
Very Low Complexity MPEG-2 to H.264 Transcoding Using
Machine Learning

Gerardo Fernández
Escribano

Instituto de Investigación en
Informática de Albacete.

Universidad de Castilla-La
Mancha

Avenida de España, s/n.
02071 Albacete, SPAIN

+ 34 967 599200 Ext. 2664
gerardo@dsi.uclm.es

Hari Kalva
Department of

Computer Science
and Engineering.
 Florida Atlantic

University
777 Glades Road,

Boca Raton, FL
33431, USA

+ 1 561 297 0511
hari@cse.fau.edu

Pedro Cuenca
Instituto de Investigación en

Informática de Albacete.
Universidad de Castilla-La

Mancha
Avenida de España, s/n.
02071 Albacete, SPAIN

+ 34 967 599200 Ext. 2492
pcuenca@dsi.uclm.es

Luis Orozco Barbosa
Instituto de Investigación en

Informática de Albacete.
Universidad de Castilla-La

Mancha
Avenida de España, s/n.
02071 Albacete, SPAIN

+ 34 967 599200 Ext. 2467
lorozco@dsi.uclm.es

ABSTRACT
This paper presents a novel macroblock mode decision algorithm
for inter-frame prediction based on machine learning techniques
to be used as part of a very low complexity MPEG-2 to H.264
video transcoder. Since coding mode decisions take up the most
resources in video transcoding, a fast macro block (MB) mode
estimation would lead to reduced complexity. The proposed
approach is based on the hypothesis that MB coding mode
decisions in H.264 video have a correlation with the distribution
of the motion compensated residual in MPEG-2 video. We use
machine learning tools to exploit the correlation and derive
decision trees to classify the incoming MPEG-2 MBs into one of
the 11 coding modes in H.264. The proposed approach reduces
the H.264 MB mode computation process into a decision tree
lookup with very low complexity. The proposed transcoder is
compared with a reference transcoder comprised of a MPEG-2
decoder and an H.264 encoder. Our results show that the proposed
transcoder reduces the H.264 encoding time by over 95% with
negligible loss in quality and bitrate.

Categories and Subject Descriptors: I.4.2 [Image Processing
and Computer Vision]: Compression (Coding) – Approximate
methods.
General Terms: Algorithms, Performance, Design.

Keywords: H.264, MPEG-2, Transcoding, Inter-frame, Machine
Learning.

1. INTRODUCTION
During the past few years, technological developments, such as
novel video coding algorithms, lower memory costs, and faster
processors, are facilitating the design and development of highly
efficient video encoding standards. Among the recent works in
this area, the H.264 video encoding standard, also known as
MPEG-4 AVC occupies a central place [1].

The H.264 standard is highly efficient by offering perceptually
equivalent video quality at about 1/3 to 1/2 of the bitrates offered
by the MPEG-2 format. However, these gains come with a
significant increase in encoding and decoding complexity [2].
Though H.264 is highly efficient compared to MPEG-2, the wide
and deep penetration of MPEG-2 creates a need for co-existence
of these technologies and hence creates an important need for
MPEG-2 to H.264 transcoding technologies. However, given the
significant differences between both encoding algorithms, the
transcoding process of such systems is much more complex
compared to the other heterogeneous video transcoding processes
[3-6]. The main elements that require to be addressed in the
design of an efficient heterogeneous MPEG-2 to H.264 transcoder
are [7]: the inter-frame prediction, the transform coding and the
intra-frame prediction. Each one of these elements requires to be
examined and various research efforts are underway. In this
paper, we focus our attention on a part of the inter-frame
prediction: the macroblock mode decision, one of the most
stringent tasks involved in the transcoding process. †‡
A video transcoder is comprised of a decoding stage followed by
an encoding stage. The decoding stage of a transcoder can
perform full decoding to the pixel level or partial decoding to the
coefficient level. Partial decoding is used in compressed domain
transcoding where the transform coefficients in the input format
are directly transcoded to the output format. This transformation
is straightforward when the input and output formats of the
transcoder use the same transform (e.g., MPEG-2 to MPEG-4
transcoding) [5]. When these transforms differ substantially, the
compressed domain transcoding becomes computationally
expensive. The utility of this compressed domain transcoding is
limited to intra MB transcoding. For predicted MBs, the
transcoding in compressed domain becomes prohibitively
expensive. The substantial differences in MPEG-2 and H.264
make even intra transcoding in the compressed domain relatively
expensive [8]; pixel domain transcoding is shown to produce
better results [9].

This work was supported by the Ministry of Science and Technology of
Spain under CICYT project TIC2003-08154-C06-02, the Council of
Science and Technology of Castilla-La Mancha under project PAI06-0106
and FEDER.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MM'06, October 23–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010...$5.00.

931

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357369626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pixel domain transcoders have a full decoding stage followed by a
reduced complexity encoding stage. The complexity reduction is
achieved by reusing the information gathered from the decoding
stage. It is assumed that the input video is encoded with
reasonable RD optimization. The MPEG-2 to H.264 complexity
reduction techniques reported in the literature fall into two
categories: 1) MB mode mapping in H.264 based on the MB
modes of the incoming video [10] and 2) Selective evaluation of
MB modes in H.264 based on heuristics [11]. Because of the large
number of inter and intra MB coding modes supported by H.264,
there is no one-to-one mapping between MPEG-2 and H.264 MB
modes. A direct mapping leads to either a sub-optimal decision if
the mapped mode is the final MB mode or an increase on
complexity if additional evaluations have to be made to improve
the mode decision. Selective evaluation is based on the
observation that certain MB modes are less likely to occur for a
class of videos and bitrates. If the selective evaluation is
aggressive in limiting the number of allowed modes, the
performance is sub-optimal. On the contrary, increasing the
number of allowed modes increases the complexity.
We have developed an innovative approach that is not limited by
the inefficiencies of mode mapping or selective evaluation
approaches. The proposed approach is based on the hypothesis
that MB coding mode decisions in H.264 video have a correlation
with the distribution of the motion compensated residual in
MPEG-2 video. Exploiting this correlation together with the MB
coding modes of MPEG-2 could lead to a very low complexity
transcoder. Figure 1 shows a plot of the mean and variance of the
MPEG-2 MB residual in the input video and the H.264 MB
coding mode of the corresponding MB in the transcoded video.
As the coding mode changes, the shift in the mean and variance of
the corresponding MB can be clearly seen. This correlation can be
effectively exploited using machine learning approaches. Thus,
the H.264 MB mode computation problem is posed as a data
classification problem where the MPEG-2 MB coding mode and
residual have to be classified into one of the several H.264 coding
modes. The proposed transcoder is developed based on these
principles and reduces the H.264 MB mode computation process
into a decision tree lookup with very low complexity.

Figure 1. Relationship between MPEG-2 MB residual and
H.264 MB coding mode.
The rest of the paper is organized as follows. Section 2 reviews
the principles of operation of the prediction of inter-coded

macroblocks in p-slices used by the H.264 encoding standard.
Section 3 introduces our macroblock mode decision algorithm for
inter-frame prediction based on machine learning techniques,
specifically designed for MPEG-2 to H.264 transcoders. In
Section 4, we carry out a performance evaluation of the proposed
algorithm in terms of its computational complexity and rate-
distortion results. We compare the performance of our proposal to
the reference transcoder with the encoding stage using the H.264
reference implementation. Finally, Section 5 draws our
conclusions and outlines our future research plans.

2. MACROBLOCK MODE DECISION AND
MOTION ESTIMATION IN H.264
In the H.264 standard, the macroblock decision mode and motion
estimation are the most computationally expensive processes.
H.264 uses block-based motion compensation, the same principle
adopted by every major coding standard since H.261. Important
differences from earlier standards include the support for a range
of block sizes (down to 4x4) and fine sub-pixel motion vectors
(1/4 pixel in the luma component). H.264 supports motion
compensation block sizes ranging from 16x16 to 4x4 luminance
samples with many options between the two. The luminance
component of each macroblock (16x16 samples) may be split up
in 4 ways: 16x16, 16x8, 8x16 or 8x8. Each of the sub-divided
regions is a macroblock partition. If the 8x8 mode is chosen, each
of the four 8x8 macroblock partitions within the macroblock may
be further split in 4 ways: 8x8, 8x4, 4x8 or 4x4 (known as sub-
macroblock partitions). These partitions and sub-partitions give
rise to a large number of possible combinations within each
macroblock (see Figure 2). This method of partitioning
macroblocks into motion compensated sub-blocks of varying size
is known as tree structured motion compensation.

Figure 2. Macroblock partitions, sub-macroblock partitions

and partition scans.
A separate motion vector (previously calculated in the motion
estimation module) is required for each partition or sub-partition.
Each motion vector must be coded and transmitted; in addition,
the choice of partition(s) must be encoded in the compressed
bitstream. Choosing a large partition size (e.g. 16x16, 16x8, 8x16)
means that a small number of bits are required to signal the choice
of motion vector(s) and the type of partition; however, the motion
compensated residual may contain a significant amount of energy
in areas with high detail. Choosing a small partition size (e.g. 8x4,
4x4, etc.) may give a lower-energy residual after motion
compensation but requires a larger number of bits to signal the
motion vectors and choice of partition(s). The choice of partition
size therefore has a significant impact on compression
performance. In general, a large partition size is appropriate for
homogeneous areas of the frame and a small partition size may be
beneficial for areas with high detail.

Va
ria

nc
e

MPEG-2 Res. MB Var.
H.264 MB Mode

MB Number

M
ea

n

MPEG-2 Res. MB Mean
H.264 MB Mode

932

The resolution of each chroma component in a macroblock (Cr
and Cb) is half that of the luminance (luma) component. Each
chroma block is partitioned in the same way as the luma
component, except that the partition sizes have exactly half the
horizontal and vertical resolution (an 8x16 partition in luma
corresponds to a 4x8 partition in chroma; an 8x4 partition in luma
corresponds to 4x2 in chroma; and so on). The horizontal and
vertical components of each motion vector (one per partition) are
halved when applied to the chroma blocks.
Each partition in an inter-coded macroblock is predicted from an
area of the same size in a reference picture. The offset between
the two areas (the motion vector) has ¼-pixel resolution (for the
luma component). If the video source sampling is 4:2:0, 1/8 pixel
samples are required in the chroma components (corresponding to
¼-pixel samples in the luma). The luma and chroma samples at
sub-pixel positions do not exist in the reference picture and so it is
necessary to create them using interpolation from nearby image
samples. Sub-pixel motion compensation can provide
significantly better compression performance than integer-pixel
compensation, at the expense of increased complexity. Quarter-
pixel accuracy outperforms half-pixel accuracy.

Encoding a motion vector for each partition can take a significant
number of bits, especially if small partition sizes are chosen.
Motion vectors for neighboring partitions are often highly
correlated and so each motion vector is predicted from vectors of
nearby, previously coded partitions. The method of forming the
prediction MVp depends on the motion compensation partition
size and on the availability of nearby vectors.

In H.264, the macroblock mode decision is the most
computationally expensive process. Mode decision is a process
such that for each possible block-size a cost is evaluated. The
encoder selects the coding-modes for the macroblock, including
the best macroblock partition (sub-macroblock partition) and
mode of prediction for each macroblock partition, such that the
cost is optimized. In the JM reference code (version 10.2) [12],
the motion estimation and the mode decision are executed
together. This implies that for each macroblock partition (sub-
macroblock partition) within the MB, motion estimation is done
first and the resulting cost is used for the mode decision.

In the H.264, two methods have been defined to evaluate the cost
for MB mode decision: RD-cost and SAE-cost. In the following,
we describe these two methods.

2.1 The RD-Cost
The Rate-Distortion (RD) optimization method is based on a
Lagrange multiplier [13] [14]. The H.264 standard can make use
of this optimization method to choose the best macroblock mode
decision. Different from evaluating the cost of coding a
macroblock on a pixel by pixel basis (SAE cost), the RD-cost
consists of making the selection based on a Lagrange function. In
this way, the H.264 standard selects the macroblock mode
exhibiting the minimum Lagrange cost. This implies that for each
existing macroblock partition (sub-partition) within the MB, bit-
rate and distortion are calculated by actually encoding and
decoding the video. Therefore, the encoder can achieve the best
Rate-Distortion performance results, at the expense of calculation
complexity.

For evaluating the RD-cost, the standard has to obtain the
encoding rate, R, and the distortion, D, of each macroblock
partition (sub-macroblock partition). The former is obtained by
first computing the difference between the original macroblock
and its predictor. Thereafter, a 4x4 Hadamard Transform (HT)
has to be applied followed by a quantization process. The
distortion, D, is obtained by performing an inverse quantization
process followed by its inverse HT and then comparing the
original macroblock to the reconstructed one. The H.264 standard
chooses then the decision mode having the minimum cost, J. The
cost is evaluated using the Lagrange function J=D + λ x R, where
λ is the Lagrange multiplier. Figure 3 depicts the overall process.

One of the main drawbacks of this method is its excessive
computational cost. On the contrary, the encoder can achieve the
best Rate-Distortion performance results. However, for many
applications, the use of the Lagrange multiplier may be
prohibitive. This is the case when developing a transcoding
architecture aimed to work in real-time.

HT+ QP

Encoder H.264/AVC with
loop Rate-Distorsion

QP-1

IHT

+

Compute
rate

Prediction

Frame

-

+

Determine
distorsion

+

+

Compute cost
(J = D+ λ x R) Decision

R

D

Figure 3. RD-cost method in the H.264 encoder.

2.2 The SAE-Cost
In this method, the H.264 encoder selects the best macroblock
mode by using the Sum of Absolute Errors (SAE). This implies
that for each existing macroblock partition (sub-partition) within
the MB, a predictor within the pixel-domain is created from the
motion estimation of the current partition and the SAE costs is
evaluated. For each MB and for each color component (Y,Cr,Cb),
one prediction mode have to be obtained. The best mode is
determined corresponding to the mode exhibiting the minimum
SAE cost. One of the main advantages of this method is its low
computational cost. On the contrary, the Rate-Distortion
performance results are sub-optimal.

2.3 The Fast Motion Estimation Option
Motion estimation is one of the most important tools in H.264
encoder for exploiting the high temporal redundancy between
successive frames to improve video coding efficiency. And
motion estimation is also the most time consuming part in the
H.264 encoder (since it is also used for mode decision). Generally
motion estimation is conducted into two steps: first is integer pel
motion estimation; and the second is fractional pel motion
estimation around the position obtained by the integer pel motion
estimation.

Algorithms on Fast Motion Estimation (FME) are always hot
research spot, especially fast integer pel motion estimation has
achieved much more attention because traditional fractional pel

933

motion estimation only take a very few proportion in the
computation load of whole motion estimation. Fast motion
estimation algorithms such as EPZS [15], UMHexagonS [16], and
SEA [17] have been proposed to reduce the number of searching
points in motion estimation.

The UMHexagonS algorithm proposed by Tsinghua University
was adopted by the H.264/MPEG-4 Part 10 (AVC) reference
software implementation [12]. This algorithm uses the hybrid and
hierarchical motion search strategies. It includes four steps with
different kinds of search pattern: 1) Predictor selection and
prediction mode reordering; 2) Unsymmetrical-cross search; 3)
Uneven multi-hexagon-grid search; 4) Extended hexagon-based
search. With the second and third step, the motion estimation
accuracy can be nearly as high as that of full search. But the
computation load and operations can be reduced even more.
Unsymmetrical-cross search uses prediction vector as the search
center and extends in the horizontal and vertical directions
respectively. Uneven multi-hexagon-grid search includes two sub-
steps: first a full search is carried out around the search center.
And then a 16-HP multi-hexagon-grid search strategy is taken.
Extended hexagon-based search is used as a center based search
algorithm, including hexagon search and diamond search in a
small range.

In the H.264 reference software, the Fast Motion Estimation
(FME) algorithm (based in the UMHexagonS algorithm) can be
employed for the motion estimation in addition to the original
Full Search (FS) algorithm.

3. MACHINE LEARNING
Machine learning refers to the study of algorithms and systems
that “learn” or acquire knowledge from experiences. Deductive
machine learning deduces new rules/knowledge from existing
rules and inductive machine learning uses the analysis of data sets
for creating a set of rules to take decisions. These rules can be
used, in the machine learning, to build a tree decision using a set
of experiments or examples, named the training data set. This set
of data must have the following properties [18]:

1. Each attribute or variable can take nominal or numerical
values, but the number of attributes cannot vary from an
example to another. This is to say, all the samples in the
training data set used for training the model must have
the same number of variables.

2. The set of categories that the examples can be assigned
to must a priori be known to enable supervised learning.

3. The set of categories must be finite and must be
different from one another.

4. Since the inductive learning consists of obtaining
generalization from examples, it is supposed the
existence of a sufficiently great number of examples.

Machine learning uses statistics with different kinds of algorithms
to solve a problem by studying and analyzing the data. Machine
learning has been used in an extensive range of applications
including search engines, medical diagnosis, stock market
analysis, classifying DNA sequences, speech and handwriting
recognition, object recognition in computer vision, game playing
and robot motion, etc.

In this paper, we describe the process of using machine learning
to build a decision tree for very low complexity transcoding. The
decision tree will be used to determine the coding mode of an MB
in P frames of the output H.264 video, based on the information
gathered during the MPEG-2 decoding stage. Figure 4 depicts the
process for building the decision trees to be used in the MPEG-2
to H.264 transcoding process. The incoming MPEG-2 video is
decoded and during the decoding stage, the MB coding mode, the
coded block pattern (CBPC), and the mean and variance of the
residual information for this MB (calculated for its 4x4 sub-
blocks – resulting in 16 means and 16 variances for each MB) are
saved. The decoded MPEG-2 video is then encoded using the
standard H.264 encoder. The coding mode of the corresponding
MBs in H.264 is also saved. Based on the MPEG-2 data and the
corresponding H.264 coding mode decision for each MB, a
machine learning algorithm is used to create decision trees that
classify an MB into one of the 11 H.264 MB coding modes.

Figure 4. Process for building decision trees for MPEG-2 to

H.264 transcoding.

3.1 Creating the Training Files
A decision tree is made by mapping the observations about a set
of data to a tree made of arcs and nodes. The nodes are the
variables and the arcs the possible values for that variable. The
tree can have more than one level; in that case, the nodes (leafs of
the tree) represent the decisions based on the values of the
different variables that drive the decision from the root to the leaf.
These types of trees are used in the machine learning processes
for discovering the relationships in a set of data. The tree leafs are
the classifications and the branches are the features that lead to a
specific classification. A tree decision is a classifier based on a set
of attributes allowing us to determine the category of an input
data sample.

The decision tree for the transcoder was made using the WEKA
data mining tool [18]. The files that are used for the WEKA data
mining program are known as Attribute-Relation File Format
(ARFF) files. An ARFF file is written in ASCII text and shows
the relationship between a set of attributes. Basically, this file has
two different sections:1) the header which contains the name of
the relation, the attributes that are used, and their types; and 2) the
section containing the data.

The training sets were made using MPEG-2 sequences encoded at
higher than the typical broadcast encoding rates for the same
quality, since the B frames are not used. The H.264 decisions in
the training set were obtained from encoding the MPEG-2

934

decoded sequence with a quantization parameter of 25 and RD
optimization enabled. After extensive experimentation, we found
that sequences that contain regions varying from homogenous to
high-detail serve as good training sets. Good sample sequences
could be Flower and Football. The goal is to develop a single,
generalized, decision tree that can be used for transcoding any
MPEG-2 video.

Figure 5 shows the decision trees built using the process depicted
in Figure 4. As shown in Figure 4, the Decision Tree for the
proposed transcoder is a hierarchical decision tree with three
different WEKA trees: 1) classifier for Intra, Skip, Inter 16x16,
and Inter 8x8, 2) classifier to classify inter 16x16 into one of
16x16, 16x8, and 8x16 MBs and 3) classifier to classify inter 8x8
into one of 8x8, 8x4, 4x8, or 4x4. This paper focuses on the Inter
MB mode computation and the further classification and
processing for Intra MBs is not discussed in this paper.

For creating the first WEKA tree (Figure 5 node 1), the first
training data set uses the mean and variance of each one of the
sixteen 4x4 residual sub-blocks, the MB mode in MPEG-2 (skip,
intra, and three non-intra modes, labeled as 0, 1, 2, 4 and 8 in the
code shown below), the coded block pattern (CBPC) in MPEG-2,
and the corresponding H.264 MB coding mode decision for that
MB as determined by the standard reference software. The header
section of the ARFF files has the attribute declaration depicted
herein:

The supposed dependent variable, namely class in the example, is
the variable that we are trying to understand, classify, or
generalize. The other attributes are the variables that determine
the classification. The ARFF data section has the instance lines,
which are the samples used to train our model. Each macroblock
sample is represented on a single line. In this case the variable
class can take four values (skip, 16x16, 8x8 or Intra labeled as 0,
1, 8 and 9 in the code).

The second training data set, used for creating the second WEKA
tree (Figure 5 node 2), was made using the samples (MBs) that
were encoded as 16x16 MBs in the H.264 reference encoder. It
uses the mean and variances of each one of the sixteen 4x4
residual sub-blocks, the MB mode in MPEG-2 (in this case only
the three non-intra modes), the coded block pattern (CBPC) in
MPEG-2, and the corresponding H.264 MB coding sub-mode
decision in the 16x16 mode, as determined by the standard
reference software: 16x16, 16x8 or 8x16. This tree determines the
final coding mode of the MBs classified as inter 16x16 by the first
tree.

The third and last training data set, was used to create the third
WEKA tree (Figure 5 node 3) and was made using the samples

(MBs) that were encoded as inter 8x8 MBs in the H.264 reference
encoder. It uses four means and four variances of 4x4 residual
sub-blocks, the MB mode in MPEG-2 (the three non-intra
modes), the coded block pattern (CBPC) in MPEG-2, and the
corresponding H.264 MB sub-partition decision in the 8x8 mode,
as determined by the standard reference software: 8x8, 8x4, 4x8
or 4x4. Since this decision is made separately for each 8x8 sub-
block, only the four means and four variances of 4x4 residual sub-
blocks are used in each sample for training the model.

Based on these training files, the J48 algorithm implemented in
the WEKA data mining tool was used to create the three decision
trees. The J48 algorithm is an implementation of the C4.5
algorithm proposed by Ross Quinlan [19]: the algorithm widely
used as a reference for building decision trees.

The decision tree, that is proposed to solve the inter-prediction
problem, is a model of the data that encodes the distribution of the
class label in terms of the attributes. The final goal of this
decision tree is to help find a simple structure to show the
possible dependences between the attributes and the class.

3.2 The Decision Tree
This sub-section discusses the proposed macroblock mode
decision algorithm aiming to accelerate the inter-frame prediction.
This goal is achieved by making use of the MPEG-2 MB coding
modes, the coded block pattern (CBPC), and the mean and
variance of the residual information for this MB calculated for its
4x4 sub-blocks. MPEG-2 uses 16x16 motion compensation (MC)
and does not temporally decorrelate an image fully. The MC
residual can thus be exploited to understand the temporal
correlation of variable block sizes in H.264. The open source
WEKA data mining tool is used to discover a pattern of the mean,
variance, MPEG-2 coding modes, and the coded block pattern in
MPEG-2 (CBPC) for H.264 coding mode decisions. Figure 5
shows the decision tree used in the proposed transcoder.

The decision tree consists of three WEKA decision trees, shown
in Figure 5 with grey balls. The first WEKA tree is used to check
for the skip, Intra, 8x8 and 16x16 MBs modes. If an MB is 8x8 or
16x16, a second and a third decision tree is used for selecting the
final coding mode of the MB. The WEKA tool determined the
mean and variance thresholds for each of the three WEKA trees in
the decision tree. Due to space constraints we cannot show all the
rules being evaluated in the WEKA decision nodes. The process
described in herein should be sufficient for interested people to
develop the decision trees and repeat these experiments. The
decision tree works as follows:

Node 1. The inputs for this node are all the MPEG-2 coded MBs.
In this node a tree decision generated with WEKA is used to
decide whether the MB should be coded in H.264. This tree
examines whether the MB has a very high residual or a medium
residual. The output of this node is a first level decision mode that
should be used for coding the MB: skip, Intra, 8x8 or 16x16. The
intra decision process is not discussed in this paper. In the other
cases, the algorithm has to make a second level decision based in
the first decision. For example, the following rules were given by
WEKA:

• If the MPEG-2 MB was “MC not coded”, (non-zero MV
present, none of the 8x8 block has coded coefficients), then

@RELATION mean-variance_4x4

@ATTRIBUTE mean0 Numeric
@ATTRIBUTE variance0 Numeric
@ATTRIBUTE mean1 Numeric
@ATTRIBUTE variance1 Numeric
………………………………………………………………………
@ATTRIBUTE mean15 Numeric
@ATTRIBUTE variance15 Numeric
@ATTRIBUTE mode_mpeg2 {0,1,2,4,8}
@ATTRIBUTE CBPC0 {0,1}
………………………………………………………………………
@ATTRIBUTE CBPC6 {0,1}
@ATTRIBUTE class {0,1,8,9}

935

the MB will be coded as 16x16 in H.264. Again, a second
decision level will be made to select the best choice in this
case (see node 2).

• If the MPEG-2 MB was coded in intra mode, the MB will be
coded as intra or inter 8x8 mode in H.264. In some cases the
algorithm will propose Intra, and the algorithm will end, and
in other cases the algorithm will propose 8x8 mode, so a
second level decision will be done (see node 3).

• If the MPEG-2 MB was coded in skip mode, then the H.264
decision mode should be skip. The decision will be made in
node 4.

Figure 5. The Decision Tree.

Node 2. The inputs for this node are the 16x16 MBs classified by
the node 1. In this node we use again a decision tree generated
with WEKA to decide whether the MB should be coded in H.264
(16x16, 16x8 or 8x16). This tree examines if there are continuous
16x8 or 8x16 sub-blocks that might result in a better prediction.
The output of this node is the 16x16 sub-mode decision mode that
should be used for coding the MB: 16x16, 16x8 or 8x16. When
the node decision is 16x8 or 8x16 the coding mode is finalized. In
the other case, the evaluation continues in node 4, where the final
decision will be made.

Node 3. The inputs for this node are the MBs classified by the
node 1 as 8x8. This node evaluates only the H.264 8x8 modes
using the third WEKA tree and selects the best option: 8x8, 8x4,
4x8 or 4x4. As explained in the previous section, this tree is run 4
times, once for each of the four sub-macroblocks in the MB. This
tree is different from the others because this one only uses four
means and four variances to make the decision.

Node 4. The inputs for this node are skip-mode MBs in the
MPEG-2 bitstream classified by the node 1, or the 16x16 MBs
classified by the node 2. This node evaluates only the H.264
16x16 mode (without the sub-modes 16x8 or 8x16). Then, the
node selects the best option, skip or inter 16x16.

Since the MB mode decision, and hence the thresholds, depend on
the quantization parameter (QP) used in the H.264 encoding
stage, the mean and variance threshold will have to be different at
each QP. The two solutions here are: 1) develop the decision trees
for each QP and use the appropriate decision tree depending on
the QP selected and 2) develop a single decision tree and adjust
the mean and variance threshold used by the trees based on the
QP. The first option is complex as we have to develop and switch
between 52 different decision trees resulting in 156 WEKA trees
in a transcoder. Since the QP used by H.264 is designed to change
the quantization step size and the relationship between the QPs is

well defined, this relationship can be used to adjust the mean and
variance thresholds. The proposed transcoder uses a single
decision tree developed for a mid-QP of 25 and then adjusted for
other QPs. Since the quantization step size in H.264 doubles when
QP increases by 6, the thresholds are adjusted by 2.5% for a
change in QP of 1. For QP values higher than 25, the thresholds
are decreased and for QP values lower than 25 thresholds are
proportionally increased.

Figure 6 shows an example of the results obtained by applying
our proposed algorithm. Figure 6a illustrates the residual for the
MPEG-2 encoded Tempete sequence. Figures 6b and 6c show the
mean and variance of the residual. Figures 6.e and 6.f show the
differences between the inter mode selection made by the H.264
standard (with the RD-optimized option enabled), and the
proposed algorithm, with a value of 10 for QP. From these
figures, it is clear that our algorithm obtains very similar results to
those obtained using the full estimation of the H.264 standard.

(a) MPEG-2 residual (+128)

(b) Mean of the MPEG-2 residual (+128)

(c) Variance of the MPEG-2 residual

(d) Different kinds of Macroblocks in the grid pictures

(e) H.264 Rd opt, first frame P, Tempete (CIF)
QP= 10. Inter mode selected by H.264

(f) H.264 Rd opt, first frame P, Tempete (CIF)
QP= 10. Inter mode selected by our proposal

Inter 16x16 Macroblock

Skip Macroblock

Intra Macroblock

Inter 8x16 Macroblock

Inter 16x8 Macroblock Inter 8x8 Macroblock

Inter 4x8 Sub-macroblock

Inter 8x4 Sub-macroblock

Inter 4x4 Sub-macroblock

Inter 8x8 Sub-macroblock

Figure 6. Macroblock partitions generated by the proposed

algorithm for the first P-frame in the Tempete sequence.

4. PERFORMANCE EVALUATION
The proposed low complexity MB coding mode decision
algorithm is implemented in the H.264/AVC reference software,
version JM 10.2 [12]. Figure 7 shows the overall operation of the
proposed transcoder. The MPEG-2 video is decoded and the
information required by the decision trees is gathered in this
stage. The additional computation here is the computation of the
mean and variance of the 4x4 sub-blocks of the residual MBs. The
MB coding mode decision determined by the decision trees is
used in the low complexity H.264 encoding stage. This is an

936

H.264 reference encoder with the MB mode decision replaced by
simple mode assignment from the decision tree. The H.264 video
encoder takes as input the decoder MPEG-2 video (pixel data)
and the MB mode decision from the decision tree and encodes the
H.264 video. The MPEG-2 motion vectors are not used and the
encoder performs the motion estimation just for the final MB
mode determined by the decision tree.

MPEG-2
Video

H.264
Video

Figure 7. Proposed transcoder.

The performance of the proposed very low complexity transcoder
is compared with a reference transcoder comprised of a full
MPEG-2 decoder followed by a full H.264 encoder. We compare
the performance of our proposal to the full H.264 encoder when
the RD-cost (with and without FME option enabled) and the SAE-
cost (with and without FME option enabled) are used. The metrics
used to evaluate the performance are the reduction in the
computational cost and rate distortion function. The time results
reported are for the H.264 encoding component as the MPEG-2
decoding cost is the same for both the proposed and reference
encoders.
We have conducted an extensive set of experiments with videos
representing wide range of motion, texture, and color.
Experiments were conducted to evaluate the performance of the
proposed algorithm when transcoding videos at commonly used
resolutions: CCIR-601, CIF, and QCIF. The input to the
transcoder is a high quality MPEG-2 video. Since the proposed
transcoder addresses transcoding P frames in MPEG-2 to H.264 P
frames, MPEG-2 bitstreams were created without B frames. Since
the B frames, which are much smaller than P frames, are not used
in the input video, the video has to be encoded at higher than the
typical encoding rates for equivalent broadcast quality. Table 1
shows the bitrates used for the input MPEG-2 video. The
experiments have shown that the proposed approach performs
extremely well across all bitrates and resolutions.

Table 1. Bitrates for the input sequences

Format Bitrate
CCIR-601 (720x480) 5 Mbps
CIF (352x288) 1.15 Mbps
QCIF (176x144) 0.768 Mbps

The sequences have been encoded with H.264 using the QP
factors ranging from 5 up to 45 in steps of 5. This corresponds to
the H.264 QP range used in most practical applications. The size
of the GOP is 12 frames; where the first frame of every GOP was
encoded as I-frame, and the rest of the frames of the GOP were
encoded as a P-frames. The rate control was disabled for all the
simulations. The ProfileIDC was set to High for all the

simulations, with the FRExt options enabled. The simulations
were run on a P4 HT at 3.0 GHz Intel machine with 512 MB
RAM. The results are reported for six different sequences: two for
each of the three resolutions shown in Table 1.

CCIR Sequences (720x480, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 5000 10000 15000 20000 25000 30000 35000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (Rd opt)

Proposed (Rd opt)

Ayersroc

Martin

(a)

CIF Sequences (352x288, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (Rd opt)

Proposed (Rd opt)

Paris

Tempete

(b)

QCIF Sequences (176x144, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 500 1000 1500 2000 2500 3000

Bit rate [kbits/s]

PS
N

R
 [d

b]

H.264 (Rd opt)

Proposed (Rd opt)

Foreman

News

(c)

Figure 8. RD results for RD-cost without FME option.
Figure 8 shows the RD results for the reference and proposed
transcoder with RD optimization enabled and fast motion
estimation (FME) disabled. Figure 9 shows the RD results for the
reference and proposed transcoder with RD optimization enabled
and fast motion estimation (FME) enabled. As seen from the
figures, the PSNR obtained with the proposed transcoder deviates
slightly from the results obtained when applying the considerable

937

more complex reference transcoder. Compared with the reference
transcoder, the proposed transcoder has a PSNR drop of at most
0.3 dB for a given bitrate and bitrate increase of at most 5% for a
given PSNR. This negligible drop in RD performance is more
then offset by the reduction in computational complexity. Tables
2 and 3 show the average encoding time per frame given in
milliseconds. As shown in Table 2 and Table 3, the transcoding
time reduces by more than 80% with RD optimization, and more
than 90% with FME enabled for both the reference and proposed
transcoders.

CCIR Sequences (720x480, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 5000 10000 15000 20000 25000 30000 35000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (Rd opt, Fast ME)

Proposed (Rd opt, Fast ME)

Ayersroc

Martin

(a)

CIF Sequences (352x288, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (Rd opt, Fast ME)

Proposed (Rd opt, Fast ME)

Paris

Tempete

(b)

QCIF Sequences (176x144, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 500 1000 1500 2000 2500 3000

Bit rate [kbits/s]

PS
N

R
 [d

b]

H.264 (Rd opt, Fast ME)

Proposed (Rd opt, Fast ME)

Foreman

News

(c)

Figure 9. RD results for RD-cost with FME option.

Figure 10 shows the RD results for the reference and proposed
transcoder with SAE-Cost (RD optimization disabled) and fast
motion estimation (FME) disabled. Figure 11 shows the RD
results for the reference and proposed transcoder with SAE-Cost
(RD optimization disabled) and fast motion estimation (FME)
enabled. As seen from the figures, in some cases the proposed
transcoder have better results than the reference transcoder. This
happens because the best solution is obtained by enabling the RD
optimization, and in the experiments reported in the figures we
are comparing the faster configuration of a H.264 encoder (SAE
cost) with our proposed reduced-complexity transcoder. With
SAE based encoding (RD-optimization disabled), the proposed
transcoder continues to outperform the reference transcoder
computationally (Tables 2 and 3). The transcoder still maintains a
PSNR drop of less than 0.3 dB and bitrate increase of less than
5%. The computational cost is reduced by over 38% for the SAE
case and by over 82% with FME enabled for both the reference
and proposed transcoders.

Table 2. Mean encoding time (milliseconds) per frame with
the reference transcoder

Sequence RD Opt RD Opt
+ FME

SAE SAE +
FME

Martin 7370 6420 2110 940
Ayersroc 7650 6820 2095 1030
Paris 2305 2020 590 235
Tempete 2360 2050 605 290
Foreman 565 495 155 68
News 550 470 150 55

Table 3. Mean encoding time (milliseconds) per frame with
the proposed transcoder

Sequence RD Opt RD Opt
+ FME

SAE SAE +
FME

Martin 1460 470 1190 170
Ayersroc 1620 670 1160 190
Paris 415 95 360 45
Tempete 445 135 360 53
Foreman 102 24 93 12
News 103 21 92 11

Table 4. Mean Time Reduction (%) per frame with the
proposed transcoder

Sequence RD Opt RD Opt
+ FME

SAE SAE +
FME

Martin 80,19 92,68 43,60 81,91
Ayersroc 78,82 90,18 44,63 81,55
Paris 82,00 95,30 38,98 80,85
Tempete 81,14 93,41 40,50 81,72
Foreman 81,95 95,15 40,00 82,35
News 81,27 95,53 38,67 80,00

Based on the results shown in the Tables 2 and 3, the proposed
transcoder with SAE and FME has the lowest complexity. The
proposed transcoder with RD optimization and FME is still faster
than the fastest case of the reference transcoder (SAE + FME).
Using FME reduces the complexity substantially. Selecting RD
optimization with the proposed transcoder doubles the complexity
compared with SAE+FME case. The decision to enable RD
optimization can be based on the operating bitrates and sensitivity
to the PSNR drop. At higher bitrates, RDOPT + FME option give
about 0.6 dB better than the SAE + FME option; this is doubling

938

the complexity for a gain of 0.6 dB. However, at lower bitrates,
the PSNR gain reduces to about 0.3 dB.

CCIR Sequences (720x480, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 5000 10000 15000 20000 25000 30000 35000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (SAE)

Proposed (SAE)

Ayersroc

Martin

(a)

CIF Sequences (352x288, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 2000 4000 6000 8000 10000 12000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (SAE)

Proposed (SAE)

Paris

Tempete

(b)

QCIF Sequences (176x144, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 500 1000 1500 2000 2500 3000

Bit rate [kbits/s]

PS
N

R
 [d

b]

H.264 (SAE)

Proposed (SAE)

Foreman

News

(c)

Figure 10. RD results for SAE-cost without FME option.
Table 4 summarizes the reduction in the computational cost due
to the proposed machine learning based mode decision algorithms
in the proposed transcoder. With RD optimization and FME, the
computational cost is reduced by over 90%. The cost reduction
reaches as high as 95.5% for QCIF sequences. With SAE and
FME, the computational cost is reduces by over 80%. The
computational cost reduction come at a cost of reduced quality.
The quality reduction, however, is very small and negligible for

most video applications. Table 5 shows the quality variation
versus time reduction of the proposed transcoder with respect the
reference transcoder for the same input bitrates shown in Table 1,
showing over 96% reduction in the computational complexity
characterizing our proposed scheme. As shown in the table, using
the proposed transcoder reduces the PSNR by at most 0.3dB with
RD optimization enabled and by at most 0.1 dB with SAE cost
based transcoder. Our results show that the proposed algorithm is
able to maintain a good picture quality while considerably
reducing the number of operations to be performed in all the
scenarios.

CCIR Sequences (720x480, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 5000 10000 15000 20000 25000 30000 35000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (SAE, Fast ME)

Proposed (SAE, Fast ME)

Ayersroc

Martin

(a)

CIF Sequences (352x288, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 2000 4000 6000 8000 10000 12000

Bit rate [kbits/s]

PS
N

R
 [d

B
]

H.264 (SAE, Fast ME)

Proposed (SAE, Fast ME)

Paris

Tempete

(b)

QCIF Sequences (176x144, 200 Frames, 25 Hz)

30

35

40

45

50

55

60

0 500 1000 1500 2000 2500 3000

Bit rate [kbits/s]

PS
N

R
 [d

b]

H.264 (SAE, Fast ME)

Proposed (SAE, Fast
ME)

Foreman

News

(c)

Figure 11. RD results for SAE-cost with FME option.

939

Table 5. Quality Variation vs Time Reduction (for transcoding rate)

Quality Variation from Reference
Transcoder (dB)

Time Reduction from Reference
Transcoder (%) Sequence

MPEG-2
Bit Rate
(Mbps) RD OPT RD FME SAE SAE

FME
RD OPT RD FME SAE SAE

FME
Ayersroc 5.0 - 0.3 - 0.3 0.0 - 0.1 80.0 90.5 43.3 82.3
Martin 5.0 - 0.2 - 0.2 - 0.1 - 0.1 80.5 92.8 42.1 82.0
Tempete 1.15 - 0.2 - 0.2 0.0 0.0 80.0 93.8 41.1 82.5
Paris 1.15 - 0.3 - 0.3 0.0 - 0.1 81.6 95.6 38.5 80.7
Foreman 0.768 - 0.3 - 0.3 0.0 0.0 83.5 95.5 37.4 82.6
News 0.768 - 0.2 - 0.2 0.0 0.0 84.1 96.0 35.1 81.1

5. CONCLUSIONS
In this paper, we proposed a novel macroblock partition mode
decision algorithm for inter-frame prediction to be used as part of
a high-efficient MPEG-2 to H.264 transcoder. The proposed
algorithms use machine learning techniques to exploit the
correlation in the MPEG-2 MC residual and the H.264 coding
modes. The WEKA tool was used to develop decision trees for
H.264 coding mode decision. The proposed algorithm has very
low complexity as it only requires the mean and variance of the
MPEG-2 residual and a set of rules to compare the mean and
variance against a threshold. The proposed transcoder uses a
single decision tree with adaptive thresholds based on the
quantization parameter selected in the H.264 encoding stage. The
proposed transcoder was evaluated using MPEG-2 videos at
CCIR, CIF, and QCIF resolutions. Our results show that the
proposed algorithm is able to maintain a good picture quality
while considerably reducing the computational complexity by as
much as 95%. The reduction in computational cost has negligible
impact on the quality and bitrate of the transcoded video. The
results show that the proposed transcoder maintains its
performance across all resolutions and bitrates. The proposed
approach to transcoding is novel and can be applied to develop
other transcoders as well.

Our future plans will focus on further reducing the complexity of
the proposed transcode by reusing the MPEG-2 motion vectors
followed by a motion vector refinement. By reusing the motion
vector, we believe, real-time transcoding of CIF resolution video
at 30 FPS is within reach.

6. REFERENCES
[1] ITU-T RECOMMENDATION H.264 “Advanced Video Coding

for Generic Audiovisual Services”. May 2003.
[2] Implementation Studies Group, “Main Results of the AVC

Complexity Analysis”. MPEG Document N4964, ISO/IEC
JTC11/SC29/WG11, July 2002.

[3] T. Shanableh and M. Ghanbari, “Heterogeneous Video
Transcoding to Lower Spatio-Temporal Resolutions and
Different Encoding Formats,” IEEE Transactions on
Multimedia, vol.2, no.2, June 2000.

[4] A. Vetro, C. Christopoulos, and H.Sun “Video Transcoding
Architectures and Techniques: An Overview”. IEEE Signal
Processing Magazine, vol. 20, no. 2, pp.18-29, March. 2003.

[5] H. Kalva, A. Vetro, and H. Sun, “Performance Optimization of
the MPEG-2 to MPEG-4 Video Transcoder”. Proceeding of
SPIE Conference on Microtechnologies for the New Millennium,
VLSI Circuits and Systems, May 2003.

[6] S. Dogan, A.H. Sadka and A.M. Kondoz, “Efficient MPEG-

4/H.263 Video Transcoder for Interoperability of Heterogeneous
Multimedia Networks,” IEE Electronics Letters, Vol. 35, No.11.
pp. 863-864.

[7] H. Kalva. "Issues in H.264/MPEG-2 Video Transcoding".
Proceedings of Consumer Communications and Networking
Conference, January 2004.

[8] Y. Su, J. Xin, A. Vetro, and H. Sun, “Efficient MPEG-2 to
H.264/AVC Intra Transcoding in Transform-Domain,” IEEE
International Symposium on Circuits and Systems, 2005. ISCAS
2005. pp. 1234- 1237 Vol. 2, 23-26 May 2005.

[9] B. Petljanski and H. Kalva, "DCT Domain Intra MB Mode
Decision for MPEG-2 to H.264 Transcoding" Proceedings of the
ICCE 2006. January 2006. pp. 419-420.

[10] Y.-K. Lee, S.-S. Lee, and Y.-L. Lee, “MPEG-4 to H.264
Transcoding using Macroblock Statistics,” Proceedings of the
ICME 2006, Toronto, Canada, July 2006.

[11] X. Lu, A. M. Tourapis, P. Yin, and J. Boyce, “Fast Mode
Decision and Motion Estimation for H.264 with a Focus on
MPEG-2/H.264 Transcoding,” Proceedings of 2005 IEEE
International Symposium on Circuits and Systems (ISCAS),
Kobe, Japan, May 2005.

[12] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
Reference Software to Committee Draft. JVT-F100 JM10.2.
2006.

[13] G. Sullivan and T. Wiegand, “Rate-Distortion Optimization for
Video Compression,” IEEE Signal Processing Magazine, vol.
15, no. 6, pp. 74-90, November. 1998.

[14] T. Wiegand et al., “Rate-Constrained Coder Control and
Comparison of Video Coding Standards,” IEEE Transactions on
Circuits Systems and Video Technology, vol. 13, no. 7, pp. 688-
703, July 2003.

[15] A.M. Tourapis, O.C. Au, M.L. Liou, “Highly Efficient
Predictive Zonal Algorithms for Fast Block-Matching Motion
Estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 12, Issue 10, Oct. 2002.

[16] Z. Chen, P. Zhou, and Y. He, “Fast Integer Pel and Fractional
Pel Motion Estimation for JVT”, 6th Meeting. Awaji, December
2002

[17] M. Yang, H. Cui, K. Tang, “Efficient Tree Structured Motion
Estimation using Successive Elimination,” IEE Proceedings-
Vision, Image and Signal Processing, Vol. 151, Issue 5, Oct.
2004.

[18] Ian H. Witten and Eibe Frank, “Data Mining: Practical Machine
Learning Tools and Techniques”, 2nd Edition, Morgan
Kaufmann, San Francisco, 2005.

[19] J.R. Quinlan, “C4.5: Programs for Machine Learning”, Morgan
Kaufmann, 1993.

940

