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ABSTRACT 
This paper presents a novel macroblock mode decision algorithm 
for inter-frame prediction based on machine learning techniques 
to be used as part of a very low complexity MPEG-2 to H.264 
video transcoder. Since coding mode decisions take up the most 
resources in video transcoding, a fast macro block (MB) mode 
estimation would lead to reduced complexity. The proposed 
approach is based on the hypothesis that MB coding mode 
decisions in H.264 video have a correlation with the distribution 
of the motion compensated residual in MPEG-2 video. We use 
machine learning tools to exploit the correlation and derive 
decision trees to classify the incoming MPEG-2 MBs into one of 
the 11 coding modes in H.264. The proposed approach reduces 
the H.264 MB mode computation process into a decision tree 
lookup with very low complexity. The proposed transcoder is 
compared with a reference transcoder comprised of a MPEG-2 
decoder and an H.264 encoder. Our results show that the proposed 
transcoder reduces the H.264 encoding time by over 95% with 
negligible loss in quality and bitrate.   

Categories and Subject Descriptors: I.4.2 [Image Processing 
and Computer Vision]: Compression (Coding) – Approximate 
methods.  
General Terms: Algorithms, Performance, Design. 

Keywords: H.264, MPEG-2, Transcoding, Inter-frame, Machine 
Learning. 

1. INTRODUCTION 
During the past few years, technological developments, such as 
novel video coding algorithms, lower memory costs, and faster 
processors, are facilitating the design and development of highly 
efficient video encoding standards. Among the recent works in 
this area, the H.264 video encoding standard, also known as 
MPEG-4 AVC occupies a central place [1].  

The H.264 standard is highly efficient by offering perceptually 
equivalent video quality at about 1/3 to 1/2 of the bitrates offered 
by the MPEG-2 format. However, these gains come with a 
significant increase in encoding and decoding complexity [2]. 
Though H.264 is highly efficient compared to MPEG-2, the wide 
and deep penetration of MPEG-2 creates a need for co-existence 
of these technologies and hence creates an important need for 
MPEG-2 to H.264 transcoding technologies. However, given the 
significant differences between both encoding algorithms, the 
transcoding process of such systems is much more complex 
compared to the other heterogeneous video transcoding processes 
[3-6]. The main elements that require to be addressed in the 
design of an efficient heterogeneous MPEG-2 to H.264 transcoder 
are [7]: the inter-frame prediction, the transform coding and the 
intra-frame prediction. Each one of these elements requires to be 
examined and various research efforts are underway. In this 
paper, we focus our attention on a part of the inter-frame 
prediction: the macroblock mode decision, one of the most 
stringent tasks involved in the transcoding process. †‡ 
A video transcoder is comprised of a decoding stage followed by 
an encoding stage. The decoding stage of a transcoder can 
perform full decoding to the pixel level or partial decoding to the 
coefficient level. Partial decoding is used in compressed domain 
transcoding where the transform coefficients in the input format 
are directly transcoded to the output format. This transformation 
is straightforward when the input and output formats of the 
transcoder use the same transform (e.g., MPEG-2 to MPEG-4 
transcoding) [5]. When these transforms differ substantially, the 
compressed domain transcoding becomes computationally 
expensive. The utility of this compressed domain transcoding is 
limited to intra MB transcoding. For predicted MBs, the 
transcoding in compressed domain becomes prohibitively 
expensive. The substantial differences in MPEG-2 and H.264 
make even intra transcoding in the compressed domain relatively 
expensive [8]; pixel domain transcoding is shown to produce 
better results [9].  
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Pixel domain transcoders have a full decoding stage followed by a 
reduced complexity encoding stage. The complexity reduction is 
achieved by reusing the information gathered from the decoding 
stage. It is assumed that the input video is encoded with 
reasonable RD optimization. The MPEG-2 to H.264 complexity 
reduction techniques reported in the literature fall into two 
categories: 1) MB mode mapping in H.264 based on the MB 
modes of the incoming video [10] and 2) Selective evaluation of 
MB modes in H.264 based on heuristics [11]. Because of the large 
number of inter and intra MB coding modes supported by H.264, 
there is no one-to-one mapping between MPEG-2 and H.264 MB 
modes. A direct mapping leads to either a sub-optimal decision if 
the mapped mode is the final MB mode or an increase on 
complexity if additional evaluations have to be made to improve 
the mode decision. Selective evaluation is based on the 
observation that certain MB modes are less likely to occur for a 
class of videos and bitrates. If the selective evaluation is 
aggressive in limiting the number of allowed modes, the 
performance is sub-optimal. On the contrary, increasing the 
number of allowed modes increases the complexity. 
We have developed an innovative approach that is not limited by 
the inefficiencies of mode mapping or selective evaluation 
approaches. The proposed approach is based on the hypothesis 
that MB coding mode decisions in H.264 video have a correlation 
with the distribution of the motion compensated residual in 
MPEG-2 video. Exploiting this correlation together with the MB 
coding modes of MPEG-2 could lead to a very low complexity 
transcoder. Figure 1 shows a plot of the mean and variance of the 
MPEG-2 MB residual in the input video and the H.264 MB 
coding mode of the corresponding MB in the transcoded video. 
As the coding mode changes, the shift in the mean and variance of 
the corresponding MB can be clearly seen. This correlation can be 
effectively exploited using machine learning approaches. Thus, 
the H.264 MB mode computation problem is posed as a data 
classification problem where the MPEG-2 MB coding mode and 
residual have to be classified into one of the several H.264 coding 
modes. The proposed transcoder is developed based on these 
principles and reduces the H.264 MB mode computation process 
into a decision tree lookup with very low complexity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Relationship between MPEG-2 MB residual and 
H.264 MB coding mode. 
The rest of the paper is organized as follows. Section 2 reviews 
the principles of operation of the prediction of inter-coded 

macroblocks in p-slices used by the H.264 encoding standard. 
Section 3 introduces our macroblock mode decision algorithm for 
inter-frame prediction based on machine learning techniques, 
specifically designed for MPEG-2 to H.264 transcoders. In 
Section 4, we carry out a performance evaluation of the proposed 
algorithm in terms of its computational complexity and rate-
distortion results. We compare the performance of our proposal to 
the reference transcoder with the encoding stage using the H.264 
reference implementation. Finally, Section 5 draws our 
conclusions and outlines our future research plans. 

2. MACROBLOCK MODE DECISION AND 
MOTION ESTIMATION IN H.264 
In the H.264 standard, the macroblock decision mode and motion 
estimation are the most computationally expensive processes. 
H.264 uses block-based motion compensation, the same principle 
adopted by every major coding standard since H.261. Important 
differences from earlier standards include the support for a range 
of block sizes (down to 4x4) and fine sub-pixel motion vectors 
(1/4 pixel in the luma component). H.264 supports motion 
compensation block sizes ranging from 16x16 to 4x4 luminance 
samples with many options between the two. The luminance 
component of each macroblock (16x16 samples) may be split up 
in 4 ways: 16x16, 16x8, 8x16 or 8x8. Each of the sub-divided 
regions is a macroblock partition. If the 8x8 mode is chosen, each 
of the four 8x8 macroblock partitions within the macroblock may 
be further split in 4 ways: 8x8, 8x4, 4x8 or 4x4 (known as sub-
macroblock partitions). These partitions and sub-partitions give 
rise to a large number of possible combinations within each 
macroblock (see Figure 2). This method of partitioning 
macroblocks into motion compensated sub-blocks of varying size 
is known as tree structured motion compensation.  

 
Figure 2.  Macroblock partitions, sub-macroblock partitions 

and partition scans. 
A separate motion vector (previously calculated in the motion 
estimation module) is required for each partition or sub-partition. 
Each motion vector must be coded and transmitted; in addition, 
the choice of partition(s) must be encoded in the compressed 
bitstream. Choosing a large partition size (e.g. 16x16, 16x8, 8x16) 
means that a small number of bits are required to signal the choice 
of motion vector(s) and the type of partition; however, the motion 
compensated residual may contain a significant amount of energy 
in areas with high detail. Choosing a small partition size (e.g. 8x4, 
4x4, etc.) may give a lower-energy residual after motion 
compensation but requires a larger number of bits to signal the 
motion vectors and choice of partition(s). The choice of partition 
size therefore has a significant impact on compression 
performance. In general, a large partition size is appropriate for 
homogeneous areas of the frame and a small partition size may be 
beneficial for areas with high detail. 
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The resolution of each chroma component in a macroblock (Cr 
and Cb) is half that of the luminance (luma) component. Each 
chroma block is partitioned in the same way as the luma 
component, except that the partition sizes have exactly half the 
horizontal and vertical resolution (an 8x16 partition in luma 
corresponds to a 4x8 partition in chroma; an 8x4 partition in luma 
corresponds to 4x2 in chroma; and so on). The horizontal and 
vertical components of each motion vector (one per partition) are 
halved when applied to the chroma blocks.  
Each partition in an inter-coded macroblock is predicted from an 
area of the same size in a reference picture. The offset between 
the two areas (the motion vector) has ¼-pixel resolution (for the 
luma component). If the video source sampling is 4:2:0, 1/8 pixel 
samples are required in the chroma components (corresponding to 
¼-pixel samples in the luma). The luma and chroma samples at 
sub-pixel positions do not exist in the reference picture and so it is 
necessary to create them using interpolation from nearby image 
samples. Sub-pixel motion compensation can provide 
significantly better compression performance than integer-pixel 
compensation, at the expense of increased complexity. Quarter-
pixel accuracy outperforms half-pixel accuracy.  

Encoding a motion vector for each partition can take a significant 
number of bits, especially if small partition sizes are chosen. 
Motion vectors for neighboring partitions are often highly 
correlated and so each motion vector is predicted from vectors of 
nearby, previously coded partitions. The method of forming the 
prediction MVp depends on the motion compensation partition 
size and on the availability of nearby vectors.  

In H.264, the macroblock mode decision is the most 
computationally expensive process. Mode decision is a process 
such that for each possible block-size a cost is evaluated. The 
encoder selects the coding-modes for the macroblock, including 
the best macroblock partition (sub-macroblock partition) and 
mode of prediction for each macroblock partition, such that the 
cost is optimized. In the JM reference code (version 10.2) [12], 
the motion estimation and the mode decision are executed 
together. This implies that for each macroblock partition (sub-
macroblock partition) within the MB, motion estimation is done 
first and the resulting cost is used for the mode decision. 

In the H.264, two methods have been defined to evaluate the cost 
for MB mode decision: RD-cost and SAE-cost. In the following, 
we describe these two methods. 

2.1 The RD-Cost 
The Rate-Distortion (RD) optimization method is based on a 
Lagrange multiplier [13] [14]. The H.264 standard can make use 
of this optimization method to choose the best macroblock mode 
decision. Different from evaluating the cost of coding a 
macroblock on a pixel by pixel basis (SAE cost), the RD-cost 
consists of making the selection based on a Lagrange function. In 
this way, the H.264 standard selects the macroblock mode 
exhibiting the minimum Lagrange cost. This implies that for each 
existing macroblock partition (sub-partition) within the MB, bit-
rate and distortion are calculated by actually encoding and 
decoding the video. Therefore, the encoder can achieve the best 
Rate-Distortion performance results, at the expense of calculation 
complexity. 

For evaluating the RD-cost, the standard has to obtain the 
encoding rate, R, and the distortion, D, of each macroblock 
partition (sub-macroblock partition). The former is obtained by 
first computing the difference between the original macroblock 
and its predictor. Thereafter, a 4x4 Hadamard Transform (HT) 
has to be applied followed by a quantization process. The 
distortion, D, is obtained by performing an inverse quantization 
process followed by its inverse HT and then comparing the 
original macroblock to the reconstructed one. The H.264 standard 
chooses then the decision mode having the minimum cost, J. The 
cost is evaluated using the Lagrange function J=D + λ x R, where 
λ is the Lagrange multiplier. Figure 3 depicts the overall process. 

One of the main drawbacks of this method is its excessive 
computational cost. On the contrary, the encoder can achieve the 
best Rate-Distortion performance results. However, for many 
applications, the use of the Lagrange multiplier may be 
prohibitive. This is the case when developing a transcoding 
architecture aimed to work in real-time. 
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Figure 3. RD-cost method in the H.264 encoder. 

2.2 The SAE-Cost 
In this method, the H.264 encoder selects the best macroblock 
mode by using the Sum of Absolute Errors (SAE). This implies 
that for each existing macroblock partition (sub-partition) within 
the MB, a predictor within the pixel-domain is created from the 
motion estimation of the current partition and the SAE costs is 
evaluated. For each MB and for each color component (Y,Cr,Cb), 
one prediction mode have to be obtained. The best mode is 
determined corresponding to the mode exhibiting the minimum 
SAE cost. One of the main advantages of this method is its low 
computational cost. On the contrary, the Rate-Distortion  
performance results are sub-optimal. 

2.3 The Fast Motion Estimation Option 
Motion estimation is one of the most important tools in H.264 
encoder for exploiting the high temporal redundancy between 
successive frames to improve video coding efficiency. And 
motion estimation is also the most time consuming part in the 
H.264 encoder (since it is also used for mode decision). Generally 
motion estimation is conducted into two steps: first is integer pel 
motion estimation; and the second is fractional pel motion 
estimation around the position obtained by the integer pel motion 
estimation.  

Algorithms on Fast Motion Estimation (FME) are always hot 
research spot, especially fast integer pel motion estimation has 
achieved much more attention because traditional fractional pel 
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motion estimation only take a very few proportion in the 
computation load of whole motion estimation. Fast motion 
estimation algorithms such as EPZS [15], UMHexagonS [16], and 
SEA [17] have been proposed to reduce the number of searching 
points in motion estimation.   

The UMHexagonS algorithm proposed by Tsinghua University 
was adopted by the H.264/MPEG-4 Part 10 (AVC) reference 
software implementation [12]. This algorithm uses the hybrid and 
hierarchical motion search strategies. It includes four steps with 
different kinds of search pattern: 1) Predictor selection and 
prediction mode reordering; 2) Unsymmetrical-cross search; 3) 
Uneven multi-hexagon-grid search; 4) Extended hexagon-based 
search. With the second and third step, the motion estimation 
accuracy can be nearly as high as that of full search. But the 
computation load and operations can be reduced even more. 
Unsymmetrical-cross search uses prediction vector as the search 
center and extends in the horizontal and vertical directions 
respectively. Uneven multi-hexagon-grid search includes two sub-
steps: first a full search is carried out around the search center. 
And then a 16-HP multi-hexagon-grid search strategy is taken. 
Extended hexagon-based search is used as a center based search 
algorithm, including hexagon search and diamond search in a 
small range. 

In the H.264 reference software, the Fast Motion Estimation 
(FME) algorithm (based in the UMHexagonS algorithm) can be 
employed for the motion estimation in addition to the original 
Full Search (FS) algorithm. 

3. MACHINE LEARNING 
Machine learning refers to the study of algorithms and systems 
that “learn” or acquire knowledge from experiences. Deductive 
machine learning deduces new rules/knowledge from existing 
rules and inductive machine learning uses the analysis of data sets 
for creating a set of rules to take decisions. These rules can be 
used, in the machine learning, to build a tree decision using a set 
of experiments or examples, named the training data set. This set 
of data must have the following properties [18]: 

1. Each attribute or variable can take nominal or numerical 
values, but the number of attributes cannot vary from an 
example to another. This is to say, all the samples in the 
training data set used for training the model must have 
the same number of variables.  

2. The set of categories that the examples can be assigned 
to must a priori be known to enable supervised learning.   

3. The set of categories must be finite and must be 
different from one another.  

4. Since the inductive learning consists of obtaining 
generalization from examples, it is supposed the 
existence of a sufficiently great number of examples. 

Machine learning uses statistics with different kinds of algorithms 
to solve a problem by studying and analyzing the data. Machine 
learning has been used in an extensive range of applications 
including search engines, medical diagnosis, stock market 
analysis, classifying DNA sequences, speech and handwriting 
recognition, object recognition in computer vision, game playing 
and robot motion, etc.  

In this paper, we describe the process of using machine learning 
to build a decision tree for very low complexity transcoding. The 
decision tree will be used to determine the coding mode of an MB 
in P frames of the output H.264 video, based on the information 
gathered during the MPEG-2 decoding stage. Figure 4 depicts the 
process for building the decision trees to be used in the MPEG-2 
to H.264 transcoding process. The incoming MPEG-2 video is 
decoded and during the decoding stage, the MB coding mode, the 
coded block pattern (CBPC), and the mean and variance of the 
residual information for this MB (calculated for its 4x4 sub-
blocks – resulting in 16 means and 16 variances for each MB) are 
saved. The decoded MPEG-2 video is then encoded using the 
standard H.264 encoder. The coding mode of the corresponding 
MBs in H.264 is also saved. Based on the MPEG-2 data and the 
corresponding H.264 coding mode decision for each MB, a 
machine learning algorithm is used to create decision trees that 
classify an MB into one of the 11 H.264 MB coding modes.  

 
Figure 4. Process for building decision trees for MPEG-2 to 

H.264 transcoding. 

3.1 Creating the Training Files 
A decision tree is made by mapping the observations about a set 
of data to a tree made of arcs and nodes. The nodes are the 
variables and the arcs the possible values for that variable. The 
tree can have more than one level; in that case, the nodes (leafs of 
the tree) represent the decisions based on the values of the 
different variables that drive the decision from the root to the leaf. 
These types of trees are used in the machine learning processes 
for discovering the relationships in a set of data. The tree leafs are 
the classifications and the branches are the features that lead to a 
specific classification. A tree decision is a classifier based on a set 
of attributes allowing us to determine the category of an input 
data sample. 

The decision tree for the transcoder was made using the WEKA 
data mining tool [18]. The files that are used for the WEKA data 
mining program are known as Attribute-Relation File Format 
(ARFF) files. An ARFF file is written in ASCII text and shows 
the relationship between a set of attributes. Basically, this file has 
two different sections:1) the header which contains the name of 
the relation, the attributes that are used, and their types; and 2) the 
section containing the data.  

The training sets were made using MPEG-2 sequences encoded at 
higher than the typical broadcast encoding rates for the same 
quality, since the B frames are not used. The H.264 decisions in 
the training set were obtained from encoding the MPEG-2 
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decoded sequence with a quantization parameter of 25 and RD 
optimization enabled. After extensive experimentation, we found 
that sequences that contain regions varying from homogenous to 
high-detail serve as good training sets. Good sample sequences 
could be Flower and Football. The goal is to develop a single, 
generalized, decision tree that can be used for transcoding any 
MPEG-2 video.  

Figure 5 shows the decision trees built using the process depicted 
in Figure 4. As shown in Figure 4, the Decision Tree  for the 
proposed transcoder is a hierarchical decision tree with three 
different WEKA trees: 1) classifier for Intra, Skip, Inter 16x16, 
and Inter 8x8, 2) classifier to classify inter 16x16 into one of 
16x16, 16x8, and 8x16 MBs and 3) classifier to classify inter 8x8 
into one of 8x8, 8x4, 4x8, or 4x4. This paper focuses on the Inter 
MB mode computation and the further classification and 
processing for Intra MBs is not discussed in this paper.  

For creating the first WEKA tree (Figure 5 node 1), the first 
training data set uses the mean and variance of each one of the 
sixteen 4x4 residual sub-blocks, the MB mode in MPEG-2 (skip, 
intra, and three non-intra modes, labeled as 0, 1, 2, 4 and 8 in the 
code shown below), the coded block pattern (CBPC) in MPEG-2, 
and the corresponding H.264 MB coding mode decision for that 
MB as determined by the standard reference software. The header 
section of the ARFF files has the attribute declaration depicted 
herein:  

The supposed dependent variable, namely class in the example, is 
the variable that we are trying to understand, classify, or 
generalize. The other attributes are the variables that determine 
the classification. The ARFF data section has the instance lines, 
which are the samples used to train our model. Each macroblock 
sample is represented on a single line. In this case the variable 
class can take four values (skip, 16x16, 8x8 or Intra labeled as 0, 
1, 8 and 9 in the code). 

The second training data set, used for creating the second WEKA 
tree (Figure 5 node 2), was made using the samples (MBs) that 
were encoded as 16x16 MBs in the H.264 reference encoder. It 
uses the mean and variances of each one of the sixteen 4x4 
residual sub-blocks, the MB mode in MPEG-2 (in this case only 
the three non-intra modes), the coded block pattern (CBPC) in 
MPEG-2, and the corresponding H.264 MB coding sub-mode 
decision in the 16x16 mode, as determined by the standard 
reference software: 16x16, 16x8 or 8x16. This tree determines the 
final coding mode of the MBs classified as inter 16x16 by the first 
tree.  

The third and last training data set, was used to create the third 
WEKA tree (Figure 5 node 3) and was made using the samples 

(MBs) that were encoded as inter 8x8 MBs in the H.264 reference 
encoder. It uses four means and four variances of 4x4 residual 
sub-blocks, the MB mode in MPEG-2 (the three non-intra 
modes), the coded block pattern (CBPC) in MPEG-2, and the 
corresponding H.264 MB sub-partition decision in the 8x8 mode, 
as determined by the standard reference software: 8x8, 8x4, 4x8 
or 4x4. Since this decision is made separately for each 8x8 sub-
block, only the four means and four variances of 4x4 residual sub-
blocks are used in each sample for training the model. 

Based on these training files, the J48 algorithm implemented in 
the WEKA data mining tool was used to create the three decision 
trees.  The J48 algorithm is an implementation of the C4.5 
algorithm proposed by Ross Quinlan [19]: the algorithm widely 
used as a reference for building decision trees. 

The decision tree, that is proposed to solve the inter-prediction 
problem, is a model of the data that encodes the distribution of the 
class label in terms of the attributes. The final goal of this 
decision tree is to help find a simple structure to show the 
possible dependences between the attributes and the class. 

3.2 The Decision Tree 
This sub-section discusses the proposed macroblock mode 
decision algorithm aiming to accelerate the inter-frame prediction. 
This goal is achieved by making use of the MPEG-2 MB coding 
modes, the coded block pattern (CBPC), and the mean and 
variance of the residual information for this MB calculated for its 
4x4 sub-blocks. MPEG-2 uses 16x16 motion compensation (MC) 
and does not temporally decorrelate an image fully. The MC 
residual can thus be exploited to understand the temporal 
correlation of variable block sizes in H.264. The open source 
WEKA data mining tool is used to discover a pattern of the mean, 
variance, MPEG-2 coding modes, and the coded block pattern in 
MPEG-2 (CBPC) for H.264 coding mode decisions. Figure 5 
shows the decision tree used in the proposed transcoder. 

The decision tree consists of three WEKA decision trees, shown 
in Figure 5 with grey balls. The first WEKA tree is used to check 
for the skip, Intra, 8x8 and 16x16 MBs modes. If an MB is 8x8 or 
16x16, a second and a third decision tree is used for selecting the 
final coding mode of the MB. The WEKA tool determined the 
mean and variance thresholds for each of the three WEKA trees in 
the decision tree. Due to space constraints we cannot show all the 
rules being evaluated in the WEKA decision nodes. The process 
described in herein should be sufficient for interested people to 
develop the decision trees and repeat these experiments. The 
decision tree works as follows: 

Node 1. The inputs for this node are all the MPEG-2 coded MBs. 
In this node a tree decision generated with WEKA is used to 
decide whether the MB should be coded in H.264. This tree 
examines whether the MB has a very high residual or a medium 
residual. The output of this node is a first level decision mode that 
should be used for coding the MB: skip, Intra, 8x8 or 16x16. The 
intra decision process is not discussed in this paper. In the other 
cases, the algorithm has to make a second level decision based in 
the first decision. For example, the following rules were given by 
WEKA: 

• If the MPEG-2 MB was “MC not coded”, (non-zero MV 
present, none of the 8x8 block has coded coefficients), then 

@RELATION mean-variance_4x4 
 
@ATTRIBUTE mean0 Numeric 
@ATTRIBUTE variance0 Numeric 
@ATTRIBUTE mean1 Numeric 
@ATTRIBUTE variance1 Numeric 
……………………………………………………………………… 
@ATTRIBUTE mean15 Numeric 
@ATTRIBUTE variance15 Numeric 
@ATTRIBUTE mode_mpeg2 {0,1,2,4,8} 
@ATTRIBUTE CBPC0 {0,1} 
……………………………………………………………………… 
@ATTRIBUTE CBPC6 {0,1} 
@ATTRIBUTE class {0,1,8,9} 
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the MB will be coded as 16x16 in H.264. Again, a second 
decision level will be made to select the best choice in this 
case (see node 2). 

• If the MPEG-2 MB was coded in intra mode, the MB will be 
coded as intra or inter 8x8 mode in H.264. In some cases the 
algorithm will propose Intra, and the algorithm will end, and 
in other cases the algorithm will propose 8x8 mode, so a 
second level decision will be done (see node 3). 

• If the MPEG-2 MB was coded in skip mode, then the H.264 
decision mode should be skip. The decision will be made in 
node 4. 

 
Figure 5. The Decision Tree. 

Node 2. The inputs for this node are the 16x16 MBs classified by 
the node 1. In this node we use again a decision tree generated 
with WEKA to decide whether the MB should be coded in H.264 
(16x16, 16x8 or 8x16). This tree examines if there are continuous 
16x8 or 8x16 sub-blocks that might result in a better prediction. 
The output of this node is the 16x16 sub-mode decision mode that 
should be used for coding the MB: 16x16, 16x8 or 8x16. When 
the node decision is 16x8 or 8x16 the coding mode is finalized. In 
the other case, the evaluation continues in node 4, where the final 
decision will be made.  

Node 3. The inputs for this node are the MBs classified by the 
node 1 as 8x8. This node evaluates only the H.264 8x8 modes 
using the third WEKA tree and selects the best option: 8x8, 8x4, 
4x8 or 4x4. As explained in the previous section, this tree is run 4 
times, once for each of the four sub-macroblocks in the MB. This 
tree is different from the others because this one only uses four 
means and four variances to make the decision.  

Node 4. The inputs for this node are skip-mode MBs in the 
MPEG-2 bitstream classified by the node 1, or the 16x16 MBs 
classified by the node 2. This node evaluates only the H.264 
16x16 mode (without the sub-modes 16x8 or 8x16). Then, the 
node selects the best option, skip or inter 16x16. 

Since the MB mode decision, and hence the thresholds, depend on 
the quantization parameter (QP) used in the H.264 encoding 
stage, the mean and variance threshold will have to be different at 
each QP. The two solutions here are: 1) develop the decision trees 
for each QP and use the appropriate decision tree depending on 
the QP selected and 2) develop a single decision tree and adjust 
the mean and variance threshold used by the trees based on the 
QP. The first option is complex as we have to develop and switch 
between 52 different decision trees resulting in 156 WEKA trees 
in a transcoder. Since the QP used by H.264 is designed to change 
the quantization step size and the relationship between the QPs is 

well defined, this relationship can be used to adjust the mean and 
variance thresholds. The proposed transcoder uses a single 
decision tree developed for a mid-QP of 25 and then adjusted for 
other QPs. Since the quantization step size in H.264 doubles when 
QP increases by 6, the thresholds are adjusted by 2.5% for a 
change in QP of 1. For QP values higher than 25, the thresholds 
are decreased and for QP values lower than 25 thresholds are 
proportionally increased.  

Figure 6 shows an example of the results obtained by applying 
our proposed algorithm. Figure 6a illustrates the residual for the 
MPEG-2 encoded Tempete sequence. Figures 6b and 6c show the 
mean and variance of the residual. Figures 6.e and 6.f show the 
differences between the inter mode selection made by the H.264 
standard (with the RD-optimized option enabled), and the 
proposed algorithm, with a value of 10 for QP. From these 
figures, it is clear that our algorithm obtains very similar results to 
those obtained using the full estimation of the H.264 standard. 

 

 
 

(a) MPEG-2 residual (+128) 

  

 
 

(b) Mean of the MPEG-2 residual (+128) 
 

 
 

(c) Variance of the MPEG-2 residual 

 

 
 

(d) Different kinds of Macroblocks in the grid pictures 
 

 
 

(e) H.264 Rd opt, first frame P, Tempete (CIF)  
QP= 10. Inter mode selected by H.264   

  

 
 

(f ) H.264 Rd opt, first frame P, Tempete (CIF)  
QP= 10.  Inter mode selected by our proposal
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Figure 6. Macroblock partitions generated by the proposed 

algorithm for the first P-frame in the Tempete sequence. 

4. PERFORMANCE EVALUATION 
The proposed low complexity MB coding mode decision 
algorithm is implemented in the H.264/AVC reference software, 
version JM 10.2 [12]. Figure 7 shows the overall operation of the 
proposed transcoder. The MPEG-2 video is decoded and the 
information required by the decision trees is gathered in this 
stage. The additional computation here is the computation of the 
mean and variance of the 4x4 sub-blocks of the residual MBs. The 
MB coding mode decision determined by the decision trees is 
used in the low complexity H.264 encoding stage. This is an 
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H.264 reference encoder with the MB mode decision replaced by 
simple mode assignment from the decision tree. The H.264 video 
encoder takes as input the decoder MPEG-2 video (pixel data) 
and the MB mode decision from the decision tree and encodes the 
H.264 video. The MPEG-2 motion vectors are not used and the 
encoder performs the motion estimation just for the final MB 
mode determined by the decision tree.  

MPEG-2
Video

H.264
Video

 
Figure 7. Proposed transcoder. 

The performance of the proposed very low complexity transcoder 
is compared with a reference transcoder comprised of a full 
MPEG-2 decoder followed by a full H.264 encoder. We compare 
the performance of our proposal to the full H.264 encoder when 
the RD-cost (with and without FME option enabled) and the SAE-
cost (with and without FME option enabled) are used. The metrics 
used to evaluate the performance are the reduction in the 
computational cost and rate distortion function. The time results 
reported are for the H.264 encoding component as the MPEG-2 
decoding cost is the same for both the proposed and reference 
encoders.  
We have conducted an extensive set of experiments with videos 
representing wide range of motion, texture, and color. 
Experiments were conducted to evaluate the performance of the 
proposed algorithm when transcoding videos at commonly used 
resolutions: CCIR-601, CIF, and QCIF. The input to the 
transcoder is a high quality MPEG-2 video. Since the proposed 
transcoder addresses transcoding P frames in MPEG-2 to H.264 P 
frames, MPEG-2 bitstreams were created without B frames. Since 
the B frames, which are much smaller than P frames, are not used 
in the input video, the video has to be encoded at higher than the 
typical encoding rates for equivalent broadcast quality. Table 1 
shows the bitrates used for the input MPEG-2 video. The 
experiments have shown that the proposed approach performs 
extremely well across all bitrates and resolutions.  

Table 1. Bitrates for the input sequences 

Format Bitrate 
CCIR-601 (720x480) 5 Mbps 
CIF (352x288) 1.15 Mbps 
QCIF (176x144) 0.768 Mbps 

The sequences have been encoded with H.264 using the QP 
factors ranging from 5 up to 45 in steps of 5. This corresponds to 
the H.264 QP range used in most practical applications. The size 
of the GOP is 12 frames; where the first frame of every GOP was 
encoded as I-frame, and the rest of the frames of the GOP were 
encoded as a P-frames. The rate control was disabled for all the 
simulations. The ProfileIDC was set to High for all the 

simulations, with the FRExt options enabled. The simulations 
were run on a P4 HT at 3.0 GHz Intel machine with 512 MB 
RAM. The results are reported for six different sequences: two for 
each of the three resolutions shown in Table 1. 
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CIF Sequences (352x288, 200 Frames, 25 Hz)
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QCIF Sequences (176x144, 200 Frames, 25 Hz)
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Figure 8. RD results for RD-cost without FME option. 
Figure 8 shows the RD results for the reference and proposed 
transcoder with RD optimization enabled and fast motion 
estimation (FME) disabled.  Figure 9 shows the RD results for the 
reference and proposed transcoder with RD optimization enabled 
and fast motion estimation (FME) enabled. As seen from the 
figures, the PSNR obtained with the proposed transcoder deviates 
slightly from the results obtained when applying the considerable 
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more complex reference transcoder. Compared with the reference 
transcoder, the proposed transcoder has a PSNR drop of at most 
0.3 dB for a given bitrate and bitrate increase of at most 5% for a 
given PSNR. This negligible drop in RD performance is more 
then offset by the reduction in computational complexity. Tables 
2 and 3 show the average encoding time per frame given in 
milliseconds. As shown in Table 2 and Table 3, the transcoding 
time reduces by more than 80% with RD optimization, and more 
than 90% with FME enabled for both the reference and proposed 
transcoders. 
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CIF Sequences (352x288, 200 Frames, 25 Hz)
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QCIF Sequences (176x144, 200 Frames, 25 Hz)
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Figure 9. RD results for RD-cost with FME option. 

Figure 10 shows the RD results for the reference and proposed 
transcoder with SAE-Cost (RD optimization disabled) and fast 
motion estimation (FME) disabled.  Figure 11 shows the RD 
results for the reference and proposed transcoder with SAE-Cost 
(RD optimization disabled) and fast motion estimation (FME) 
enabled. As seen from the figures, in some cases the proposed 
transcoder have better results than the reference transcoder. This 
happens because the best solution is obtained by enabling the RD 
optimization, and in the experiments reported in the figures we 
are comparing the faster configuration of a H.264 encoder (SAE 
cost) with our proposed reduced-complexity transcoder. With 
SAE based encoding (RD-optimization disabled), the proposed 
transcoder continues to outperform the reference transcoder 
computationally (Tables 2 and 3). The transcoder still maintains a 
PSNR drop of less than 0.3 dB and bitrate increase of less than 
5%. The computational cost is reduced by over 38% for the SAE 
case and by over 82% with FME enabled for both the reference 
and proposed transcoders. 

Table 2. Mean encoding time (milliseconds) per frame with 
the reference transcoder 

Sequence RD Opt RD Opt 
+ FME 

SAE SAE + 
FME 

Martin 7370 6420 2110 940 
Ayersroc 7650 6820 2095 1030 
Paris 2305 2020 590 235 
Tempete 2360 2050 605 290 
Foreman 565 495 155 68 
News 550 470 150 55 

Table 3. Mean encoding time (milliseconds) per frame with 
the proposed transcoder 

Sequence RD Opt RD Opt 
+ FME 

SAE SAE + 
FME 

Martin 1460 470 1190 170 
Ayersroc 1620 670 1160 190 
Paris 415 95 360 45 
Tempete 445 135 360 53 
Foreman 102 24 93 12 
News 103 21 92 11 

Table 4. Mean Time Reduction (%) per frame with the 
proposed transcoder 

Sequence RD Opt RD Opt 
+ FME 

SAE SAE + 
FME 

Martin 80,19 92,68 43,60 81,91 
Ayersroc 78,82 90,18 44,63 81,55 
Paris 82,00 95,30 38,98 80,85 
Tempete 81,14 93,41 40,50 81,72 
Foreman 81,95 95,15 40,00 82,35 
News 81,27 95,53 38,67 80,00 

 
Based on the results shown in the Tables 2 and 3, the proposed 
transcoder with SAE and FME has the lowest complexity. The 
proposed transcoder with RD optimization and FME is still faster 
than the fastest case of the reference transcoder (SAE + FME). 
Using FME reduces the complexity substantially. Selecting RD 
optimization with the proposed transcoder doubles the complexity 
compared with SAE+FME case. The decision to enable RD 
optimization can be based on the operating bitrates and sensitivity 
to the PSNR drop. At higher bitrates, RDOPT + FME option give 
about 0.6 dB better than the SAE + FME option; this is doubling 
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the complexity for a gain of 0.6 dB. However, at lower bitrates, 
the PSNR gain reduces to about 0.3 dB. 
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CIF Sequences (352x288, 200 Frames, 25 Hz)
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QCIF Sequences (176x144, 200 Frames, 25 Hz)
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Figure 10. RD results for SAE-cost without FME option. 
Table 4 summarizes the reduction in the computational cost due 
to the proposed machine learning based mode decision algorithms 
in the proposed transcoder.  With RD optimization and FME, the 
computational cost is reduced by over 90%. The cost reduction 
reaches as high as 95.5% for QCIF sequences. With SAE and 
FME, the computational cost is reduces by over 80%. The 
computational cost reduction come at a cost of reduced quality. 
The quality reduction, however, is very small and negligible for 

most video applications. Table 5 shows the quality variation 
versus time reduction of the proposed transcoder with respect the 
reference transcoder for the same input bitrates shown in Table 1, 
showing over 96% reduction in the computational complexity 
characterizing our proposed scheme. As shown in the table, using 
the proposed transcoder reduces the PSNR by at most 0.3dB with 
RD optimization enabled and by at most 0.1 dB with SAE cost 
based transcoder. Our results show that the proposed algorithm is 
able to maintain a good picture quality while considerably 
reducing the number of operations to be performed in all the 
scenarios. 
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CIF Sequences (352x288, 200 Frames, 25 Hz)
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QCIF Sequences (176x144, 200 Frames, 25 Hz)
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Figure 11. RD results for SAE-cost with FME option. 
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Table 5. Quality Variation vs Time Reduction (for transcoding rate) 

Quality Variation from Reference 
Transcoder  (dB) 

Time Reduction from Reference 
Transcoder (%) Sequence 

 

MPEG-2 
Bit Rate 
(Mbps) RD OPT RD FME SAE SAE  

FME 
RD OPT RD FME SAE SAE  

FME 
Ayersroc 5.0 - 0.3 - 0.3   0.0 - 0.1 80.0 90.5 43.3 82.3 
Martin 5.0 - 0.2 - 0.2 - 0.1 - 0.1 80.5 92.8 42.1 82.0 
Tempete 1.15 - 0.2 - 0.2   0.0   0.0 80.0 93.8 41.1 82.5 
Paris 1.15 - 0.3 - 0.3   0.0 - 0.1 81.6 95.6 38.5 80.7 
Foreman 0.768 - 0.3 - 0.3   0.0   0.0 83.5 95.5 37.4 82.6 
News 0.768 - 0.2 - 0.2   0.0   0.0 84.1 96.0 35.1 81.1 

 

5. CONCLUSIONS 
In this paper, we proposed a novel macroblock partition mode 
decision algorithm for inter-frame prediction to be used as part of 
a high-efficient MPEG-2 to H.264 transcoder. The proposed 
algorithms use machine learning techniques to exploit the 
correlation in the MPEG-2 MC residual and the H.264 coding 
modes. The WEKA tool was used to develop decision trees for 
H.264 coding mode decision. The proposed algorithm has very 
low complexity as it only requires the mean and variance of the 
MPEG-2 residual and a set of rules to compare the mean and 
variance against a threshold. The proposed transcoder uses a 
single decision tree with adaptive thresholds based on the 
quantization parameter selected in the H.264 encoding stage. The 
proposed transcoder was evaluated using MPEG-2 videos at 
CCIR, CIF, and QCIF resolutions. Our results show that the 
proposed algorithm is able to maintain a good picture quality 
while considerably reducing the computational complexity by as 
much as 95%. The reduction in computational cost has negligible 
impact on the quality and bitrate of the transcoded video. The 
results show that the proposed transcoder maintains its 
performance across all resolutions and bitrates. The proposed 
approach to transcoding is novel and can be applied to develop 
other transcoders as well.  

Our future plans will focus on further reducing the complexity of 
the proposed transcode by reusing the MPEG-2 motion vectors 
followed by a motion vector refinement. By reusing the motion 
vector, we believe, real-time transcoding of CIF resolution video 
at 30 FPS is within reach. 
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