
Agile Practices in Regulated Railway Software Development

Henrik Jonsson
System Development Department

Etteplan Industry AB
Västerås, Sweden

henrik.jonsson@etteplan.com

Stig Larsson and Sasikumar Punnekkat
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

{stig.larsson,sasikumar.punnekkat}@mdh.se

Abstract—Complex software is becoming an important
component of modern safety-critical systems. To assure the
correct function of such software, the development processes
are heavily regulated by international standards, often making
the process very rigid, unable to accommodate changes,
causing late integration and increasing the cost of
development. Agile methods have been introduced to address
these issues in several software domains, but their use in
safety-critical applications remains to be investigated.

This paper provides an initial analysis of agile practices in the
context of software development for the European railway
sector, regulated by the EN 50128 standard. The study
complements previous studies on the use of agile methods in
other regulated domains.

A systematic mapping between EN 50128 requirements and
agile practices showed that all practices support some
objectives of the standard. Important supporting features
recognized were focus on simple design, test automation,
coding standards, continuous integration and validation.
However, several problematic areas were also identified,
including vague requirement analysis and change
management. Most agile practices must be adapted to suit
regulated software development and this analysis outlines a
subset of the required changes.

Keywords-software engineering, software development
processes, agile practices, safety-critical systems, railway,
EN 50128

I. INTRODUCTION

While agile methods have widely been adopted in many
domains of software industry, their use in regulated and
safety-critical domains is still limited. In the latter, use of
document-heavy plan-driven processes (such as “waterfall”)
is still common, and more or less assumed by standards on
functional safety. However, the ever-increasing usage and
complexity of software in safety-critical systems, calls for
more efficient and flexible ways to produce the software.
Today, the cost and time to produce safety software is
perceived to be too high, especially in domains where the
combination of regulations and software implementation of
safety related functions are relatively new, for instance in the
railway sector.

Current standards on functional safety often describe
software development as a strict sequential process with
distinct phases for requirements, architecture, design and

component coding, and corresponding testing at increasing
levels in the end. Such models are also referred to as plan-
driven, since they emphasize detailed planning and
specification before proceeding to implementation and final
testing. Problems with strict sequential plan-driven methods
include
• Large and late integration of system. Errors found in

these late stages will be costly to fix and cause delays of
the release.

• Little involvement of the customer and end-user
increases the risk of producing unsatisfactory solutions.

• Difficulty to articulate and specify all requirements in the
beginning of the project.

• Difficulty to address new requirements and findings
during the life cycle

• Requires many documents or other artifacts, which are
costly to produce and maintain, and are often
awkwardly produced by software engineers.

Much as a reaction to plan-driven and document-centric
methods, so called agile methods have been developed and
used [12]. Agile methods addresses the issues above mainly
by working closer to the customer, focusing on team
collaboration, and by specifying, designing, building,
integrating, testing and validating the system iteratively and
incrementally. The goal in agile development is that each
small release should provide business value in the form of
fully working software. Besides the value of being able to
sell software or related services, agile methods recognized
that there is also a value to be able to demonstrate and
validate the software functionality early, even though not all
of the functionality is included. This gives important
feedback early, as well as an opportunity to change direction
according to new technical or business conditions. In
contrast to other iterative methods, such as the Rational
Unified Process [11], agile methods emphasize non-written
communication and close team and customer collaboration.
In agile methods planning is still central, but is only made
detailed on short-term. Agile work can still be very socially
and technically disciplined, but often proposes different
practices than plan-driven methods.

Traditionally safety regulation has been most developed
in the nuclear, avionics and the medical sectors. Most
research on regulated software development environment,
now also extended to agile, has also focused on these areas.
However, as the general public safety-awareness rises and
the use of software increases, sectors like automotive and
railway need more regulation and research attention.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357369645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The contribution of this paper is to analyze the agile
practices of eXtreme Programming (XP) [1] against the
requirements of the railway standard EN 50128 [2]. The
objective was to identify any requirement or aspect of the
standard in conflict with, or supported by, agile practices.
Furthermore, propositions on how to adopt the practices in
this regulated environment are provided.

EN 50128 is a European standard that regulates
development, deployment and maintenance of safety-related
software intended for railway applications. It contains
requirements on the developing organization (roles and
competences), life-cycle (phases, documentation and
methods) and software assurance (testing, verification,
validation and quality assurance and assessment).

The rest of the paper is organized as follows: In section II
related publications on agile methods within the regulated
domains are summarized. Section III gives a short
introduction to the agile practices studied. Section IV
specifies the research method and in section V the results of
the analysis are presented. Conclusions and suggestions for
further work can be found in section VI.

II. RELATED WORK

A literature survey [5] on agile software development in
regulated environment showed that most publications have
concerned the avionics sector, in most cases regulated by
DO-178B. Of the agile methodologies reported to be used,
XP was the most frequent. In most studies agile was
combined with traditional plan-driven methods.

Vouri [7] made a detailed analysis of general agile
values, principles and practices against general principles of
safety-critical software development. He concluded that
many features of agile development can be beneficial for
creating truly safe systems, but agile values, principles and
practices must be adjusted to fit in a safety environment.

Detailed mappings between requirements and agile
practices, similar to this study, have been reported for the
avionics sector. Chisholm [9] mapped all the requirements in
DO-178B with the agile methods XP, SCRUM and Crystal
and found that agile methods can be adapted to satisfy the
DO-178B objectives. He recommends more upfront planning
and design than what is usual in existing established agile
methods. Another study by VanderLeest and Buter [4] found
that most agile practices are compatible or easily adapted to
suit DO-178B development. Subcontractor relationship,
lockstep gateways, large projects and legacy code were
identified as challenges to introduce agile in a regulated
context. The study by Wils and Van Baelen [6], focusing on
DO-178B, found that most agile principles can be easily
adopted in the early phases of the project. However, when it
is time for certification some principles such as refactoring
and welcome requirement change must be abandoned
according to that analysis.

III. AGILE PRACTICES STUDIED

This section gives a brief introduction to the agile
practices included in this study, which are the originally ones
presented for XP [1]. We acknowledge that there are
additional practices that are considered agile, and can be of

great benefit. However, the practices from XP were chosen
as they represent concretely described software engineering
practices, as well as widely used and well studied.

A. The planning game

The Planning Game describes how project stakeholders
(the Business) and the Team plan and steer the activities
jointly. The Business specifies what to do in the format of
“stories” and prioritize them in a backlog. The Team
estimates the time to complete stories and their own capacity
(velocity). The scope of the next release can then be agreed
on. The time to release is typically divided into short time-
boxed iterations in which the stories are broken down into
tasks and completed.

B. Small releases

XP stresses the importance of delivering the software
incrementally, as small releases, each giving a true value for
the customer. Even if the system cannot be placed into real
production for each release, XP claims that there is a value to
demonstrate and get user-feedback (validation) often. It also
makes the organization prepared for the ultimate releases.

C. On-site customer

To be able to make decisions efficiently and to keep the
work aligned with the wishes, customer should be co-located
with and/or highly available to the development team,
according to XP.

D. Test driven development

Test driven development (TDD) means that developer
always should write tests, and make sure they fail, before
writing any code. In that way the developer is enforced to
think about the interface (input and output values) and the
testability before the actual implementation. Applying this
practice correctly yields high coverage through automated
tests, which are typically run several times each day. XP
teams use the automated tests as a means to ensure that
changes, either triggered by new requirements or
Refactoring, does not introduce new defects.

The principle that tests are written before development
also applies to higher testing levels (integration and system
level). This is often referred to as acceptance test driven
development in the agile community. This means that tests
are specified and normally automated before the
implementation and the integration is performed.

E. Simple design

In its essence, Simple design means that we should only
design for what we need right now, i.e. the requirements to
be implemented up to this iteration. This makes it possible to
deliver value to the customer earlier and makes the design
easier to understand and maintain, according to XP. When it
is time to fulfill more requirements, the team must accept the
fact that restructuring can be needed.

F. Refactoring

Refactoring essentially means to improve the source
code. After writing new code the developer should change
the code to make it simpler, for instance remove

duplications. XP teams must also accept the fact that
occasionally larger reorganization of the source code (even
the architecture) is needed to accommodate new
requirements.

G. Pair programming

In Pair Programming, two developers sit together to solve
a programming task. They discuss the design and then one of
them writes the code while the other person reviews the code
and thinks about the overall design and need for additional
testing.

H. Collective Ownership

Collective ownership means that anyone who that finds a
way to add value to any part of the code is obliged to do so.
No code is owned by an individual programmer. This makes
changes efficient and reduces the risk that code could
diverge [1].

I. Continuous Integration

To find integration problems early it is important to
synchronize with other team members often. In XP the code
is integrated and built automatically several times a day. The
automated test suites created as a part of test driven
development are also run frequently to ensure that any
integration problem is found and fixed as early as possible.

J. Metaphor

XP stresses the importance of finding a metaphor for the
system to make it easier to understand and explain the
system. Beck [1] means that this to a high degree replaces
what we ordinarily call architecture. In a safety-critical
system there is normally a physical system that can be like a
metaphor at the system level. These terms can be reused in
the software model. For instance, to reason about and explain
safety features in the software we can refer to well known
physical safety arrangements like guards (to protect from
invalid input) and firewalls, even though they sometimes are
implemented as software elements.

K. Coding standards

In conjunction with Pair Programming and Collective
Ownership, it is important that the team agrees on common
coding standards. Besides ordinary requirements on coding
styles, XP emphasizes simplicity and ability to communicate
as important parts of the coding standard.

L. Sustainable pace

To be able to sustainably deliver high quality software,
XP stresses the importance of not overworking the people
involved. For pair programming it is also important to have
common working times within a team.

IV. RESEARCH METHOD

This study was undertaken by asking the following
questions for each agile practice as described in section III:

1. Are there any requirements in EN 50128 in conflict
with the practice?

2. Are there any requirements in EN 50128 supported
by the practice?

3. How can we adapt the XP practice for a team
working under EN 50128 regulations?

The analysis was restricted to requirements in Clauses 4 to 7
of the standard, including references to other normative
annexes in the standard. Clause 4 specifies the high level
requirement on how to assign safety integrity levels (SIL)
and how to apply the other requirements. Clause 5 defines
the requirement of the management, organization and roles,
while clause 6 is about software assurance. The requirements
of the life-cycle, including documentation, for generic
software development is in clause 7. Clause 8 about
application-specific adaption and clause 9 about deployment
and maintenance were excluded from the detailed analysis.

All requirements from Clause 4 to 7 were put in the rows
of an Excel sheet with extra columns for each of the 12 agile
practices. For each requirement and practice pair (cell) it was
then noted whether the requirement was related with the
practice in question or not. For each relation we then
analyzed whether the practice supports and/or is in conflict
with the objective of the requirement. Based on the results
for each practice, possible ways to adapt the practice were
suggested to fit in an EN 50128 regulated environment.

To validate the analysis, the results were reviewed by two
independent researchers. When discrepancies were found,
either between the original analysis and the reviewers, or
between the reviewers, a discussion was held. The reasoning
and results of the discussion was then added to the results of
the analysis.

V. RESULTS AND ANALYSIS

This section presents the results of this work,
summarized in Table I.

A. Test driven development (TDD)

The practice that developers write the tests themselves
seems to be problematic in a regulated environment.
According to EN 50128 it is the responsibility of the tester to
specify the tests (req. 5.1.2.2) and the implementer and tester
must be separate persons at all SIL levels (req. 5.1.2.10-12).
On the other hand, test driven development supports the
requirements that tests should be highly automated (req.
6.1.4.5) and that the source code shall be testable (req.
7.5.4.3).

Nothing in the standard prevents the implementer from
writing own test scripts. However, to be accepted the tester
must specify in more detail what to test at different levels.
Applying structured test design techniques well as required
by the standard is often beyond the knowledge of the
implementer. An agile way of solving this is to let the tester
specify the tests, but have the implementer to create the
scripts for it, in a pairing session. The tester reviews the test
scripts and writes the test specification mostly by referring to
the scripts.

B. Pair programming

Pair programming supports the requirement that the software
source code shall be readable, understandable and testable

(req. 7.5.4.3). Code is reviewed continuously and the person
that does not code can ensure that code is aligned with code
conventions, requirements and tests. The other person can
also help to answer questions that arise by looking at
documentation, asking customer, tester and colleagues.
The informal review performed in pair programming may
not be accepted as a complete replacement for formal
independent reviews. However, an additional review is
probably needed and as pointed out in [4], “overhead of the
extra review is likely to pay for itself by catching issues
before they flow to later expensive stages”. As mentioned
above the tester can also occasionally pair with implementer
to work out tests.

C. Planning game

The EN 50128 standard does not preclude iterative
approaches. In fact, the standard states that “the lifecycle
model shall take into account the possibility of iterations in
and between phases” (5.3.2.2). However, the XP practice to
use simple paper cards to document requirements (stories) is
unlikely to be accepted. Paper cards can be used as a visual
tracking mechanism but requirements must still be placed in
documents or in a tool as required by the standard. An agile
way of doing this is to incrementally fill in the documents
with detailed requirements, test cases and design relevant to
the current increment. In an agile team the requirement
manager, tester and developer work closely together and
communicate frequently, which make coordinated and
parallel updates in several artifacts efficient. Tasks to create
and update documents and doing reviews are planned,
estimated and accepted by team members with appropriate
responsibilities, just like ordinary programming tasks.

Traceability between requirements, tests and source code
is also an important aspect of the standard. By working with
one or a few features at a time, working together and
updating documents concurrently, traceability can actually
be facilitated by working in an agile way. Since tests and
source code are written only to fulfill the current
requirements it should be straightforward to follow changes
in the version control system by associating change sets with
references to the requirements or tests in question. By
following the history log it can then be determined which

source code files (and which lines of source code) are
associated to a specific requirement. By working with
documents and other artifacts in a similar way and in the
same version control system traceability can be enhanced.

XP stories usually capture only the functionality that too
in vague terms. However, safety-critical systems have a lot
of non-functional requirements as well (on performance and
safety for instance). To be able to estimate a story more
detailed requirements associated to the stories to be
implemented are likely needed before an iteration starts.
Well-structured requirement engineering is also demanded
by the standard.

A big concern with all iterative methods is change
management. When developing systems incrementally major
changes are introduced in most iterations, which may
invalidate previous work on assurance. According to the
standard impact analysis must be performed and documented
for each change, at least after deployment. Agile remedies
for this are to include impact analysis workshops in each
iteration and to automate the assurance activities as much as
possible. It is also possible to postpone some formal
assurance activities to near the end of a formal release
period.

D. On-site customer

No requirement in EN 50128 was found to prevent a
customer or end-user (the Business role) to participate
actively in the team work. By having a customer near the
team validation is very much facilitated.

The person(s) playing the Business role varies depending
on the size of the project. In small projects, such as
development of a qualified tool, the end-user of the tool (e.g.
test engineer) can play this role. In very small projects
hardware designers are preferably included, or at least
closely associated with the software team. In large projects
the teams must necessarily be split into smaller ones
regardless of agile or plan-driven. Then the Business role can
be played by a member of a system or integration
engineering team, which takes responsibility for the overall
system design and integration.

TABLE I: SUPPORTING AND PROBLEMATIC FEATURES OF AGILE PRACTICES IN AN EN 50128 REGULATED ENVIRONMENT

Agile Practice Supporting requirements Problematic requirements
Test Driven Development Testable code

Automated tests
Independence of tester
Tester specifies tests

Pair Programming Source code readable and understandable -
Planning Game Taking iterations into account

Traceability
Details of requirements
Change management

On-site customer Validation -
Continuous Integration Controlled test environment

Automated dynamic verification
-

Refactoring Simpler, readable and maintainable source code Risk to invalidate verification and validation
Small releases Validation High burden for formal certification each time
Coding standard Coding standards required -
Metaphor Architecture and design simple and understandable Not sufficient, too ambiguous
Simple design Suitable design method

Balanced size and complexity of source code
-

Sustainable pace - -

E. Continuous integration

No requirement in EN 50128 was found to be in conflict
with the practice to integrate often. By running automated
tests often the time to find problems is shortened. As part of
periodic builds automated static checking and other
verification techniques can be run as well. It is also very
advantageous if newly built versions can be automatically
deployed and tested on target hardware as part of periodic
builds.

F. Refactoring

On small scale and short-term (within an iteration and for
new code) refactoring can be an effective mean to create
simpler, more readable and more maintainable code.
However, the cost of this will rise as soon as it requires
changes, not only to the code, but changes and reverification
and revalidation of associated artifacts. Therefore it is
important to not create detailed design documentation too
early (or generate it automatically). Some more up-front
architecture than recommended by XP might be needed to
avoid costly large-scale refactoring later. In addition, before
changing the source code, a change request, followed by an
impact analysis must be performed.

G. Small releases

No requirement of EN 50128 was found to be in conflict
with the practice to deliver and demonstrate functionality
frequently. However, the extensive requirements on
documentation, verification, validation and assessments
make it costly to set systems in real production. On the other
hand, by frequently integrating and demonstrating the system
validation becomes stronger. This means that the risk to
create solutions not suitable, even though they fulfill the
requirements is reduced.

H. Coding standard

Coding standard is a mandatory requirement in
EN 50128 (7.3.4.25). Collective ownership and Pair
programming enforce standards to be followed.

I. Collective code ownership

Collective code ownership was not found to be in
collision with any requirements of EN 50128 per se.
However, all developers must be aware of that changing
code might require costly reverification.

J. Simple design

The practice to create as easy solutions as possible is in
line with the requirements on suitable design methods
(7.3.4.28) and balanced size and complexity of the developed
source code (7.3.4.2). However, as discussed for Refactoring
already, making too simple designs early can require a lot of
rework later on to accommodate the requirements for the
next iteration.

K. System metaphor

The idea to use metaphors to describe the software design
is not in conflict with any requirements. It supports the
requirement that the design should be simple and

understandable. However, it is not sufficient with general
descriptions like that. Metaphors can mean different things
for different persons. Moreover, the software architecture
and design must still be documented in detail according to
the standard. In XP it is generally recommended to wait with
such documentation until the end of the development, but to
enable verification and validation these documents must be
created earlier and updated more often in a regulated
environment.

L. Sustainable pace

EN 50128 does not regulate the working time, but since
stressed and overworked workers make more mistakes it is
considered as positive for the general quality and safety of
the final product.

VI. CONCLUSIONS

This analysis shows that agile practices support some of
the objectives and requirements of EN 50128. However,
most practices must be tailored to fit in a regulated
development environment. Nor do these practices offer a
complete process, since many required documentation and
assurance activities are not incorporated. These results are in
line with the results from studies of the avionic domain
regulated by DO-178B [4, 9].

In summary, the agile practices studied have a potential
to make development more efficient by reducing the distance
between customers, developers and testers. By using short
cycles and frequent integration, tracking of progress and
problems can be enhanced, but change impact analysis can
be problematic. A big challenge is also to find an effective
way of working with all the required documentation in an
incremental way, creating and updating it only when it is
needed, possibly using automated procedures. Obviously, the
heavy requirements of documentation will make the work
less agile.

Since the results in this analysis are not yet backed up by
any empirical evidence, these results can only serve as an
initial guidance for an organization considering agile
practices in the development of railway software
applications. Table I summarizes the strong and weak
features of agile practices, which must be matched to the
need of the particular organization. In addition, more general
considerations on introducing agile practices in the
organization must be made as described in [8]. It is also
important to work closely with the quality assurance
department and the assessor to ensure that the new practices
are documented thoroughly. Otherwise, the project may fail
the audit as described in [3]. For assessors, Table I and the
discussion can give a hint on what to look for when facing an
agile environment.

Further work includes proposing a more detailed agile
process compatible with EN 50128 and assessing the process
or some of the agile practices in a real pilot project
developing software for the railway sector. In analogy with
the recommendation for the avionic sector in [4] such agile
pilot study can start with the development of a qualified tool
and then further extended to a small-scale railway software
development project.

ACKNOWLEDGMENT

This work has been partially funded by the Swedish
Knowledge Foundation (KK-stiftelsen) [10] and the EU-
Artemis funded SafeCer project [14].

REFERENCES

[1] K. Beck, “Extreme Programming Explained: Embrace
Change” 1st ed., Addison-Wesley. 1999

[2] CELENEC, EN 50128 Railway applications.
Communication, signalling and processing systems.
Software for railway control and protection systems. 2nd ed.
June 2011

[3] M. Poppendieck, “XP in a Safety-Critical Environment”,
2002. Cutter IT.

[4] S.H. VanderLeest and A. Buter, “Escape the waterfall: Agile
for aerospace”, Digital Avionics Systems Conference, DASC
'09. IEEE/AIAA 28th, Oct. 2009

[5] O. Cawley, X. Wang and I. Richardson, “Lean/agile software
development methodologies in regulated Environments .
State of the Art”, Proceedings of Lean Enterprise Software
and Systems, Springer, 2010, p. 31-36

[6] A. Wils and S. van Baelen, “Towards an agile avionics
process”, AGILE project report vol:D.2.12, ITEA-AGILE
consortium. February 2007

[7] M. Vuori, “Agile development of safety-critical software”,
Tampere University of Technology. Department of Software
Systems. Report 14, 2011

[8] A. Sidky and J. Arthur, “Determining the applicability of
agile practices to mission and life-critical systems”,
Proceeding SEW '07 Proceedings of the 31st IEEE Software
Engineering Workshop , 2007, p. 3-12

[9] R. A. Chisholm, “Agile software development methods and
D0-178B certification”, Royal Military College of Canada,
2007

[10] KK-Stiftelsen: Swedish Knowledge Foundation,
http://www.kks.se (Last Accessed: September 2012)

[11] IBM, Rational Unified Process, http://www-
01.ibm.com/software/rational/ (Last Accessed: September
2012)

[12] Manifesto for Agile Software Development,
http://agilemanifesto.org/ (Last Accessed: September 2012)

[13] S. Nerur, A. Cannon, B. VenuGopal and P. Bond, “Towards
an understanding of the conceptual underpinnings of agile
development methodologies”, Agile Software Development,
Springer, 2010, p.15-29, doi: 10.1007/978-3-642-12575-1_2

[14] SafeCer project, www.safecer.eu (Last Accessed: October
2012)

