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Variations Within Adiabatic
Caverns of Compressed Air
Energy Storage Plants
The temperature and pressure variation limits within the cavern of a compressed air energy
storage (CAES) plant affect the compressor and turbine works, the required fuel consump-
tion and therefore the overall plant performance. In the present work, the thermodynamic
response of adiabatic cavern reservoirs to charge/discharge cycles of CAES plants are
studied. Solutions for the air cavern temperature and pressure variations were derived
from the mass and energy conservation equations, and applied to three different gas state
equations, namely, ideal, real, and a self-developed simplified gas models. Sensitivity anal-
yses were conducted to identify the dominant parameters that affect the storage tempera-
ture and pressure fluctuations. It is demonstrated that a simplified gas model can
adequately represent the air thermodynamic properties. The stored air maximal to minimal
temperature and pressure ratios were found to depend primarily on, both the ratio of the
injected to the initial cavern air mass, and the reservoir mean pressure. The results also
indicate that the storage volume is highly dependent on the air maximum to minimum pres-
sure ratio. Its value should preferably be in between 1.2 and 1.8, where the exact selection
should account for design and economic criteria. [DOI: 10.1115/1.4005659]

Keywords: compressed air energy storage (CAES), underground storage, cavern reser-
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1 Introduction

Incorporation of energy storage facilities in the electrical power
industry can reduce, both pollution and fossil fuel depletion, and
yet be economical. Energy storage systems should effectively trans-
fer excess energy of base load units during low demand periods to
periods of high demand. This utilization of off-peak electrical
power reduces the fossil fuel consumption of higher heat rate peak-
ing systems and improves the capacity factor of the efficient base
load units. In this respect, CAES is an advantageous alternative for
supplying peaking power to electric utilities. A CAES plant pro-
vides the benefit of compressing air during off peak hours to an
underground reservoir at the low cost of excess base-load electrical
power. During peak hours, the compressed air is released and fired
to drive the expansion stages of gas turbines. The compressed air
can be stored in three geological types of underground reservoirs:
salt caverns, hard rock caverns, and porous reservoirs (such as
depleted gas reservoirs or aquifers [1,2]). The changes in tempera-
ture and pressure of the reservoir stored air (caused by cyclical air
injections and withdrawals) are essential factors to be considered in
the design of the storage plant. For a given set of operating condi-
tions, the required storage volume and the number of wells (for po-
rous reservoirs) are affected by those fluctuations. Furthermore, the
selection of the compression equipment is one that must meet the
maximal storage pressure, whereas the minimum storage pressure
essentially determines the turbine inlet pressure.

The present study addresses the air storage in cavern reservoirs.
To date, there are two operational CAES plants in the world: the
290 MW plant at Huntorf, Germany, built in 1978 [3], and the 110
MW plant in McIntosh, Alabama, commissioned in 1991 [4]. Both
plants are using solution mining salt caverns as their underground
reservoir. Although, a considerable amount of studies on CAES
exist, only few consider the temperature and pressure aspects of
CAES reservoirs. Within them are the models developed by the
constructors of the two existing CAES plants. Their publications,
however, contain only results related to the specific operation of the
Huntorf and McIntosh plants and do not provide mathematical for-
mulations [5–7]. Essentially, the models are based on mass and
energy conservation and account for heat transfer through the cav-
erns walls but lack any details on the thermodynamic assumptions
upon which the models were developed. Separately, the tempera-
ture changes in cavern reservoirs were treated by Osterle [8], who
preformed a thermodynamic analysis of CAES based on the first
and second laws. The air was considered to be an ideal gas and the
cavern to be adiabatic. Solution for the air temperature was
obtained for the cavern pressurization from a minimum to a maxi-
mum pressure, and back to the minimum. The results show that fol-
lowing a series of charge/discharge cycles, the reservoir maximum
and minimum temperatures approach asymptotic limits (i.e., steady
periodic conditions). Skorek and Banasiak [9] performed thermody-
namic analyses of CAES systems, which included cavern tempera-
ture and pressure calculations for a steady charge/discharge cycle.
They incorporated the assumptions of semi-ideal gases and adia-
batic cavern walls. It should be noted that both Refs. [8] and [9]
focused their analyses on the modeling of the entire power plant,
where limited attention was provided to the reservoir thermody-
namic response. Nonetheless, their results for specific conditions
are examined and used for comparison in the current study.
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In this work, the thermodynamic characteristics of adiabatic
reservoir response to charge/discharge cycles of CAES plants
are studied. It includes the exploration of the cavern temperature
and pressure variations, which are an essential component of the
plant capacity and operational design. Though heat transfer
through the caverns walls may have an influencing role, the
study of adiabatic reservoirs has merit for several reasons. First,
it provides a reference solution, which is a limiting case for con-
ditions of negligible heat transfer through the caverns walls. Sec-
ond, it offers clear analytical solutions that shed light on the
thermodynamic behavior of the air during cycle phases of com-
pression, storage, and discharge. Furthermore, it provides a tool
to examine and choose the most suitable thermodynamic state
equation of air that yields a representative model that is easy to
use. Adoption of more accurate equations of state has merit, pro-
vided that it does not overly complicate the model utilization. In
this respect, a simple and more accurate model paves a preferred
path toward the extension of the model to account for heat trans-
fer phenomena, as well as for comparison of results against test
data.

In principle, a CAES system can operate in several ways. The
compressor train may work with a constant outlet pressure, which
implies that the air mass flow rate is being reduced during opera-
tion. Alternatively, the air compression may supply a constant
mass flow rate, which entails an increasing outlet pressure. Pres-
sure changes in the latter case and flow rate changes in the former
are subject to the underground storage physical characteristics.
Theoretically, the compressor can work in a third way which
matches its characteristics and where both the outlet pressure and
mass flow rate would vary accordingly. These different ways of
operations also apply to the discharge stage.

The Huntorf and the McIntosh plants operate with constant air
mass flow rates, through both, the compressor and turbine ma-
chinery. This form of operation defines the plant design require-
ments so as to maintain a reservoir air mass balance. In addition,
it provides a steady turbine operation through the throttling of
the discharged air to a fixed pressure. The throttling pressure
loss is easily offset by the high turbine efficiency gained by this
mode of operation. Therefore, the current research is focused on
that type of operation. Solutions for the reservoir temperature
and pressure variations were developed for the aforementioned
realistic operating conditions; namely, two periods of constant
mass flow rate, one for the charging phase and the other for the
discharge, and zero flow in between. It is also assumed that the
air is cooled to a certain temperature (by an after-cooler) prior to
storage. The developed model can be applied to any set of such
operating condition required by the above-ground facilities.

2 Formulation of the Problem

Consider a cavern reservoir of constant volume V, located at a
certain distance below the surface, as shown in Fig. 1. Initially, the
cavern contains compressed air at a pressure P0 and temperature T0

(equaling surrounding rock temperature). During a CAES plant
operation air flows into and out of the cavern cyclically at quasi-
equilibrium conditions (relatively slow process). Upon considering
the cavern port and walls as the boundaries of a control volume
(see Fig. 1), and applying the mass and energy conservation equa-
tions, subject to the generalized gas state equation, one obtains

V
dq
dt
¼ FiðtÞ þ FeðtÞð Þ _mc (1)

V
d qeð Þ

dt
¼ FiðtÞ _mc hi þ

v2
i

2
þ gzi

� �
þ FeðtÞ _mc he þ

v2
e

2
þ gze

� �
(2)

p ¼ ZqRT (3)

where e is the specific energy of the cavern air

e ¼ uþ v2

2
þ gz (4)

u and h are the specific internal energy and enthalpy, and v2/2 and
gz are the kinetic and potential energies per unit mass (where z is
a vertical coordinate), respectively. The subscript i denotes the
control volume inlet air conditions and the subscript e designates
the outlet air conditions. p, q, and T, which represent the instanta-
neous pressure density and temperature of the air within the cav-
ern, are assumed to be uniform throughout the storage space. This
is a reasonable assumption owing to both air circulation and slow
rates of temperature variations. The product (Fi(t)þFe(t)) _mc repre-
sents the momentary air mass flow rate at the cavern port, where
_mc is the compressor flow rate, and the sum Fi(t)þFe(t) is a

dimensionless periodic function with a cycle time tp. Figure 2
shows the variations of Fi(t)þFe(t) of a CAES plant operating
with compressor and turbine constant mass flow rates. The indi-
cated time intervals are: t1 for the charging time, t2 � t1 for the
storage time, t3 � t2 for the power generation time, and CD repre-
sents the discharging to charging mass flow ratio (equal also to
the ratio of the charging time to discharging time). Accordingly,
the functions Fi(t) and Fe(t) are defined as

FiðtÞ ¼
1 ðn� 1Þtp � t � ðn� 1Þtp þ t1

0 otherwise

(
;

FeðtÞ ¼
�CD ðn� 1Þtp þ t2 � t � ðn� 1Þtp þ t3 n ¼ Cycle number

0 otherwise

( (5)

Equations (1) and (2) stand for adiabatic and impermeable control
volume boundaries. Additionally, during the charging stage, the
air entering the cavern is at the cavern pressure and at a constant
temperature Ti (which not necessarily equal to the after-cooler
temperature). The air leaving the cavern during the discharge
stage has the cavern pressure and temperature. Equation (2) is
rearranged according to the thermodynamic state principle, for
which two independent intensive properties are sufficient to define
the state of a simple compressible system, hence

d qeð Þ
dt
¼ q

du

dt
þ e

dq
dt
¼ qcv

dT

dt
þ q

@u

@q

� �
T

þ e

� �
dq
dt

(6)

where cv is the constant volume specific heat of the air. Note that
the variation of the velocity with time is negligible and therefore
de/dt%du/dt. The substitution of Eqs. (1), (3), (4), and (6) into
Eq. (2) yields
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Vqcv
dT
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¼ FiðtÞ _mc hi � hþ ZRT � q
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@q

� �
T

þ v2
i

2
þ gDz

� �

þ FeðtÞ _mc ZRT � q
@u

@q

� �
T

þ v2
e

2
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� �
(7)

where Dz:(zi-z)=(ze-z). From thermodynamic properties relation-
ships, one gets

@u

@q

� �
T

¼ �RT2

q
@Z

@T

� �
q

(8)

h ¼ h0 þ RT Z� 1ð Þ �
ðq

0

RT2

q
@Z

@T

� �
q

dq (9)

cv ¼ c0
p � R� R

ðq

0

T2 @2Z

@T2

� �
q

þ 2T
@Z

@T

� �
q

" #
dq
q

(10)

where

h0 ¼ h0
ref þ

ðT

Tref

c0
pdT (11)

c0
p is the isobaric specific heat of the air at low density (ideal gas),

Tref is a selected reference temperature, and h0
ref is the air enthalpy

at low density and temperature Tref. For any given compressibility
factor Z(q,T) and specific heat c0

p(T), Eq. (7) can be solved for the
cavern air temperature during plant operation, which in turn
can be substituted into Eq. (3) to obtain the cavern air pressure.

It should be noted that for practical conditions, both the kinetic
and potential energies terms of Eq. (7) are negligible. For exam-
ple, the maximum velocity at the Huntorf plant well is 20 m/s (to
assure stability [5]), and the caverns are 150 m in height (i.e.,
Dz¼ 75 m). The kinetic and potential energies terms are, there-
fore, 0.2 and 0.74 kJ/kg, respectively. For a typical temperature

and pressure of 300 K and 45 bar, the “specific pressure energy”
term p/q (¼ZRT) is 85.4 kJ/kg and the term –q(@u/@q)T is about
9 kJ/kg. Therefore, the omission of the kinetic and potential ener-
gies from the governing equations is justified (discussed also in
Sec. 4.1).

3 Solutions for Several Thermodynamic Property

Models

Solutions for the cavern air temperature and pressure are depend-
ent on the air thermodynamic properties. In this section, three dif-
ferent thermodynamic state equations of air are presented, namely,
the ideal gas model, a self-developed simplified real gas model, and
a complex real gas model (Sychev et al. [10]). It is demonstrated
that under practical conditions, it is sufficient to represent the ther-
modynamic properties by the simplified real gas model.

3.1 Ideal Gas Model. The simplest solution is obtained by
considering the air to be an ideal gas. Additionally, for moderate
ranges of temperature variations, it is reasonable to assign a con-
stant value to either specific heat, hence

Z ¼ 1; c0
p ¼ c0

p0; cv ¼ c0
v0 ¼ c0

p0 � R (12)

where c0
p0 and c0

v0 are the air specific heats at the initial tempera-
ture T0. Under such conditions and for negligible kinetic and
potential energies, Eq. (7) is reduced to

Vqc0
v0

_mc

dT

dt
¼ FiðtÞ c0

p0ðTi � TÞ þ RT
� �

þ FeðtÞRT (13)

The ideal gas model leads to a simple linear differential equation
which can easily be solved analytically for the air temperature in
the cavern. The first cycle cavern air density, temperature, and
pressure variations obtained from Eqs. (1), (13), and (3) are

q
q0

¼ 1þ mr
t

t1
;

T

T0

¼
1þ c0mr

Ti

T0

t

t1

1þ mr
t

t1

;
p

P0

¼ 1þ c0mr
Ti

T0

t

t1

;

0 � t < t1 (14)

q
q0

¼ 1þ mr;
T

T0

¼
1þ c0mr

Ti

T0

1þ mr
;

p

P0

¼ 1þ c0mr
Ti

T0

;

t1 � t < t2 (15)

q
q0

¼ 1þ mr
t3 � t

t3 � t2

;
T

T0

¼
1þ c0mr

Ti

T0

1þ mr

� 1� mr

1þ mr

t� t2

t3 � t2

� �c0�1

;

p

P0

¼ 1þ c0mr
Ti

T0

� �
1� mr

1þ mr

t� t2

t3 � t2

� �c0

; t2 � t < t3

(16)

q
q0

¼ 1;
T

T0

¼
1þ c0mr

Ti

T0

1þ mrð Þc0 ;
p

P0

¼
1þ c0mr

Ti

T0

1þ mrð Þc0 ; t3 � t � tp

(17)

where q0 is the initial density of the air within the cavern (at tem-
perature T0 and pressure P0), c0 the ratio of the specific heats, and
mr the ratio of the injected to the initial cavern air mass

Fig. 1 Schematics of an underground air storage cavern: (a)
during charge; (b) during discharge

Fig. 2 The dimensionless air mass flow-rate at the cavern port
during a CAES plant cycle
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c0 ¼
c0

p0

c0
v0

; mr ¼
_mct1

q0V
(18)

Consider a series of charge/discharge cycles beginning at T0 and
P0 in the first cycle. The first cycle state variations are given by
Eqs. (14)–(17). The variations at subsequent cycles can be deter-
mined from the same equations, simply by substituting the prior
cycle end variables as initial conditions for the current cycle.
Being interested in the minima and maxima, the temperature and
pressure at the end of each mode of charge/discharge as a function
of the cycle number are as follows:

Tn;min

T0

¼ pn;min

P0

¼
1þ c0mr

Ti

T0

Xn�1

j¼0

1þ mrð Þc
0j

1þ mrð Þc0n

¼ 1þ mrð Þ�c0n þ c0mr
Ti

T0

1� 1þ mrð Þ�c0n

1þ mrð Þc0 � 1
(19)

Tn;max

T0

¼ 1þ mrð Þc
0�1 Tn;min

T0

;
pn;max

P0

¼ 1þ mrð Þc
0 pn;min

P0

(20)

Tn,max and pn,max are the temperature and pressure at the end of
the nth charging cycle, and Tn,min and pn,min at the end of the nth
discharge cycle. Note that Tn,min and pn,min are not necessarily the
cycle minimum temperature and pressure, since the temperature
and pressure at the discharge-mode end can be larger than the ini-
tial temperature and pressure of that cycle (see Fig. 3(b)). How-
ever, when steady periodic variations are reached, the initial and
end states of all cycles are identical, and indeed Tn,min and pn,min

are the minima.
The variations of the cavern maximum and minimum tempera-

tures as functions of the cycle number are shown in Fig. 3. As
aforementioned, the cycles minimum and maximum temperatures
can either decrease with time (Fig. 3(a)) or increase with time
(Fig. 3(b)), depending on the values of mr and Ti/T0. In principle,
the total energy added to the cavern air during the charging phase
is _mct1hi= _mct1c0

p0Ti. When the cavern air loses less energy (than
_mct1cpTi) during the discharge phase, the cavern temperature

increases, whereas if it loses more energy, the cavern temperature
decreases. Eventually, at steady periodic variations, the cavern
energy changes during discharge and charging phases become
equal.

It is seen in the figure that the maximum and minimum temper-
atures approach asymptotically their limits (dashed horizontal
lines). The asymptotic values can be obtained from the limits of
Eqs. (19) and (20) at n!1, which are

Ts;min

T0

¼ lim
n!1

Tn;min

T0

¼ c0mrTi=T0

1þ mrð Þc0 � 1
;

Ts;max

T0

¼ lim
n!1

Tn;max

T0

¼ Ts;min

T0

1þ mrð Þc
0�1

(21)

ps;min

P0

¼ lim
n!1

pn;min

P0

¼ c0mrTi=T0

1þ mrð Þc0 � 1
;

ps;max

P0

¼ lim
n!1

pn;max

P0

¼ ps;min

P0

1þ mrð Þc
0

(22)

The subscript s indicates steady periodic conditions. Note that the
asymptotic values can also be found directly by substituting
T¼ T0¼Ts,min in Eq. (17) and solving for Ts,min. The maximum
temperature can then be found by setting T¼ Ts,max and
T0¼ Ts,min in Eq. (15). It is seen from the solutions that theoreti-
cally 0 � Ts,min � Ti, and Ti � Ts,max � c0Ti, where for mr!0
Ts,min¼Ts,max¼Ti, and for mr!1 Ts,min¼ 0 and Ts,max¼ c0Ti. If
mr is substituted from Eq. (22) into Eq. (21), then the asymptotic
temperatures are obtain in terms of the asymptotic pressures and
are as follows:

Ts;min

T0

¼ c0ps;min Ti=T0

ps;max � ps;min

ps;max

ps;min

� �1=c0

� 1

( )
;

Ts;max

T0

¼ c0ps;max Ti=T0

ps;max � ps;min

1� ps;min

ps;max

� �1=c0
( )

(23)

This result matches the solution of Osterle [8], obtained for
Ti¼ T0. Note that Osterle studied the case in which the cavern air
is pressurized from a minimum pressure to a maximum pressure,
and then depressurized back to the same minimum pressure. Thus,
the pressures of each cycle are identical, while the amount of
stored air varies. In the current study, the same amount of air is
injected and withdrawn in each cycle and thus the pressure varies
from cycle to cycle. However, at steady periodic conditions, the
two cases coincide and the asymptotic temperatures are identical
(the detailed thermodynamic paths lose their relevance).

It is seen from the solution that the pressure ratio is much larger
than the temperature ratio (maximum to minimum). Notice that

Fig. 3 Maximum and minimum cavern temperature variation dependence on the cycles progression. (a) For
mr 5 0.46 and Ti/T0 5 1.065; (b) for mr 5 0.36 and Ti/T0 5 1.09. (The dashed lines represent the steady periodic
temperature ratios)
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those ratios depend only on mr (assuming that c0¼ 1.4 for T0).
Consider the example where mr¼ 0.336, the pressure ratio is 1.5,
whereas the temperature ratio is only 1.12. Therefore, substantial
pressure ratios would entail only moderate temperature variations,
even for adiabatic conditions.

The steady periodic air temperature and pressure variations can
be obtained by replacing T0 and P0 by Ts,min and ps,min in Eqs.
(14)–(17). The solution is then written as follows:

Ts

Ts;min

¼
1þ 1þ mrð Þc

0

� 1
h i t

t1

1þ mr
t
t1

;

ps

ps;min

¼ 1þ 1þ mrð Þc
0

� 1
h i t

t1

; 0 � t < t1

(24)

Ts

Ts;min

¼ 1þ mrð Þc
0�1;

ps

ps;min

¼ 1þ mrð Þc
0

; t1 � t < t2 (25)

Ts

Ts;min

¼ 1þ mr
t3 � t

t3 � t2

� �c0�1

;
ps

ps;min

¼ 1þ mr
t3 � t

t3 � t2

� �c0

;

t2 � t < t3 (26)

Ts

Ts;min

¼ 1;
ps

ps;min

¼ 1; t3 � t � tp (27)

where t is the elapsed time from the beginning of the cycle, and

Ts;min ¼
c0mrTi

1þ mrð Þc0 � 1
; ps;min ¼

P0

T0

c0mrTi

1þ mrð Þc0 � 1
(28)

Since the discharge stage is isentropic (as modeled), at the steady
periodic conditions, the specific entropy of the beginning and end
of the charging stage should also be identical. Thus, the pressure
and temperature of the air at the compression stage end are calcu-
lated by the isentropic ideal gas relations, as seen from Eq. (25)
(1þmr, is the maximum to minimum density ratio of the air).

The cycle maximum and minimum air pressures affect the
required storage volume. In principle, the storage cavern operates
between a minimum pressure (that provides the required turbine
inlet pressure) and a maximum pressure (smaller than the cavern
threshold pressure). For a given set of conditions, namely: rock
temperature T0, maximum and minimum cavern pressures, inlet
air temperature Ti, and amount of injected air ( _mct1); the required
cavern volume and initial pressure P0 are derived from Eq. (22)

V ¼ _mct1c0RTi

ps;max � ps;min

; P0 ¼
ps;max � ps;min

c0
Ti

T0

ps;max

ps;min

� �1=c0

� 1

( ) (29)

A cavern volume of V which is filled initially with pressure P0 is
sufficient to accommodate the required CAES operating conditions.

3.2 Real Gas Model

3.2.1 Simplified Real Gas Model. A more realistic model
would be to treat the air as a real gas. In this section, this is done
with some simplification. Inspection of the thermodynamic proper-
ties of air reveals that the compressibility factor, the specific heats,
and the internal energy derivative vary little within the expected
cycle ranges of the temperature and pressure (see Table 1). There-
fore, it is reasonable to assign a constant value to each of these vari-
ables, namely

Z � Z0; cv � cv0; hi � h ¼
ðTi

T

cpdT � cp0 Ti � Tð Þ;

@u

@q

� �
T

¼ �RT2

q
@Z

@T

� �
q

� �RT2
0ZT0

q0

(30)

Z0, cv0, cp0, and ZT0 are all evaluate at the initial state condition
(q0, T0), where ZT0 denotes the derivative of Z with respect to T.
The substitution of the above approximations into Eq. (7) yields

Vqcv0

_mc

dT

dt
¼ FiðtÞ cp0 Ti � Tð Þ þ Z0RT þ RT2

0ZT0

q0

qþ gDz

� �

þ FeðtÞ Z0RT þ RT2
0ZT0

q0

qþ gDz

� �
(31)

The kinetic energy term of Eq. (7) was neglected, but the potential
energy term was kept to examine its influence at cases of tall cav-
erns. Although Eq. (31) is more complex than the one for an ideal
gas, it remains linear and can be solved analytically for the cavern
air temperature. The first cycle density and temperature variations
in the cavern obtained from Eqs. (1) and (31) are

q
q0

¼ 1þ mr
t

t1
; T ¼ c1 þ c2

q
q0

þ T0 � c1 � c2ð Þ q
q0

�ðc�R�Þ
;

0 � t < t1 (32)

q
q0

¼ 1þ mr; T ¼ c1 þ c2ð Þ 1� 1þ mrð Þ�ðc�R�Þ
� �

þ c2mr

þ T0 1þ mrð Þ�ðc�R�Þ; t1 � t < t2 (33)

q
q0

¼ 1þ mr
t3 � t

t3 � t2

;T ¼ Tðt2Þ þ c3 � c4 1þ mrð Þ
� �

� q=q0

1þ mr

� �R�

� c3 þ c4

q
q0

; t2 � t < t3 (34)

q
q0

¼ 1; T ¼ Tðt2Þ þ c3� c4 1þ mrð Þ
� �

1þ mrð Þ�R� � c3 þ c4;

t3 � t � tp (35)

where

Table 1 Representative ranges of cavern design parameters and initial thermodynamic conditions

Variable Definitions Minimum value Maximum value Units Comments

T0 Rock temperature 20 60 �C Data from Refs. [12,13]
Ti/T0 Relative inlet air temperature 1 1.2 —
ps,min Minimum cavern operational pressure 20 70 bar According to the desired turbine inlet pressure
ps,max/ps,min Cycle cavern pressure ratio 1.2 1.8 — From economical consideration (see Fig. 8)
P0 First fill cavern pressure 17 77 bar Based on Eq. (29)
mr Injected to initial air mass ratio 0.15 0.55 — Based on Eq. (22)
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c1 ¼
cp0Ti þ gDz

cp0 � RZ0

; c2 ¼
RT2

0ZT0

cp0 � RZ0 þ cv0

; c3 ¼
gDz

RZ0

;

c4 ¼
RT2

0ZT0

cv0 � RZ0

; c ¼ cp0

cv0

; R� ¼ RZ0

cv0

(36)

The temperature solution is based on a constant compressibility fac-
tor (Z0) assumption. However, to improve the air pressure calcula-
tion accuracy, the instantaneous compressibility factor can be used
in Eq. (3).

As previously, consider a series of charge/discharge cycles be-
ginning with T0 and P0 at the first cycle. The first cycle condi-
tions are given by Eqs. (32)–(35), whereas subsequent cycle
conditions can be found by substituting the appropriate initial
conditions in Eqs. (32)–(35). Eventually, steady periodic condi-
tions will be reached. They can be found by setting T¼T0

¼ Ts,min in Eq. (35) and solving for Ts,min, which in turn can be
substituted in Eq. (33) to obtain Ts,max. The resulting minima and
maxima conditions are

Ts;min ¼
c1 þ c3 þ ðc2 � c4Þð1þ mrÞð Þ 1þ mrð Þ�R�þc � c3 � c4ð Þ 1þ mrð Þc � c1 þ c2ð Þ

1þ mrð Þc � 1
;

Ts;max ¼
c1 þ c2ð1þ mrÞð Þ 1þ mrð Þc � c1 þ c2 þ c3 � c4ð Þ 1þ mrð ÞR

�
þ c3 � c4 1þ mrð Þ

1þ mrð Þc � 1

(37)

ps;min

P0

¼ Zmin

Z0

Ts;min

T0

;
ps;max

P0

¼ 1þ mrð ÞZmax

Z0

Ts;max

T0

(38)

where Zmin¼Z(q0, Ts,min), and Zmax¼Z(q0(1þmr), Ts,max). At
the limiting case of mr!0, Eq. (37) reduce to Ts,min¼ Ts,max¼ Ti,
as for the ideal gas model. The steady periodic temperature varia-
tions of the air cavern can be calculated by setting T¼ Ts, and
T0¼ Ts,min in Eqs. (32)–(35). The pressure is then obtained from
Eq. (3) with p¼ ps and T¼ Ts.

The required storage volume and the initial fill pressure P0 can
again be calculated from Eq. (38), for the given set of: maximum
and minimum cavern pressure, rock mass temperature T0, inlet air
temperature Ti, and amount of injected air ( _mct1). The storage vol-
ume cannot be found analytically, and Eq. (38) must be solved
numerically.

3.2.2 Complex Real Gas Model. The “complex” model refers
to a real gas with its thermodynamic property fully dependent on
temperature and density. The adopted representation of the

Fig. 4 Temperature and pressure variations of the cavern air for T0 5 310 K, P0 5 45 bar, Ti 5 320 K, mr 5 0.35,
t1/tp 5 7/24, t2/tp 5 14/24, t3/tp 5 18/24. (a) During the first cycle; (b) during a steady periodic cycle.
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properties follows the Sychev et al. [10] model. The representa-
tion is exceptionally accurate for air within a temperature range
from 70 to 1500 K, and pressures from 0.01 to 100 MPa. It was
selected owing to its simple expression and accuracy. Accord-
ingly, the compressibility factor and the ideal gas specific heat are

Z ¼ 1þ
X8

i¼1

XSi

j¼0

bij
qi

r

Tj
r

(39)

c0
p

R
¼
X6

j¼0

aj
T

Tref

� �j

þ
X6

j¼1

bj

T

Tref

� ��j

(40)

where qr¼ q/qcr and Tr¼T/Tcr, with qcr and Tcr being the air den-
sity and temperature at the critical point, Tref¼ 100 K, and bij, aj,
and bj are constant coefficients. Following Eq. (7), the air temper-
ature within the cavern can be calculated by the differential-
algebraic equations (DAE)

Vqcv q; Tð Þ
_mc

dT

dt
¼ FiðtÞ

�
hi qi; Tið Þ � h q; Tð Þ þ Z q;Tð ÞRT

�q
@u

@q
q; Tð Þ þ gDz

�

þ FeðtÞ Z q; Tð ÞRT � q
@u

@q
q; Tð Þ þ gDz

� �
(41)

Z qi; Tið ÞqiTi ¼ Z q;Tð ÞqT (42)

where cv, h, and @u/@q are obtained from Eqs. (8)–(10). The air
density entering the cavern, qi, is another unknown to be calcu-
lated by Eq. (42) that equates the inlet air and the cavern air pres-
sures. The temperature solution and Eq. (3) yield the cavern air
pressure.

Equations (41) and (42) were solved numerically by Maple [11]
based on the rosenbrock_dae code, which is an extension of the

rosenbrock code to solutions of DAE problems (an implicit Rose-
nbrock third-fourth order Runge–Kutta method). The numerical
computation was verified for the discharge stage, which is isen-
tropic, and can be obtained from the algebraic equation

s qmax;Tmaxð Þ � s q;Tð Þ ¼ 0 (43)

where s is the air entropy (calculated from thermodynamic rela-
tions [10]), qmax and Tmax are the air density and temperature at
the beginning of the discharge stage. Expectedly, the numerical
values of the temperature obtained by Eq. (43) coincide with the
numerical solution of Eq. (41), during discharge.

4 Results and Discussion

The analysis reveals that at adiabatic conditions, the cavern
minima and maxima of the temperature and pressure depend on:
the cavern-air initial thermodynamic state, the inlet air tempera-
ture, and the injected to initial cavern air mass ratio. Realistic
ranges of these parameters are listed in Table 1. The initial cavern
air temperature is equal to the local surrounding rock temperature.
The initial air pressure and the injected to initial air mass ratio are
determined so as to provide the desired operational cavern maxi-
mum and minimum pressures.

It is noted that for a given condition set (namely, P0, T0, V,
_mct1) the value of mr¼ _mct1/Vq0 calculated by the ideal gas model

is slightly different than the one calculated by the other two mod-
els, obviously from the differences of q0 (q0¼P0/RT0 for ideal
gas, and q0¼P0/Z0RT0 for real gas). In Secs. 4.1 and 4.2, when-
ever mr is provided it refers to the “exact” calculation.

4.1 Cavern Temperature and Pressure. The first and the
steady periodic cycle temperature and pressure distributions, calcu-
lated by each of the three models, are illustrated in Figs. 4(a) and
4(b) (for the indicated set of conditions). Note that for the adiabatic
case the storage duration periods bear no effect on the cavern con-
dition and can be omitted from the graphical representation. None-
theless, the storage periods are provided throughout the work for

Table 2 Relative deviations of the predicted temperatures and pressures from the complex real gas model predictions (in per-
cents) for the conditions of Fig. 4

Model Ts,max Ts,max/Ts,min Ts,max–Ts,min ps,max ps,max/ps,min ps,max–ps,min

Ideal gas 0.47 1.04 7.98 1.6 2.54 6.16
Simplified real gas 0.01 0.01 0.11 0.02 0.02 0.04

Fig. 5 Comparison of the calculated air temperature and pressure variations during a cycle for different thermo-
dynamic models. T0 5 319.7 K, P0 5 60 bar, Ti 5 338 K, V 5 300,000 m3, _mc 5 236 kg/s, t1 5 7 h, t2 5 14 h, t3 5 21 h,
tp 5 24 h.
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consistency with other representations. Evidently, an excellent
agreement exists between the simplified and the complex gas model
solutions, while the ideal gas model exhibits slight deviations.
Those are mainly attributed to the term q(@u/@q)T which equals
zero for an ideal gas. Consequently, the ideal gas model predicts
milder temperature gradients during both charging and discharge
stages and thereby reduces the temperature fluctuations. The calcu-
lated temperature and pressure ratios (Ts,max/Ts,min, and ps,max/ps,min)
are 1.14 and 1.562, respectively, for the complex model (and the
simplified real gas model), and 1.128 and 1.522 for the ideal gas
model. The relative deviations of the simplified models from the
complex model results are presented in Table 2. Overall, for the
conditions described in the figure, the ideal gas model suffices to
predict reasonably well the temperature and pressure changes in the
cavern.

In order to compare the results against published calculations of
Skorek and Banasiak [9], the cavern temperature and pressure var-
iations for a full cycle span were calculated with the three models
for conditions identical to those used by Skorek and Banasiak. In
the calculations, Skorek and Banasiak neglected the heat
exchange between the air and the reservoir walls, and considered
the air to be a semi-ideal gas. As observed in Fig. 5, the results of
the semi-ideal gas model [9] falls well within the range of the
ideal gas and the complex model predictions, as expected. The rel-
ative deviation of the simplified models from the complex model
results is presented in Table 3. Again, the simplified real gas
model is in excellent agreement with the complex model, while
the semi-ideal and ideal gas models exhibit smaller temperature
and pressure fluctuations.

Obviously, the temperature and pressure fluctuation ampli-
tudes in the cavern depend primarily on mr. In general, a larger
value of mr induces larger changes of the density, temperature,
and pressure. This assertion is seen in Fig. 6, when the cavern
temperature and pressure ratios are plotted against mr. As
observed, it is also seen that results of the simplified real gas rep-
resentation and of the complex model are in excellent agreement
even for cases of larger than normal pressure ratios. In fact, the
error between the two models becomes perceptible only at
impractical high value of mr (the practical limit of mr appears in
Table 1). As previously mentioned, the ideal gas model yields

Table 3 Relative deviations of the predicted temperatures and
pressures from the complex real gas model predictions (in per-
cents) for the conditions of Fig. 5

Model Ts,max Ts,max–Ts,min ps,max ps,max–ps,min

Ideal gas 0.94 8.66 2.75 8.38
Semi-ideal gas [9] 0.79 7.16 1.12 3.41
Simplified real gas 0.016 0.146 0.018 0.055

Fig. 6 Effects of mr on the cavern temperature ratios (a) and pressure ratios (b), for T0 5 300 K, P0 5 40 bar,
Ti/T0 5 1.07

Fig. 7 Effects of mr on the cavern temperature ratios (a) and pressure ratios (b), for T0 5 300 K, Ti/T0 5 1.07, and
at different P0’s
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smaller changes of temperature and pressure. The deviation in
temperature and pressure increases at larger mr’s and is mainly
caused by the term q(@u/@q)T which becomes more dominant
(for ideal gas the latter vanishes).

For an ideal gas, the maximum to minimum ratios of the tem-
perature and pressure depend only on mr (see Eq. (25)). For a real
gas, these ratios depend also on the initial air state and the inlet air
temperatures. Within the ranges listed in Table 1, T0 and Ti have a
negligible effect on these ratios. Thus, the differences between
ideal gas and real gas, seen in Fig. 6, are expected to depend only
on P0. That dependence is depicted in Fig. 7, where the tempera-
ture and pressure ratios are presented for different values of P0.
As expected, the deviation of a real gas from an ideal gas behavior
is larger at higher pressures (higher densities).

In conclusion, the computations reveal that for typical condi-
tions of CAES plants, the temperature and pressure in the cavern
can adequately be calculated by the simplified real gas model. It is
also shown that for a real gas, the temperature and pressure ratios
do not depend only on mr (as for ideal gas) but also on the storage
pressure. The deviation from an ideal gas behavior increases as
the storage mean pressure and pressure fluctuations increase.
However, for practical operating conditions, the relative errors are
confined within few percent spans.

In all the above calculation, the potential energy term was
neglected (gDz¼ 0). To asses if it is indeed negligible, the air
maximum pressure and pressure ratio were calculated (by Eq.
(38)) for typical conditions and various cavern heights. Results of
those calculations (see Table 4) show that the potential energy
omission is justified.

4.2 Storage Volume. The storage volume of cavern reser-
voirs is a design parameter. In principle, the storage volume
should be sufficiently large to store the required air mass and pro-
vide the desired turbine inlet pressures without exceeding the

cavern threshold pressure. The minimal storage volume is the one
that ps,max reaches the cavern threshold pressure. Obviously, the
reservoir can operate with smaller pressure ratios (smaller
ps,max’s), which would require larger storage volumes. The inter-
relationship of the storage pressure ratio to the required storage
volume is demonstrated in Fig. 8 in a dimensionless form. As
observed, the storage pressure ratio has a dominant effect on the
storage volume. At small pressure ratios, a slight increase of the
ratio substantially decreases the storage volume and its cost, but
increases both, the required compression work and compressor
cost. On the other hand, at large pressure ratios, a decrease of the
ratios do not affect much the storage volume and reduces the
required compression work and compressor cost. Consequently,
the selection of the storage pressure ratio and its corresponding
storage volume should be based on both design considerations and
economical criteria and should be preferably in between 1.2 and
1.8. For demonstration, consider the Huntorf plant caverns that
have a threshold pressure of 100 bar [3]. Technically, the caverns
can operate with a pressure ratio grater than 2 (and smaller cav-
erns), but actually operate with a pressure ratio of about 1.4.

For a given storage volume, real gas exhibits higher pressure
fluctuations than those calculated under the assumption of ideal
gas. Therefore, as seen in Fig. 8, the actually needed volumes are
larger than those calculated for ideal gases. Those volume devia-
tions are larger for both, higher storage mean pressures, and pres-
sure ratios.

5 Conclusions

A theoretical investigation of adiabatic cavern response to the
charge/discharge cycles of CAES plants was conducted. The anal-
ysis provides useful expressions for the periodic air temperature
and pressure variations. It is demonstrated that the air thermody-
namic properties can adequately be represented by a simplified
real gas model, in contrast to an ideal gas model that yields
smaller pressure fluctuations and storage volume requirements. It
is also shown that the temperature and pressure ratios do not
depend solely on the injected to initial cavern air mass ratio (as
valid for ideal gases) but also on the storage mean pressure. The
deviation from an ideal gas behavior increases as the storage
mean pressure and pressure fluctuations increase, however, for
practical conditions that deviation does not exceed few percents.
It is evident from the results that the storage pressure ratio has a
dominant effect on the required storage volume, and should be
preferably in between 1.2 and 1.8. The precise value must be
based on both design considerations and economical criteria.
Additionally, the solutions can be used to estimate the compressor
and turbine works, and the entire CAES plant performance.

Nomenclature
bij ¼ constant coefficient
ci ¼ i ¼ 1,2,3,4 coefficients defined in Eq. (36), K
cv ¼ constant-volume specific heat, kJ/(kg K)
cp ¼ constant-pressure specific heat, kJ/(kg K)

CD ¼ charge/discharge time ratio
e ¼ specific energy, kJ/kg

Fi, Fe ¼ dimensionless functions defined in Eq. (5)
g ¼ gravitational acceleration, m/s2

h ¼ specific enthalpy, kJ/kg
_mc ¼ compressor mass flow rate, kg/s
mr ¼ injected to initial cavern air mass ratio, _mct1/(q0V)

n ¼ cycle number
p ¼ pressure, kPa

P0 ¼ initial pressure, kPa
R ¼ specific gas constant, kJ/(kg K)

R* ¼ dimensionless group, RZ0/cv0

s ¼ entropy, kJ/(kg K)
t ¼ time, s

tp ¼ cycle time period, s

Table 4 Dependence of the air pressure ratios on the cavern
height for P0 5 40 bar, T0 5 300 K, Ti/T0 5 1.07, and mr 5 0.4. (The
calculations were preformed by Eq. (38))

Dz (m) ps,max/P0 Relative error (%) ps,max/ps,min Relative error (%)

0 1.6269 0 1.6450 0
50 1.6274 0.03 1.6463 0.08
100 1.6280 0.07 1.6476 0.16
150 1.6286 0.10 1.6489 0.24

Fig. 8 The dimensionless storage volume dependence on the
storage pressure ratio for T0 5 300 K, P0 5 40 bar, Ti/T0 5 1.07
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ti ¼ i ¼ 1,2,3, process duration time, see Fig. 2, s
T ¼ temperature, K

T0 ¼ initial temperature, K
Ti ¼ injected air temperature, K
u ¼ specific internal energy, kJ/kg
v ¼ velocity, km/s
V ¼ cavern volume, m3

z ¼ vertical coordinate, km
Z ¼ compressibility factor

ZT ¼ derivative of Z with respect to T, K�1

Greek Symbols
aj, bj ¼ constant coefficients

c ¼ specific heat ratio at initial state, cp0=cv0

q ¼ density, kg/m3

Superscript
0 ¼ ideal gas properties

Subscripts
0 ¼ initial state

cr ¼ critical
e ¼ control volume outlet
f ¼ first cycle
i ¼ control volume inlet
r ¼ reduced

ref ¼ reference
s ¼ steady periodic cycle
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