View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CiteSeerX

Agile Practices in Regulated Railway Software Devepment

Henrik Jonsson

System Development Department
Etteplan Industry AB
Vasteras, Sweden
henrik.jonsson@etteplan.com

Abstract—Complex software is becoming an important
component of modern safety-critical systems. To ase the

correct function of such software, the developmenprocesses
are heavily regulated by international standards, &ien making

the process very rigid, unable to accommodate chaag,

causing late integration and increasing the cost of
development. Agile methods have been introduced @ddress

these issues in several software domains, but theirse in

safety-critical applications remains to be investigted.

This paper provides an initial analysis of agile pactices in the
context of software development for the European iibway
sector, regulated by the EN 50128 standard. The gy
complements previous studies on the use of agile theds in
other regulated domains.

A systematic mapping between EN 50128 requirementsnd

agile practices showed that all practices support csne

objectives of the standard. Important supporting fatures

recognized were focus on simple design, test autofimm,

coding standards, continuous integration and validdon.

However, several problematic areas were also idefigd,

including vague requirement analysis and change
management. Most agile practices must be adapted tsuit

regulated software development and this analysis tlines a

subset of the required changes.

Keywords-software engineering, software development

processes, agile practices, safety-critical systems, railway,
EN 50128

. INTRODUCTION

Stig Larsson and Sasikumar Punnekkat

School of Innovation, Design and Engineering
Méalardalen University
Vasterds, Sweden
{stig.larsson,sasikumar.punnekkat}@mdh.se

component coding, and corresponding testing aeasing

levels in the end. Such models are also referreastplan-

driven, since they emphasize detailed planning and

specification before proceeding to implementatiod &nal

testing. Problems with strict sequential plan-dniveethods

include

e Large and late integration of system. Errors foumd
these late stages will be costly to fix and causays of
the release.

e Little involvement of the customer and end-user
increases the risk of producing unsatisfactorytsmis.

« Difficulty to articulate and specify all requirentsrin the
beginning of the project.

- Difficulty to address new requirements and findings
during the life cycle

« Requires many documents or other artifacts, whigh a
costly to produce and maintain, and are often
awkwardly produced by software engineers.

Much as a reaction to plan-driven and documentrient

methods, so called agile methods have been devtlapa

used [12]. Agile methods addresses the issues abai@y

by working closer to the customer, focusing on team

collaboration, and by specifying, designing, burfgi

integrating, testing and validating the systemaiigely and

incrementally. The goal in agile development ist thach

small release should provide business value infdhma of

fully working software. Besides the value of beialgle to

sell software or related services, agile methodsgeized

that there is also a value to be able to demoestzad

validate the software functionality early, evenubb not all

of the functionality is included. This gives impemt

While agile methods have widely been adopted i”y('j“anfeedback early, as well as an opportunity to chatigetion

domains of software industry, their use in reguatn
safety-critical domains is still limited. In thetter, use of
document-heavy plan-driven processes (such as ffalitp
is still common, and more or less assumed by stdedan
functional safety. However, the ever-increasinggesand
complexity of software in safety-critical systentslls for
more efficient and flexible ways to produce thetwafe.
Today, the cost and time to produce safety software
perceived to be too high, especially in domains re/tibe
combination of regulations and software implemeéatabf
safety related functions are relatively new, fatamce in the
railway sector.

Current standards on functional safety often dbscri
software development as a strict sequential proedts
distinct phases for requirements, architecture,jgdesand

according to new technical or business conditiohs.
contrast to other iterative methods, such as thgofd

Unified Process [11], agile methods emphasize ndtten

communication and close team and customer colléibara
In agile methods planning is still central, butoisly made
detailed on short-term. Agile work can still be wsocially

and technically disciplined, but often proposesfedént

practices than plan-driven methods.

Traditionally safety regulation has been most dgwed
in the nuclear, avionics and the medical sector@stM
research on regulated software development envieahm
now also extended to agile, has also focused metheeas.
However, as the general public safety-awareness iasd
the use of software increases, sectors like autgen@nd
railway need more regulation and research attention

https://core.ac.uk/display/357369645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The contribution of this paper is to analyze théleag great benefit. However, the practices from XP wehiesen
practices of eXtreme Programming (XP) [1] agairtst t as they represent concretely described softwaraesing
requirements of the railway standard EN 50128 [Rje practices, as well as widely used and well studied.
objective was to identify any requirement or aspafcthe he planni
standard in conflict with, or supported by, agilagiices. A. The planning game
Furthermore, propositions on how to adopt the prestin The Planning Game describes how project stakefmolder
this regulated environment are provided. (the Business) and the Team plan and steer theitiesti

EN 50128 is a European standard that regulatefointly. The Business specifies what to do in toenfat of
development, deployment and maintenance of safétyed “stories” and prioritize them in a backlog. The fea
software intended for railway applications. It amns estimates the time to complete stories and their capacity
requirements on the developing organization (rodesl (velocity). The scope of the next release can theagreed
competences), life-cycle (phases, documentation an@n. The time to release is typically divided intwos time-
methods) and software assurance (testing, veiditat boxed iterations in which the stories are brokewrdnto

validation and quality assurance and assessment). tasks and completed.
The rest _of the paper is _organlzed as f(_)ll(_)wsekmen Il B. Srall rel
related publications on agile methods within thgutated) o
domains are summarized. Section Il gives a short XP stresses the importance of delivering the soéwa

introduction to the agile practices studied. Sectty incrementally, as small releases, each giving @ value for

specifies the research method and in section \febelts of ~ the customer. Even if the system cannot be placedreal
further work can be found in section VI. demonstrate and get user-feedback (validationjoftealso

makes the organization prepared for the ultimdtases.

Il. RELATED WORK .
C. On-site customer

To be able to make decisions efficiently and topkt#e

concerned the avionics sector. in most cases lay work aligned with the wishes, customer should béocated
. ' . gl with and/or highly available to the development ntea
DO-178B. Of the agile methodologies reported toubed, according to XP

XP was the most frequent. In most studies agile was
combined with traditional plan-driven methods. D. Test driven development

Vouri [7] made a detailed analysis of general agile tegt driven development (TDD) means that developer
values, pr_|nC|pIes and practices against genemtiptes of always should write tests, and make sure they ff@fore
safety-critical soﬂware development. He CO”C'U‘mt writing any code. In that way the developer is ecéd to
many features of agile development can be bentfiora ik ahout the interface (input and output values)l the
creating truly safe systems, but agile values,qplas and (egtapility before the actual implementation. Appdy this
practices must be adjusted to fit in a safety emvirent. _practice correctly yields high coverage throughomated

Detailed mappings between requirements and agilgygts which are typically run several times eaaly. &XP
practices, similar to this study, have been regoftg the {eams yse the automated tests as a means to dhatire
avionics sector. Chisholm [9] mapped all the regmients in changes, either triggered by new requirements or
DO-178B with the_agile methods XP, SCRUM and C_"yStaRefactoring, does not introduce new defects.
and found that agile methods can be adapted tefysakie The principle that tests are written before develept
DO-178B objectives. He recommends more upfrontln 4155 applies to higher testing levels (integration system
and design than what is usual in existing estadtisagile o ey "This is often referred to as acceptance deiven
methods. Another study by VanderLeest and Butefdditd geyelopment in the agile community. This means tests
that most agile practices are compatible or easipted to . specified and normally automated before the

suit DO-178B development. _Subcontractor relatiomshi implementation and the integrafion is performed.
lockstep gateways, large projects and legacy codee w

identified as challenges to introduce agile in gutated E. Smpledesign

context. The study by Wils and Van Baelen [6], fing on In its essence, Simple design means that we stomiyd
DO-178B, found that most agile principles can bsilga design for what we need right now, i.e. the requésts to
adopted in the early phases of the project. Howavieen it pe jmplemented up to this iteration. This makemisible to
is time for certification some principles such a$actoring deliver value to the customer earlier and makesdtsgn
and welcome requirement change must be abandonefsier to understand and maintain, according tovxiRen it
according to that analysis. is time to fulfill more requirements, the team mastept the
fact that restructuring can be needed.

A literature survey [5] on agile software develompmin
regulated environment showed that most publicativense

Il. AGILE PRACTICES STUDIED

This section gives a brief introduction to the agil F- Refactoring
practices included in this study, which are thegioglly ones Refactoring essentially means to improve the source
presented for XP [1]. We acknowledge that there areode. After writing new code the developer sholdnge
additional practices that are considered agile, @ambe of the code to make it simpler, for instance remove

duplications. XP teams must also accept the faet th

occasionally larger reorganization of the sourcdec@even
the architecture) is needed to accommodate
requirements.

G. Pair programming

In Pair Programming, two developers sit togethesaioe
a programming task. They discuss the design amddhe of
them writes the code while the other person revigesode
and thinks about the overall design and need fditiadal
testing.

H. Collective Ownership

Collective ownership means that anyone who thalsfia
way to add value to any part of the code is obligedo so.
No code is owned by an individual programmer. Thakes
changes efficient and reduces the risk that codeldco
diverge [1].

I. Continuous Integration

To find integration problems early it is importatat
synchronize with other team members often. In X abde
is integrated and built automatically several tiraegay. The
automated test suites created as a part of teserdri
development are also run frequently to ensure Hrat
integration problem is found and fixed as earlp@assible.

J. Metaphor

XP stresses the importance of finding a metaphothie
system to make it easier to understand and explan
system. Beck [1] means that this to a high degepéaces
what we ordinarily call architecture. In a safetitical
system there is normally a physical system thatbealike a
metaphor at the system level. These terms canuseden
the software model. For instance, to reason abwlieaplain
safety features in the software we can refer td wabwn
physical safety arrangements like guards (to ptohexn
invalid input) and firewalls, even though they stimes are
implemented as software elements.

K. Coding standards

In conjunction with Pair Programming and Collective

Ownership, it is important that the team agrees@mmon
coding standards. Besides ordinary requirementsoaiing
styles, XP emphasizes simplicity and ability to commicate
as important parts of the coding standard.

L. Sustainable pace

To be able to sustainably deliver high quality wafte,
XP stresses the importance of not overworking teepfe
involved. For pair programming it is also importanthave
common working times within a team.

IV. RESEARCH METHOD

This study was undertaken by asking the following

questions for each agile practice as describedation 111

2. Are there any requirements in EN 50128 supported

by the practice?

new 3. How can we adapt the XP practice for a team

working under EN 50128 regulations?
The analysis was restricted to requirements in $&lau to 7
of the standard, including references to other k@
annexes in the standard. Clause 4 specifies the Ibigel
requirement on how to assign safety integrity lsu8IL)
and how to apply the other requirements. Clausefthes
the requirement of the management, organizationraled,
while clause 6 is about software assurance. Thérergents
of the life-cycle, including documentation, for @eic

software development is in clause 7. Clause 8 about

application-specific adaption and clause 9 aboptayenent
and maintenance were excluded from the detailelysiaa

All requirements from Clause 4 to 7 were put in thes
of an Excel sheet with extra columns for each eftB agile
practices. For each requirement and practice pall) {t was
then noted whether the requirement was related thith
practice in question or not. For each relation vaent
analyzed whether the practice supports and/or oiflict
with the objective of the requirement. Based on risults
for each practice, possible ways to adapt the ijpeetere
suggested to fit in an EN 50128 regulated environtme

To validate the analysis, the results were revielyetivo
independent researchers. When discrepancies werel,fo
either between the original analysis and the resisyor
between the reviewers, a discussion was held. @&soning
and results of the discussion was then added toethéts of
the analysis.

V. RESULTS AND ANALYSIS

This section presents the results of this work,
summarized in Table I.

A. Test driven development (TDD)
The practice that developers write the tests themse

seems to be problematic in a regulated environment.

According to EN 50128 it is the responsibility b&ttester to
specify the tests (req. 5.1.2.2) and the implentearid tester
must be separate persons at all SIL levels (rdg2.30-12).
On the other hand, test driven development suppbds
requirements that tests should be highly automdted.
6.1.4.5) and that the source code shall be testablp
7.5.4.3).

Nothing in the standard prevents the implementemfr
writing own test scripts. However, to be acceptsal tester
must specify in more detail what to test at differievels.
Applying structured test design techniques wellexpuired
by the standard is often beyond the knowledge &f th
implementer. An agile way of solving this is to the tester
specify the tests, but have the implementer toterd¢ae
scripts for it, in a pairing session. The testeiaes the test
scripts and writes the test specification mostlydfgrring to
the scripts.

1. Are there any requirements in EN 50128 in conflictg, pajr programming

with the practice?

Pair programming supports the requirement thasttfvare
source code shall be readable, understandable eztable

TABLE |: SUPPORTING AND PROBLEMATIC FEATURES OF AGILE PRACTES IN ANEN 50128REGULATED ENVIRONMENT

Agile Practice

Supporting requirements

Problematiaequirements

Test Driven Development

Testable code
Automated tests

Independence of tester
Tester specifies tests

Pair Programming

Source code readable and unddedikn

Planning Game

Taking iterations into account
Traceability

Details of requirements
Change management

On-site customer

Validation

Continuous Integration

Controlled test environment
Automated dynamic verification

Refactoring

Simpler, readable and maintainablecsoaode

Risk to invalidate verification and validat

Small releases

Validation

High burden for formal certification each time

Coding standard

Coding standards required

Metaphor

Architecture and design simple and undedstble

Not sufficient, too ambiguous

Simple design

Suitable design method
Balanced size and complexity of source code

Sustainable pace

(req. 7.5.4.3). Code is reviewed continuously draperson
that does not code can ensure that code is aligitaccode
conventions, requirements and tests. The othemperan

source code files (and which lines of source code)
associated to a specific requirement. By workinghwi
documents and other artifacts in a similar way andhe

also help to answer questions that arise by lookihg same version control system traceability can beecdd.

documentation, asking customer, tester and colEagu

The informal review performed in pair programmingym

XP stories usually capture only the functionalttatttoo
in vague terms. However, safety-critical systemgeha lot

not be accepted as a complete replacement for formaf non-functional requirements as well (on perfonoc&and

independent reviews. However, an additional revisw
probably needed and as pointed out in [4], “ovedheiathe

extra review is likely to pay for itself by catchirissues
before they flow to later expensive stages”. As tiosed

above the tester can also occasionally pair withlémenter
to work out tests.

C. Planning game

safety for instance). To be able to estimate aysinore
detailed requirements associated to the storiesbdo
implemented are likely needed before an iteratitarts
Well-structured requirement engineering is also alethed
by the standard.

A big concern with all iterative methods is change
management. When developing systems incrementaljgrm
changes are introduced in most iterations, whichy ma

The EN 50128 standard does not preclude iterativéhvalidate previous work on assurance. Accordingthe

approaches. In fact, the standard states that lifibbeycle
model shall take into account the possibility efrdtions in
and between phases” (5.3.2.2). However, the XPtipeato
use simple paper cards to document requirememsesy is
unlikely to be accepted. Paper cards can be usedvasial
tracking mechanism but requirements must still laeqd in
documents or in a tool as required by the standemdagile
way of doing this is to incrementally fill in theoduments
with detailed requirements, test cases and desigwant to
the current increment. In an agile team the reqer
manager, tester and developer work closely togesimer

standard impact analysis must be performed andndected
for each change, at least after deployment. Agitaedies
for this are to include impact analysis workshopseach
iteration and to automate the assurance actiagesiuch as
possible. It is also possible to postpone some dbrm
assurance activities to near the end of a formkdase
period.

D. On-site customer

No requirement in EN 50128 was found to prevent a
customer or end-user (the Business role) to ppadiei

communicate frequently, which make coordinated andhctively in the team work. By having a customerrnie

parallel updates in several artifacts efficientsksato create

team validation is very much facilitated.

and update documents and doing reviews are planned, The person(s) playing the Business role variesmipg
estimated and accepted by team members with apat@pr on the size of the project. In small projects, suah

responsibilities, just like ordinary programmingka.
Traceability between requirements, tests and scwode
is also an important aspect of the standard. Bykingrwith

development of a qualified tool, the end-user efttiol (e.g.
test engineer) can play this role. In very smalbjgrts
hardware designers are preferably included, or eafstl

one or a few features at a time, working togethed a closely associated with the software team. In laggects

updating documents concurrently, traceability catualy
be facilitated by working in an agile way. Sincetseand

the teams must necessarily be split into smalleeson
regardless of agile or plan-driven. Then the Bussrele can

source code are written only to fulfill the currentbe played by a member of a system or integration

requirements it should be straightforward to follohanges
in the version control system by associating chasgge with
references to the requirements or tests in questyn
following the history log it can then be determinetich

engineering team, which takes responsibility far tverall
system design and integration.

E. Continuousintegration understandable. However, it is not sufficient wibneral
No requirement in EN 50128 was found to be in donfl descriptions like that. Metaphors can mean diffetbings

with the practice to integrate often. By runningomated for different persons. Moreover, the software decture
tests often the time to find problems is shorterexipart of ~@nd design must still be documented in detail atingrto
periodic builds automated static checking and othefn€ Standard. In XP itis generally recommendeafai with
verification techniques can be run as well. It lsoavery ~ Such documentation until the end of the developpiguttto
advantageous if newly built versions can be autimaiit enable verification and validation these documenist be

deployed and tested on target hardware as pareriddic crea_lted earlier and updated more often in a regllat
builds. environment.

F. Refactoring L. Sustainable pace

On small scale and short-term (within an iteration for ~ EN 50128 does not regulate the working time, butei
new code) refactoring can be an effective meanrémte Stressed and overworked workers make more misiakes
simpler, more readable and more maintainable codé&onsidered as positive for the general quality saféty of

However, the cost of this will rise as soon aseifuires the final product.

changes, not only to the code, but changes andifiezdon
and revalidation of associated artifacts. Therefdres _) VI CONCLL{SIONS)
important to not create detailed design documentatbo This analysis shows that agile practices suppartesof

early (or generate it automatically). Some morefrapt the objectives and requirements of EN 50128. Howeve
architecture than recommended by XP might be ne¢éaled most practices must be tailored to fit in a regdat
avoid costly large-scale refactoring later. In &ddi before ~development environment. Nor do these practicesr cdf
changing the source code, a change request, falllyean ~ complete process, since many required documentainoh

impact analysis must be performed. assurance activities are not incorporated. Thesdtseare in
line with the results from studies of the avionionwhin

G. Small releases regulated by DO-178B [4, 9].
No requirement of EN 50128 was found to be in ¢onfl In summary, the agile practices studied have antiate

with the practice to deliver and demonstrate fumality to make development more efficient by reducingdiséance
frequently. However, the extensive requirements orbetween customers, developers and testers. By shiog
documentation, verification, validation and asses®sm cycles and frequent integration, tracking of pregrend
make it costly to set systems in real production.ti® other problems can be enhanced, but change impact asalgsi
hand, by frequently integrating and demonstrativigdystem be problematic. A big challenge is also to findedfective
validation becomes stronger. This means that thle 1 way of working with all the required documentatioman
create solutions not suitable, even though thefillfuhe incremental way, creating and updating it only wtieis
requirements is reduced. needed, possibly using automated procedures. Odlyiche

. heavy requirements of documentation will make trerkw
H. Coding standard less agile.

Coding standard is a mandatory requirement in Since the results in this analysis are not yet &éadalp by
EN 50128 (7.3.4.25). Collective ownership and Pairany empirical evidence, these results can onlyesas an
programming enforce standards to be followed. initial guidance for an organization consideringileg
: . practices in the development of railway software
g CoIIec'gvecodeownershlp. _applications. Table | summarizes the strong andkwea

Collective code ownership was not found to be infeatures of agile practices, which must be matcioethe
collision with any requirements of EN 50128 per se.need of the particular organization. In additiomrengeneral
However, all developers must be aware of that dnang considerations on introducing agile practices ine th
code might require costly reverification. organization must be made as described in [8]s lalso
important to work closely with the quality assuranc
.) . department and the assessor to ensure that thpnaetices
_ The practice to create as easy solutions as pessibh are documented thoroughly. Otherwise, the projesy fail
line with the requirements on suitable design M&tho ihe audit as described in [3]. For assessors, Tiabiel the

(7.3.4.28) and balanced size and complexity otitaesloped giscyssion can give a hint on what to look for wieging an
source code (7.3.4.2). However, as discussed fiacReing agile environment.

J. Smpledesign

already, making too simple designs early can reuifot of Further work includes proposing a more detailedeagi
rework later on to accommodate the requirementster , 5cess compatible with EN 50128 and assessingrtgess
next iteration. or some of the agile practices in a real pilot @coj
K. System metaphor developing software for the railway sector. In aggl with

the recommendation for the avionic sector in [4dtsagile

pilot study can start with the development of alifjed tool

and then further extended to a small-scale rails@yware
evelopment project.

The idea to use metaphors to describe the softesign
is not in conflict with any requirements. It supizothe
requirement that the design should be simple an

[13] S. Nerur, A. Cannon, B. VenuGopal and P. Bond, “dias
an understanding of the conceptual underpinningsyibé
ACKNOWLEDGMENT development methodologies”, Agile Software Develepin

This work has been partially funded by the Swedish SPringer, 2010, p.15-29, doi: 10.1007/978-3-6427525_2

Knowledge Foundation (KK-stiftelsen) [10] and théJ-E)
Artemis funded SafeCer project [14]. [14] SafeCer projectyww.safecer.eifLast Accessed: October

2012)

REFERENCES

[1] K. Beck, “Extreme Programming Explained: Embrace
Change” ' ed., Addison-Wesley. 1999

[2] CELENEC, EN 50128 Railway applications.
Communication, signalling and processing systems.
Software for railway control and protection syste@iéed.
June 2011

[8] M. Poppendieck, “XP in a Safety-Critical Environntien
2002. Cutter IT.

[4] S.H. VanderLeest and A. Buter, “Escape the watedajile
for aerospace”, Digital Avionics Systems Conferem2zaSC
'09. IEEE/AIAA 28th, Oct. 2009

[5] O. Cawley, X. Wang and |. Richardson, “Lean/agdésare
development methodologies in regulated Environments
State of the Art”, Proceedings of Lean Enterprie&are
and Systems, Springer, 2010, p. 31-36

[6] A. Wils and S. van Baelen, “Towards an agile avisni
process”, AGILE project report vol:D.2.12, ITEA-AGHE
consortium. February 2007

[71 M. Vuori, “Agile development of safety-critical dofare”,
Tampere University of Technology. Department oft®afe
Systems. Report 14, 2011

[8] A. Sidky and J. Arthur, “Determining the applicatyilof
agile practices to mission and life-critical sys$&m
Proceeding SEW '07 Proceedings of the 31st IEEEVG0E
Engineering Workshop , 2007, p. 3-12

[9] R. A. Chisholm, “Agile software development methealsi
DO0-178B certification”, Royal Military College of@ada,
2007

[10] KK-Stiftelsen: Swedish Knowledge Foundation,
http://www.kks.sgLast Accessed: September 2012)

[11] IBM, Rational Unified Processittp://www-
01.ibm.com/software/rationall.ast Accessed: September
2012)

[12] Manifesto for Agile Software Development,
http://agilemanifesto.orgl ast Accessed: September 2012)

