
Modeling Obligations with Event-Calculus *

Mustafa Hashmi1,2, Guido Governatori1,2 and Moe Thandar Wynn2,1

1 NICTA, Queensland Research Laboratory, 2 George St. Brisbane Australia
{mustafa.hashmi,guido.governatori}@nicta.com.au

2 Queensland University of Technology (QUT) Brisbane, Australia
m.wynn@qut.edu.au

Abstract. Time plays an important role in norms. In this paper we start from our
previously proposed classification of obligations, and point out some shortcomings
of Event Calculus (EC) to represent obligations. We propose an extension of EC
that avoids such shortcomings and we show how to use it to model the various
types of obligations.

Keywords: Legal norms, Event Calculus, Temporal aspect, Compliance

1 Introduction

Time plays an essential role in norms, legal reasoning and in areas governed by norms. For
example many of the normative requirements in the area of business process compliance
concern the temporal aspects of norms. Suppose you have a contract specifying that
one party has thirty days to pay for an invoice, and that goods cannot be delivered
without payment. Thus you have an obligation to pay after receiving an invoice, which,
in turn, requires that the payment must be made before the time of delivery. Receiving the
invoice triggers (enforces) the obligation to make a payment to complete the transaction.
Accordingly we have conditions that must be fulfilled in a determined time interval or
within a given deadline, and other conditions that must happen before or after specific
events. Moreover, some obligations may include conditions that must persist over an
interval of time e.g., continuous monitoring of the patient’s blood pressure and ECG
during a surgical operation. Regardless of the type, validity and nature of the legal
effect(s) that an obligation represents, the temporal aspect of an obligation revolves
around the following generic aspects [17]: (i) the time when an obligation is in force,
(ii) the time when an obligation is fulfilled, and (iii) the time of application. Accordingly,
when a business process is subject to norms, it is particularly important that the process
complies with the obligations imposed by the norms for the whole duration of its validity
and meets the deadlines, and follows constraints for maintaining and delaying actions.

Capturing the real meaning of norms is paramount for modelling and reasoning
about compliance checking of business processes, and, in general, for legal reasoning.
It is also important that the chosen language supports the highest degree of abstraction
to model the real meaning of the norms and the obligations they define: this means it
should be able to model states of affairs, actions as well as (temporal) relationships

*NICTA is funded by the Australian Government through the Department of Communication
and the Australian Research Council through the ICT Center of Excellence Program.

A. Bikakis, P. Fodor and D. Romanu (eds), RuleML 2014, LNCS 8620, pp. 296–306
© Springer 2014.
The original publication is available at www.springerlink.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357369531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-09870-8_22

between activities. Many studies have been conducted for modelling obligations, and
various classifications of obligations have been identified in these studies, in particular
in the context of business process compliance where time is the key concept of such
classifications, see among others [13,10,8]. For example, [19] classifies obligations from
the legal viewpoint while [13] classifies obligations along the temporal structure and
the temporal distribution of the obligations. [8] characterises the types of obligations
based on deadlines, and [3] classifies obligations types as existence, choice, relation, and
negative constraints. These classifications do not encompass various types of obligations
based on the time, effects of an obligation on other obligations and obligations arising
from the violations. In [7,12] we provided a classification of obligations along temporal
dimensions. The key aspects of the classification are: what constitutes the violation in
terms of the temporal validity of an obligation, and whether violated obligations can be
compensated for or not. In the classification, along the temporal dimension, for each
type of obligations we specified when an obligation comes into force and until when it
remains in force or it is violated at a particular time point. Unlike other classifications,
our proposed classification encompasses the generic temporal model about the validity
and persistence effects of obligations after violations. Given our new classification, the
natural question is how to model each element of the classification of obligations for
business process compliance checking.

The families of Deontic Logics (DL), Temporal Logics (TL), and EventCalculus
(EC) are widely used formalisms for modeling norms. Each of these formalisms has a
reasonable degree of expressiveness to model different types of obligations yet they have
limitations. Our starting point to model norms, in particular the new classes of obligations,
is the classical EC [14] because it provides a logical framework for representing and
modeling the effects of events and the current state of affairs in terms of fluents. Also,
it has the ability to model the time when fluents come to existence and cease to hold
dynamically [5]. One may argue that modeling the deontic notions with EC is rather
well developed as several variants of EC already exist (see, [16,18] for further listing of
EC variants), and widely used for reasoning and representing the legal knowledge (see,
Section 6 for a detailed discussion on some such approaches), but we believe that the
EC has some major issues for reasoning about legal norms. One of such issues is related
to the basic predicate of EC Initiates(E,X,T). Its meaning is that event E at time T
initiates the fluent X , and the fluent holds from the next instant of time (see Section 3
and Axiom A1 below for the details). This effectively means that the norm enters into
force at the next instant. However, for legal norms, this might not be the case. There are
cases where the norm enters into force at the same instant as the triggering event happens
e.g., the obligation to remove shoes when one enters in a mosque or the norms is in force
after a delay e.g., a complaint cannot be acknowledged until all details pertaining is issue
have been received.3

In the context of business process compliance checking, the aim of this paper is to
explore whether or not the different obligation classes defined in our classification model
can be faithfully represented using the discrete event driven formalism the EC.

3In addition it is possible to have that a norm enters in force retroactively. Thus the fluent
holds before the event that initiates it. We blatantly ignore this aspect in this paper.

The paper is structured as follows: in Section 2 we revisit the classification of
normative requirements proposed elsewhere ([7,12]) and provide formal definitions
of the concepts. Section 3 provides a terse background of the EC and introduces new
predicates for modeling the legal norms followed by the modeling of various obligation
types using the new predicates in Section 4. The proof sketch of the provided axioms
is given in Section 5 followed by a short discussion on related studies in the problem
domain in Section 6. Section 7 concludes the paper with some final remarks.

2 Normative Requirements Revisited

The purpose of this section is to provide a summary of the notions and the classes
of obligations defined in our classificatory model. For more detailed discussions and
concrete examples of the various types of obligations taken from real legal acts, see
[7,12]. The definitions below also provide precise semantics of these notions and they
will be used to evaluate our proposed extension to EC.

Norms regulate the behaviour of their subjects and produce normative effects when
applied. From a business process compliance perspective the normative effects of interest
are the deontic effects. The three basic deontic effects –from which other deontic effects
can be derived (see, [19])– are: obligation, prohibition, and permission.

An Obligation4 is a situation, act or a course of actions one is legally bound to and if
it is not achieved or performed results in a violation; whereas for prohibition, one should
avoid a certain course of actions to avoid a violation. Obligations and prohibitions are
constraints that limit the behaviour of a business process; and both types can be violated.
Notice that a prohibition is a negative obligation (i.e., obligation not), thus, when we
speak of obligations we include prohibitions as well. Permissions, on the other hand,
are constraints that cannot be violated thus they do not play a direct role in compliance.
Instead, they can be used to determine that there are no obligations or prohibitions to the
contrary.

Compliance means to identify whether a business process violated a set of obligations.
Thus the first step is to determine whether and when an obligation is in force. Essentially,
a norm can specify when an obligation is in force at a particular time point only (non-
persistent obligations), or more often, a norm indicates when an obligation enters
into force. An obligation remains in force until it is terminated or removed (persistent
obligations).

Non-Persistent obligations are also called punctual obligations: the obligation con-
tents are immediately achieved otherwise a violation is triggered. In contrast, a persistent
obligation which is to be obeyed for all time instances within the interval it is in force
is a maintenance obligation. If achieving the contents of an obligation at least once
is enough, then it is an achievement obligation. For an achievement obligation, if the
obligation could be fulfilled even before it is actually in force, we speak of a preemptive
obligation; otherwise it is a non-preemptive obligation.

An important aspect of obligations that differentiates them from other types of
constraints is that an obligation can be violated. However, the violation of an obligation

4The definition is taken from the glossary created by the OASIS LegalRuleML workgroup
http://www.oasis-open.org/apps/org/workgroup/legalruleml

 http://www.oasis-open.org/apps/org/workgroup/legalruleml

does not necessarily mean the termination of interaction of a business process because
some violations can be compensated for while keeping the underlying process still
compliant [9,11]. However, not all violations are compensable, and an uncompensated
violation would mean the process is non-complaint. If an obligation persists after being
violated, it is a perdurant obligation if not then we have a non-perdurant obligation.

Next we formally define the meanings of the obligations, all we need is the concept
of timeline, i.e., a (possibly infinite5) totally ordered discrete set of time points. Also,
we assume that the timeline has a minimum. In what follows, we assume the existence
of a logical language L (can be a set of atomic propositions) on which the formulas are
written to model obligations and the representation of the environment.

Definition 1 (State). Given a timeline, we define a function State : N 7→ 2L.

The meaning of the function State is to identify what formulas are evaluated as true at
the n-th time instant of a timeline.

Definition 2 (Obligation in Force). Given a timeline, we define a function Force : N 7→
2L.

The meaning of the function Force is to identify the obligations in force at the n-th
instant of time in a given timeline.

Definition 3 (Punctual Obligation). Given a timeline, an obligation o is a punctual
obligation if and only if:

∃n ∈ N : o < Force(n − 1),o < Force(n + 1),o ∈ Force(n)
A punctual obligation is violated at n if and only if o < State(n).

The conditions of a punctual obligation must be fulfilled immediately otherwise we have
a violation i.e., o is violated at time n if o is not true at n (or at the n-th instant of time in
the timeline).

Definition 4 (Persistent Obligation). Given a timeline, an obligation o is a persistent
obligation if and only if:

∃n,m ∈ N : n < m,o < Force(n − 1),o < Force(m + 1),
∀k : n ≤ k ≤ m,o ∈ Force(k)

The obligation o is in force between n and m.

A persistent obligation is an obligation in force in an interval time, and can be further
classified as: (a) achievement, and (b) maintenance obligation. The violation conditions
for a persistent obligation can be derived from the violation conditions of these subclasses.

Definition 5 (Achievement Obligation). Given a timeline, an obligation o is an
achievement obligation if and only if ∃n,m ∈ N, n < m such that o is a persistent
obligation in force between n and m.

An achievement obligation o in force between n and m is violated if and only if:

5Notice an infinite timeline is isomorphic to the set of natural numbers (and we can restrict to
a finite set of natural numbers in case of a finite timeline).

– o is preemptive and ∀k : k ≤ m,o < State(k);
– o is non-preemptive and ∀k : n ≤ k ≤ m,o < State(k).

An achievement obligation is in force in an interval in the timeline, and can be further
classified as: preemptive and non-preemptive. A preemptive achievement obligation o
is an obligation that can be fulfilled even before the obligation is actually in force. In
contrast, a non-preemptive achievement obligation can be discharged only after it enters
in force. The violation of an achievement obligation depends on whether we have a
preemptive or non-preemptive obligation. Notice that the violation of an achievement
obligation can only be asserted after the deadline.

Definition 6 (Maintenance Obligation). Given a timeline, an obligation o is a mainte-
nance obligation if and only if ∃n,m ∈ N,n < m such that o is a persistent obligation in
force between n and m.

A maintenance obligation o in force between n and m is violated if and only if

∃k : n ≤ k ≤ m,o < State(k).

Unlike achievement obligations, a maintenance obligation must be complied with for all
the instances between the interval otherwise we have a violation. Also, no deadline is
required for a maintenance obligation insofar we do not need it to detect a violation. The
deadline signal that after that instant the obligation is no longer in force. Furthermore it
is possible to define maintenance obligation without a deadline, meaning the that the
obligation remains in force forever after its activation; for this case, one has to drop the
reference to instant m in the above definition.

The next three definitions capture the notion of compensation of a violation. A
compensation is a set of obligations that are in force after a violation of an obligation,
and fulfilling them makes amend for the violation.

Definition 7 (Compensation). A compensation is a function Comp : L 7→ 2L.

The intuition behind the function Comp is that it associates to each formula a set of
formulas, meaning that if a formula corresponds to an obligation, and the obligation is
violated, then the violation is compensated (or excused) by the formulas associated to
the obligation. This is formalised by the next definition.

Definition 8 (Compensable). Given a timeline, an obligation o is compensable if and
only if Comp(o) , ∅ and ∀o′ ∈ Comp(o),∃n ∈ N : o′ ∈ Force(n).

Notice that we have two requirements for an obligation to be compensable: the first is
that there are ways to make amend i.e., that Comp , ∅, and the second is that the actions
that compensate are recognised as such (they are obligations in force) or they are not
forbidden. Finally, in the most general form, there are no temporal requirements on when
the compensation happens.6

Since the compensations are obligations themselves they can be further violated,
accordingly they can be compensated for the violations as well, thus a recursive definition
of a compensated obligation is required.

6In vast majority of cases, it is expected that the compensatory obligations are in force after
the violation. However, the definition above does not exclude retroactive compensations.

Definition 9 (Compensated Obligation). Given a timeline, an obligation o is compen-
sated if and only if it is violated and for every o′ ∈ Comp(o) either: 1. o′ is not violated;
2. o′ is compensated.

For a stricter notion, i.e., a compensated compensation does not amend the violation the
compensation was meant to compensate, we can simply remove the recursive call, thus
removing 2 from the above condition.

The last type of obligation is that of perdurant obligation. The idea is that when
an obligation is violated, the violated obligation is not terminated yet remains in force.
Given the conditions of primary obligation an obligation may perdure no matter how
many times the obligation has been violated. The violation of a perdurant obligation
results in penalty for which one has to consider the original obligation as well as penalties
associated with the violation.

Definition 10 (Perdurant). Given a timeline, an obligation o is a perdurant obligation
with a deadline d if and only if o is in force between n and m, and n < d < m.

A perdurant obligation o with a deadline d in force between n and m is violated if
and only if

∀ j, j ≤ d,o < State(j)

3 Event Calculus

The Event Calculus [14] is a well known event based formalism for reasoning about
‘events and change’ and the ‘effects of change’ resulting from the occurrence of events
over time. EC provides a set of rich axioms for capturing the behaviour of dynamic
occurrences of both domain dependent and domain independent events. Hence the
formalism is particularly suitable to model the behaviour of a variety of dynamic systems.
It is based on the idea of the state that time-varying properties of the world, called fluents
hold at particular time-points initiated by some event at an earlier time, and not terminated
by some other event between that time period. Accordingly, a fluent does not hold at
some time if it was previously terminated and not resumed during that time [15]. In
contrast, domain dependent axioms illustrate the situations under which an event initiates
and terminates. In this paper, we make use of the predicates and axioms depicted in
Table ?? from [16]. The language provides predicates expressing the various states of an
event occurrence, e.g., Happens (occurrence of an event at a time point), Initiates (an
event triggers the property of the system), Terminates (an event terminates the property
of the system), and HoldsAt (that the property of the system holds at a point of time).
In addition, some auxiliary predicates to express premature termination (Clipped) and
resumption (Declipped) of a fluent at a particular point of time between the time interval
are given. The InitiallyTrue and InitiallyFalse allow for the modeling of system’s state
where only partial information about the domain is available. In contrast, the domain
independent axioms describe the states when a fluent holds or does not hold at particular
point of time.

For example, consider the following axioms [16]:
HoldsAt(P,T2) ← Happens(P,T1) ∧ Initiates(X,P,T1) ∧
¬Clipped(T1,P,T2) ∧ (T1 < T2) (A1)

Table 1: Predicates and Axioms of the EC and meanings
Basic Predicates
InitiallyTrue(P) The fluent P is true from the beginning of time.
InitiallyFalse(P) The fluent P is false from the beginning of time.
Happens(X,T) Event X occurs at time T .
Initiates(X,P,T) Event X initiates the variable (fluent) P at time T .
HoldsAt(P,T) The variable (fluent) P holds at time T .
Terminates(X,P,T) Event X terminates the variable (fluent) P at time T
Auxiliary Predicates
Clipped(T1,P,T2) The variable (fluent) P is interrupted sometime

between T1 and T2.
Declipped(T1,P,T2) The variable (fluent) P is resumed/initiated

sometime between T1 and T2.
Domain Independent Axioms
HoldsAt(P,T2) ← HoldsAt(P,T1) ∧ (T1 < T2) ∧ ¬Clipped(T1,P,T2)
HoldsAt(P,T2) ← Happens(P,T1) ∧ Initiates(X,P,T1)∧

¬Clipped(T1,P,T2) ∧ (T1 < T2)
¬HoldsAt(P,T2) ← Happens(X,T1) ∧ Terminates(X,P,T1)∧

(T1 < T2) ∧ ¬Declipped(T1,P,T2)
¬HoldsAt(P,T2) ← ¬HoldsAt(P,T1) ∧ (T1 < T2) ∧ ¬Declipped(T1,P,T2)
Clipped(T1,P,T2) ≡ ∃X,T : Happens(X,T) ∧ (T1 ≤ T < T2)∧

Terminates(X,P,T)
Declipped(T1,P,T2) ≡ ∃X,T : Happens(X,T) ∧ (T1 ≤ T < T2)∧

Initiates(X,P,T)

The (Axiom A1) states that the fluent P continues to hold until an event that terminates
it occurs, provided that there was an event that happened at some previous time which
was a trigger for the fluent.

¬HoldsAt(P,T2) ← Happens(X,T1) ∧ Terminates(X,P,T1)∧
(T1 < T2) ∧ ¬Declipped(T1,P,T2) (A2)

Whereas (Axiom ??) states that fluent P that has been terminated by the event X
continues not to hold until it is resumed by some other event occurrence.

The above axiomatisation can be used to model the non-deterministic behaviour of a
system thus EC is suitable for modeling obligations that can be effected by unpredictable
situations. However, as was noted earlier in Section 1, an obligation might not enter
into force immediately after the occurrence of an event rather after some time delay. A
second problem is that the base predicate Initiates does not gurantee that the fluent in its
arguments is actually initiated by the event. Suppose that the domain dependent axioms
specify that both the events E1 and E2 individually initiate the fluent P, and event E1
happens at time 10 and event E2 at time 20, P does not holds initially and no other event
initiates or terminates fluent P between 0 and 30. This means that P starts to hold from
11 and continues to hold up to 30, and event E2 is irrelevant to determine the status of P.
Also, there are cases where an obligation enters in force at the same time of initiating an
event (and not the next time instant).

4 Modeling Obligations with Event Calculus

In this section we propose a set of axioms to extend the EC to model the various
obligation classes of the classification model described in Section 2.

As we have seen at the end of the previous section, the standard Initiates and HoldsAt
predicates of EC present some shortcomings for modelling obligations. To obviate these
problems, we introduce a new ‘deontically holds at’ predicate DHoldsAt(P,T) meaning
that the ‘deontic fluent’, i.e., a particular type of obligation, P holds at time T . The main
difference with the standard EC HoldsAt predicate is on the conditions of initiation.
Each obligation has its own specific triggering events, and the happening of one of those
triggering events initiates the obligation. In addition, there could be a delay (which could
be null) between the time the triggering event happens and the time obligation enters
in to force. A triggering event for an obligation is represented by trigger(Ox,T X,N),
where Ox,T X is a deontic fluent, and N the delay. Ox,T

7 represents the type of the
obligation (see Section 2) and the time when the obligation enters in force T , X is a
variable attached to the obligation representing the contents of the obligation, which
can be either an event or a fluent, and N is the delay. As we said above the purpose of
the triggering event is to initiate the obligation. For a trigger to be effective, one has to
specify the conditions defining the trigger for an obligation. Also, the delay must be
specified because the delay determines the difference in time from when the triggering
event occurs and when the obligation enters into force.

For the termination of deontic fluents we introduce the new predicate
DTerminates(E,P,N,Tter) meaning that an event E deontically terminates the fluent
P, with some delay N , at time Tter . The delay N define the time distance from when
the terminating event happens and the actual termination of the deontic fluent. After a
deontic termination an obligation has no legal effects on the execution of the process
from the time it is terminated. Also for specifying the deadlines for obligations, in the
same say, we define a special deadline-triggering event deadline(Ox,T X,Td), where
Ox,T and X are the arguments for deadline event and serve as triggering events and Td

represents the time of the deadline event occurrence. The purpose of the deadline event
is to signal the time (deadline) until when the obligation conditions must be fulfilled, a
violation of the obligation conditions is triggered otherwise.

We provide generic axioms that we need to model the obligations. These axioms pro-
vide the conditions for no legal effects (not deontically Holds) after the termination of an
obligation (Axiom ??) and the conditions when no fluent deontically holds (Axiom ??).

¬DHoldsAt(X,T + 1) ← ∃E : DTerminates(E,X,N,T) (A3)

¬DHoldsAt(X,Tk) ← ¬DHoldsAt(X,T) ∧ ¬Happens(trigger(X,N),Tj) ∧
(T ≤ Tk) ∧ (T ≤ Tj + N ≤ Tk) (A4)

In what follows we will have several cases where the trigger for an obligation does not
only trigger the initiation for the obligation but also the termination. This means that we
have to write expression with the following form

DTerminates(trigger(P,N),P,N,T) (1)

7Notice Ox,T has only one time stamp because one can be certain that an obligation holds
after deontically initiated but one cannot be certain when it is going to be terminated.

where we have to repeat twice the parameters P and N . To ease readability we will use
the convention of dropping the P and N from the arguments DTerminates, using thus

DTerminates(trigger(P,N),T) (2)
The reader should keep in mind that (??) is a shorthand for (??).

4.1 Punctual obligation

The axioms describing when a punctual obligation holds are the following:
DHoldsAt(Op,Ts X,Ts) ←

∃Tt ,N : Happens(trigger(Op,Ts X,N),Tt) ∧
(Ts = Tt + N) ∧ N ≥ 0

(A5)

DTerminates(trigger(Op,Ts X,N),Ts) ←
∃Tt ,N : Happens(trigger(Op,Ts X,N),Tt) ∧
(Ts = Tt + N) ∧ N ≥ 0

(A6)

Let us examine in details the above axioms. An obligation is represented as a fluent;
specifically the (punctual) obligation of X is represented by the fluent Op,Ts X where
Op,Ts is an obligation modality (a specific type of the obligation) and time when the
obligation enters into force (Ts), and X is a variable referring the contents of obligation.
In addition, we create a special event trigger(OxY,N) whose meaning is to initiate the
obligation. In this way, all one has to do is to specify when an obligation enters in force
by defining the conditions for the trigger. Axiom (??) specifies that the same event that
triggers the obligation, terminates the obligation, and obligation terminates in the same
time instant when it is initiated. Thus in combination with (Axiom (??)) we have a
punctual obligation is in force for only one time instant. The axiom specifying when a
punctual obligation is violated is:

Happens(violation(Op,Ts X),Tv) ←
DHoldsAt(Op,Ts X,Ts) ∧
¬Happens(X,Ts) ∧ ¬HoldsAt(X,Ts) ∧ (Tv = Ts)

(A7)

The violation of a punctual obligation happens when we do not have the content of the
obligation at the right time. This can happen in two cases: (a) the content is a fluent and
it does not hold at the time; or (b) it is an event and it does not happens at the time.8

Notice that we introduce a violation event (violation(Op,Tv X)).

Example 1. Australian Telecommunications Consumers Protection Code 2012 (TCPC
2012). Article 8.2.1.
A Supplier must take the following actions to enable this outcome:
(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers must

demonstrate, fairness and courtesy, objectivity, and efficiency by:
(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in person or by telephone;
B. within 2 Working Days of receipt where the Complaint is made by email;

. . . .

8To capture that nothing is both and event and a fluent we add the axiom⊥ ← Happens(X,T)∧
HoldsAt(X,T ′).

Consider the clause (A) of the Article 8.2.1 where the obligation must be fulfilled
immediately. This can be modeled as:

Happens(trigger(Op,TAcknowledge,0),T) ←
Happens(Complaint,T)∧
(HoldsAt(inPerson,T) ∨ HoldsAt(byPhone,T))

(3)

Suppose there is an event Complaint at time T and the fluent byPhone holds at the same
time. Then from the domain Axiom (1), we derive trigger(Op,TAcknowledge,0),T), and
then from Axioms: (??), (??) and (??) we obtain DHoldsAt(Op,TAcknowledge,T) and
¬DHoldsAt(Op,TAcknowledge,T + 1). Meaning that the obligation to acknowledge the
complaint on reception of it. Moreover, suppose that we model the acknowledgement
as an event, and we have Happens(Acknowledge,T), then the conditions for having a
violation do not hold. Suppose now that Happens(Acknowledge,T) is not true, i.e., the
complaint is not acknolwedged, thus ¬Happens(Acknowledge,T) is true. In addition,
given that Acknowledge is an event, if we have ¬HoldsAt(Acknowledge,T), then, we can
use Axiom (??) to conclude that the obligation to acknowledge a complaint by phone on
the spot has been violated.

4.2 Persistent Obligation

The following axiom describes a persistent obligation with a natural deadline when the
fluent holds in interval:9

DHoldsAt(Oper,Ts X,Tk) ←
∃Tt ,N : Happens(trigger(Oper,Ts X,N),Tt) ∧
¬DClipped(Ts ,Oper,Ts X,Tk) ∧
DTerminates(trigger(Oper,Ts X,N),Te) ∧
(Ts = Tt + N) ∧ (Te > Ts) ∧ (Ts ≤ Tk ≤ Te) ∧ N ≥ 0

(A8)

By ‘natural deadline’ we mean that if no other (relevant) event happens the obligation is
in force from the Ts and Te , and that Te is determined by the same event that triggers the
(persistent) obligation.

Achievement Obligation An achievement obligation is a special case of a persistent
obligation where there might not be a natural deadline for the obligation. Hence there
are two cases for achievement obligations:
(i) when the obligation has no termination point, i.e., initiation of achievement obliga-

tion.
DHoldsAt(Oa,Ts X,Ts) ←

∃Tt ,N : Happens(trigger(Oa,Ts X,N),Tt) ∧ (Ts = Tt + N) ∧ N ≥ 0 (A9)

(ii) The obligation Holds at a particular time point deontically initiated and not clipped
between the interval, i.e., start time and the point until it holds.

DHoldsAt(Oa,Ts X,Tk) ←
DHoldsAt(Oa,Ts X,Ts) ∧ ¬DClipped(Ts ,Oa,Ts X,Tk) ∧ (Ts ≤ Tk) (A10)

9The defintion of DClipped is the same as that for Clipped where Terminates is replaced by
DTerminates.

There are two cases of the termination of an achievement obligation:
1. An arbitrary event terminates the obligation when the obligation conditions are

fulfilled before the deadline of obligation.
DTerminates(_,Oa,Ts X,N,Tk) ←

Happens(_,Tk) ∧ DHoldsAt(Oa,Ts X,Tk) ∧
(Happens(X,Tk) ∨ HoldsAt(X,Tk)) ∧
FulfillTerminable(Oa,Ts X) ∧ (Ts ≤ Tk)

(A11)

The symbol ‘_’ represents an arbitrary event, which can be anything, e.g., a new
obligation, an activity or even a deadline etc., that terminates the obligation.
2. Where the deadline itself terminates the obligation.

DTerminates(deadline(Oa,Ts X,Td),Td) ←
Happens(deadline(Oa,Ts X),Td) ∧ (Ts ≤ Td) (A12)

The axiom for the termination of a preemptive obligation is:
DTerminates(_,Oa,Ts X,N,Te) ←

Happens(_,Te) ∧ DHoldsAt(Oa,Ts X,Ts) ∧
∃T ′ : (Happens(X,T ′) ∨ HoldsAt(X,T ′)) ∧
FulfillTerminable(Oa,Ts X)∧
(Te = Ts + 1) ∧ (T ′ < Ts)

(A13)

The predicate ‘FulfillTerminable’ is a boolean switch that allows for checking whether
or not the obligation can be terminated upon fulfillment. This leave us to determine the
conditions under which we have a violation of an achievement obligation. To this end
we need a special event deadline(Oa,Ts X) signaling the deadline after which a violation
occurs if the achievement is not fulfilled by that time/event.

Happens(violation(Oa,Ts X),Tv) ←
DHoldsAt(Oa,Ts X,Te) ∧
Happens(deadline(Oa,Ts X),Te) ∧
(¬Happens(X,Te) ∧ ¬HoldsAt(X,Te)) ∧
FulfillTerminable(Oa,Ts X) ∧ (Tv = Te)

(A14)

Maintenance Obligation Maintenance is another case of persistent obligation where
it is different from achievement in the sense that the obligation conditions must be
fulfilled for every instance of the interval the obligation is in force. The (Axiom A8) can
represent the maintenance obligation. Contrary to achievement obligation, a maintenance
obligation is violated if the obligation contents are not fulfilled for all the instances.

Happens(violation(Om,Ts X),Tk) ←
DHoldsAt(Om,Ts X,Tk) ∧
¬Happens(X,Tk) ∧ ¬HoldsAt(X,Tk) ∧ (Ts ≤ Tk)

(A15)

The violation of a maintenance obligation may terminate the obligation if the obligation
is ‘ViolationTerminable’ which is again a boolean switch for checking whether a mainte-
nance obligation can be terminated upon violation. The conditions for termination after
the violation are:

DTerminates(Om,Ts X,Tv) ←
Happens(violation(Om,Ts X),Tv) ∧
ViolationTerminable(Om,Ts X)

(A16)

For a non-perdurant maintenance obligation the violation of the obligation itself termi-
nates the obligation.

DTerminates(violation(Om,Tv X),Tv) ←
DHoldsAt(Om,Tv X, tv) ∧ ViolationTerminable(Om,Ts X) ∧
Happens(violation(Om,Ts X),Tv) ∧ (Ts ≤ Tv)

(A17)

4.3 Compensation Obligation

A compensation is an obligation itself. The event triggering a compensation is the
violation of a norm compensation compensates. Thus, we have domain specific axioms
for the two case of compensation:

– Compensation of the violation by a single obligation:
Happens(compensation(Ox,Ts P),Tsc) ←

∃Oy,Tsc Q : (Compensates(Oy,Tsc Q,Ox,Ts P),Tsc) ∧
Happens(violation(Ox,Ts P),Tv) ∧
DHoldsAt(Oy,Tsc Q,Tsc) ∧
(Happens(Q,Tsc) ∨ HoldsAt(Q,Tsc)) ∧ (Ts ≤ Tv ≤ Tsc)

(A18)

– Recursive compensation when a compensation obligation itself is violated:
Happens(compensation(Ox,Ts P),Tsc) ←

Compensates(Oy,Tsc Q,Ox,Ts P) ∧
Happens(violation(Oy,Tsc Q),Tv) ∧
Happens(compensation(Oy,Tsc Q),Tz) ∧
RecursivelyCompensable(Ox,Ts P) ∧ (Ts ≤ Tsc ≤ Tz) ∧ (Tv ≤ Tz)

(A19)

For the two axioms above we have to introduce the special event compensation, indi-
cating that a (violated) deontic fluent has been compensated for, and the binary pred-
icate Compensates where the two arguments are two deontic fluents. The meaning of
Compensates is that fulfilling the first deontic fluent make amend to the violation of
the second deontic fluents and implements the Comp function introduced in Section 2,
Definition 7. Again the predicate RecursivelyCompensable is a boolean switch meant to
capture the intuition given by condition 2 of Definition 9.

5 Proof Sketches of Correctness

The aim of this section is to show how to prove the correctness of our formalisation of
norms in EC and the classificatory conditions of Section 2. For space reasons we provide
only the proof sketch of the axioms for punctual obligation. The proofs for the remaining
axioms are essentially similar.

First we introduce some base conditions relating to the basic predicates of EC and
the functions Force and State providing thus the basic bridge between the axiomatisation
in Section 4 and the conditions in Section 2.
C1. HoldsAt(X,T) if and only if X ∈ State(T),
C2. Happens(X,T) if and only if X ∈ State(T),
C3. DHoldsAt(X,T) if and only if X ∈ Force(T).

Lemma 1 (Punctual Obligation). If DHoldsAt(Op,Ts X,Ts) is true, then X is a punc-
tual obligation in Force at time Ts , X ∈ Force(Ts)

Proof (Sketch). By Definition 3 the semantics of a punctual obligation is given by
(A) o ∈ Force(n), (B) o < Force(n − 1), (C) o < Force(n + 1). Suppose, we have the
right hand side of Axiom ??, from this we obtain DHoldsAt(Op,Ts X,Ts), then from
condition C3 we have DHoldsAt(X,T) if and only if X ∈ Force(T) which is equivalent
to X ∈ Force(Ts), and then ∃n such that X ∈ Force(n). This satisfies (A).

For (B), we assume that ¬DHoldsAt(Op,Ts X,0), where 0 is the initial time instant.
By Axiom ?? this guarantees that the fluent Op,Ts X is not in Force function before the
time, i.e., Ts . This means that X < Force(t), for 0 ≤ t < Ts ; hence X < Force(Ts − 1).
This satisfies condition (B).

Given that the right hand side of Axiom ?? is the same as that of Ax-
iom ??, we have DTerminates(trigger(Op,Ts ,N),Ts). From Axiom ?? we conclude
¬DHoldsAt(Op,Ts ,Ts + 1). From condition C3 above we get X < Force(Ts + 1), which
satisfies conditions (C).

Lemma 2 (Violation of Punctual Obligation). If Happens(violation(Op,Ts X),Ts) is
true, then X is a punctual obligation in force at time Ts , and X < State(Ts).

Proof (Sketch). To have a violation of a punctual obligation o, conditions (A), (B),
(C) of Lemma ?? have to be satisfied and the additional condition (D) o < State(n).
That Happens(violation(Op,Ts X),Ts) is true means that also the right hand side of
Axiom ?? is true. Thus we have DHoldsAt(Op,Ts X,Ts), from which we conclude
the X ∈ Force(Ts) by Lemma ?? above. In addition we have ¬HoldsAt(X,Ts) and
¬Happens(X,Ts) from which by conditions C1 and C2 above we conclude X <
State(Ts). This satisfies condition (D).

6 Related Work

In [6], EC is used to express temporal rules about the obligations and permissions in
a business process interaction. Rich axioms that translate the temporal properties of
deontic assignments and capture the effects of activities of obligations and permissions
on the agents have been proposed. The study is limited in scope because it only covers
obligations and permissions while other obligations types have been left out. Also,
the temporal validity of an obligation and its effects on the violation, as presented in
our work, has not been considered. Such parameters and ability to faithfully model
obligations, and capture the effects of violations is imperative from a business process
compliance checking perspective. [4] provides formal specifications of commitments and
precommitments, instutionalised power and context using EC. The formal representation
of norms is limited to obligations and permissions only as in [6]. No explicit distinction
between the different types of obligations and effects of the violation on obligations has
been made, as made in this work, although the notion of sanctions has been formally
presented in the study.

[2] translates both the policies and system behaviour specifications into formal
specifications using EC. The proposed formal specifications are expressive enough to

efficiently model the systems using various types of policies representing obligations.
These formal specifications can be used, together with abductive reasoning, for detecting
and representing the conflicts between the policy specifications (particularly those
related to the authorisation and permissions). These specifications are useful in the sense
that a priori knowledge about the event and/or fluent’s state can be used to simplify the
representation of preemptive obligations but we do not consider the a priori knowledge of
events/fluents instead we use the notion of preemptiveness to distinguish different cases
of the violation of an achievement obligation and model it in EC. [1] proposes a norms
representation approach using EC enabling the agents to use norms in their practical
reasoning. The work considers only two classes of norms: obligations and prohibitions
for which authors introduced three fluents i.e., f Pun and oPun referring obligation
norm violation and prohibition norm violation respectively, and oRew for obligation
fulfillment. The scope of this work is limited because it only considers obligations and
ignores the obligations modalities as we do. Also, the Anderson’s reduction view of
norm which suggests that every violation of a norm is followed by a sanction [20] has
been used. We argue that initially not in every case sanctions are/can be directly imposed
as under a sub-ideal situation processes can still be compliant [11]. The notions of
compensation and obligations perduring after the violation as defined in our work are
the norms types that strengthen this argument.

7 Final Remarks

In this paper we formally modeled the various types of obligations using classical EC.
We used these obligations types from our previously proposed classification model, and
introduced a triggering event (trigger) with some time delay replacing the Initiates, base
predicate of the EC. The aim of the triggering event is to capture the deontic effects of
obligations from when they enter into force not from when the event is triggered, which
in our view is not possible with the existing variants of EC. The new predicates extend
the expressive power of the EC and make it possible to model all types of legal norms.
We are currently working on an implementation to validate the computational efficiency
of the proposed extension to EC. Accordingly, we plan to continue this work and check
the expressive power of various formalisms e.g., temporal logic, first-order-logic and
defeasible and deontic logic. Also, we will look at the state of affairs in the formal
modeling of the legal knowledge and what is lacking in this direction.

References

1. W. Alrawagfeh. Norm Representation and Reasoning: A Formalization in Event Calculus. In
G. Boella, E. Elkind, B. T. R. Savarimuthu, F. Dignum, and M. Purvis, editors, PRIMA 2013,
volume 8291 of LNCS, pages 5–20. Springer, 2013.

2. A. Bandara, E. Lupu, and A. Russo. Using Event Calculus to Formalise Policy Specification
and Analysis. In POLICY 2003, pages 26–39, 2003.

3. DECLARE. Declarative Process Models, http://www.win.tue.nl/declare/.
4. N. Fornara and M. Colombetti. Specifying artificial institutions in the event calculus. In

Handbook of Research on Multi-Agent Systems: Sematnics and Dynamics of Organisational
Models, pages 335–366. IGI Global, 2009.

5. S. Goedertier and J. Vanthienen. Business Rules for Compliant Business Process Models. In
(BIS 2006), volume P-85 of LNI, pages 558–579. Gesellschaft für Informatik, 2006.

6. S. Goedertier and J. Vanthienen. Designing Compliant Business Processes with Obligations
and Permissions. In J. Eder and S. Dustdar, editors, Business Process Management Workshops
2006, LNCS 4103, pages 5–14. Springer, 2006.

7. G. Governatori. Business Process Compliance: An Abstract Normative Framework. In
it-Information Technoloby, volume 55(6), pages 231–238, 2013.

8. G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo. Characterising Deadlines in Temporal
Modal Defeasible Logic. In Proceedings of the 20th Australian Joint Conference on Advances
in Artificial Intelligence, AI’07, pages 486–496. Springer, 2007.

9. G. Governatori and Z. Milosevic. Dealing with Contract Violations: Formalism and Domain
Specific Language. In EDOC 2005, pages 46–57. IEEE Computer Society, 2005.

10. G. Governatori, A. Rotolo, and G. Sartor. Temporalised Normative Positions in Defeasible
Logic. In ICAIL’05, pages 25–34. ACM, 2005.

11. G. Governatori and S. Sadiq. The Journey to Business Process Compliance. In Handbook of
Research on Business Process Management, pages 426–454. IGI Global, 2009.

12. M. Hashmi, G. Governatori, and M. T. Wynn. Normative Requirements for Business Process
Compliance. In ASSRI’13, November 2013. [to appear].

13. M. Hilty, D. A. Basin, and A. Pretschner. On Obligations. In ESORICS, pages 98–117, 2005.
14. R. Kowalski and M. Sergot. A Logic-Based Calculus of Events. In J. Schmidt and C. Thanos,

editors, Foundations of Knowledge Base Management, Topics in Information Systems, pages
23–55. Springer, 1989.

15. R. Miller and M. Shanahan. The Event Calculus in Classical Logic - Alternative Axiomatisa-
tions. Electron. Trans. Artif. Intell., 3(A):77–105, 1999.

16. R. Miller and M. Shanahan. Some Alternative Formulations of the Event-Calculus. In
A. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Beyond,
volume 2408 of LNCS, pages 452–490. Springer, 2002.

17. M. Palmirani, G. Governatori, and G. Contissa. Modelling Temporal Legal Rules. In ICAIL,
pages 131–135, 2011.

18. F. Sadri and R. Kowalski. Variants of the Event Calculus. In L. Sterling, editor, Proceedings
of the Twelth International Conference on Logic Programming. MIT Cambrdige, 1995.

19. G. Sartor. Legal Reasoning: A Cognitive Approach to the Law. Springer, 2005.
20. A. Soeteman. Pluralism and Law. In Proceedings of the 20th IVR World Congress of the Int’l

Association of Philosophy of Law and Social Philosophy, volume 4, page 104, 2001.

	Modeling Obligations with Event-Calculus

