation for various numerical schemes for a range of
stochastic optimization and equilibrium problems where either G is not continuously differentiable or
it is complicated to characterize NΓP (x,y)(y) in terms of the derivatives of G and normal cone of K.

Theorem 5.2 Let ϑP and ϑQ denote the optimal value of MPSQVIP (5.28) and its perturbation
respectively. Let X ⊆ IRn and Y ⊆ IRm be compact sets. Assume: (a) f is a Lipschitz function in (x, y)
with a constant κ > 0, (b) Assumption 3.1 holds at x0 ∈ X and Assumptions 3.2 holds for F (x, y, ξ)

and G(x, y, z, ξ) respectively, (c) for x0 ∈ X , Fnat
P (x0, y) is a locally Lipschitz homeomorphism at

every y∗ ∈ SP (x0). Then there exist positive constants L and β such that

‖ϑP − ϑQ‖ ≤ LDH(Q,P )β

for any Q close to P .

Proof. Let (x∗P , y
∗
P ) and (x∗Q, y

∗
Q) denote the optimal solutions of (5.28) and its perturbation respec-

tively and ϑP and ϑQ the corresponding optimal values. By Theorem 4.1 (iii), there exist constants
c1 > 0, β > 0 and a neighborhood V of y∗P such that

‖y − y∗P ‖ ≤ c1(DH(Q,P ) + ‖x− x∗P ‖)β (5.29)

for any y ∈ SQ(x) ∩ V with Q close to P . In particular, for z∗P ∈ SQ(x∗P ) ∩ V,

‖z∗P − y∗P ‖ ≤ c1DH(Q,P ).

22



Consequently
ϑQ ≤ f(x∗P , z

∗
P ) ≤ f(x∗P , y

∗
P ) + ‖f(x∗P , z

∗
P )− f(x∗P , y

∗
P )‖

≤ ϑP + κ‖z∗P − y∗P ‖ ≤ ϑP + κc1DH(Q,P ),
(5.30)

where c1 is the Lipschitz modulus of f .

Likewise, for z∗Q ∈ SP (x∗Q), since Fnat
P (x∗Q, y) is a locally Lipschitz homeomorphism at z∗Q, by

Theorem 4.1 (iii), there exist c2 > 0, β > 0 and a neighborhood V of z∗Q such that

‖y − z∗Q‖ ≤ c2(DH(Q,P ) + ‖x− x∗Q‖)β (5.31)

for y ∈ SQ(x) ∩ V with Q close to P . In particular, for y∗Q ∈ SQ(x∗Q) ∩ V,

‖y∗Q − z∗Q‖ ≤ c2DH(Q,P ).

Consequently we have

ϑP ≤ f(x∗Q, z
∗
Q) ≤ f(x∗Q, y

∗
Q) + ‖f(x∗Q, z

∗
Q)− f(x∗Q, y

∗
Q)‖

≤ ϑQ + κ‖z∗Q − y∗Q‖ ≤ ϑQ + κc2DH(Q,P ).
(5.32)

Combining (5.30) and (5.32), we obtain the conclusion.
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