# The Generalized XOR Lemma 

Yuliang Zheng ${ }^{\text {a }}$, Xian-Mo Zhang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Software \& Information Systems<br>The University of North Carolina at Charlotte<br>9201 University City Blvd, Charlotte<br>NC 28223-0001, USA<br>Email: yzheng@uncc.edu<br>${ }^{\mathrm{b}}$ Department of Computing<br>Macquarie University<br>Sydney, NSW 2109, Australia<br>Email: xianmo@ics.mq.edu.au


#### Abstract

The XOR Lemma states that a mapping is regular or balanced if and only if all the linear combinations of the component functions of the mapping are balanced Boolean functions. The main contribution of this paper is to extend the XOR Lemma to more general cases where a mapping may not be necessarily regular. The extended XOR Lemma has applications in the design of substitution boxes or S-boxes used in secret key ciphers. It also has applications in the design of stream ciphers as well as one-way hash functions. Of independent interest is a new concept introduced in this paper that relates the regularity of a mapping to subspaces.


Key words: XOR Lemma, Hadamard Transformation, Cryptography

## 1 Introduction

Let $F\left(x_{1}, \ldots, x_{k}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{k}\right)\right)$ be a mapping from $V_{k}$ to $V_{m}$, where each $x_{j} \in G F(2)$, each $f_{i}$ is a function with $n$ variables and $V_{k}$ is the vector space of $k$ tuples of elements from $G F(2) . F$ is said to be regular if $F$ goes through all vectors in $V_{m}$, each $2^{k-m}$ times, when $x$ goes through all vectors in $V_{k}$ once. Obviously $k \geq m$ must hold for a regular mapping $F$. The XOR Lemma states that $F$ is regular if and only if every non-zero linear combination of $f_{1}, \ldots, f_{m}$ is balanced. The XOR Lemma is expressed in terms of independence of random variables in [3] and [2]. It also appears as Corollary 7.39 of [4]. Note that every permutation on $V_{k}$ is regular. An
application of the XOR Lemma is to determine the strict regularity of a given cryptographic mapping by examining whether the linear combinations of its component functions are biased.

In practice, however, there is a need to study more general cases when $F$ is not necessarily regular. In this work, we introduce a concept that a mapping is regular with respect to a subspace and show that for any given mapping $P$ from $V_{k}$ to $V_{m}$ there exists a subspace $W$ such that $P$ is regular with respect to $W$. This allows us to look beyond regular mappings by establishing a Generalized XOR Lemma. The Generalized XOR Lemma can handle not only regular mappings but also those that are not strictly regular.

A major application of the Generalized XOR Lemma is the design of the socalled substitution-box or S-boxes employed in a block cipher. In many ciphers, S-boxes are the only non-linear operation it employs. Therefore these mappings are the most critical component of the ciphers. In order to ensure that the ciphers are not vulnerable to attacks that exploit statistical imbalance within the ciphers, S-boxes used in the ciphers must be regular or very close to regular. But there are some cases where we cannot hope for the strict regularity. One typical example is S-boxes that have more output bits than input bits. Such "expanding" S-boxes are used, for example, in the Cast-128 cipher which is an Internet standard [1]. Clearly, such expanding S-boxes are not regular; therefore we need a way for discussing somewhat weaker regularity. This is where we can use our generalized regularity and Generalized XOR Lemma. Further applications of the Generalized XOR Lemma include the design and analysis of other security tools such as one-way hash functions and stream ciphers [5] both of which rely on good (regular or slightly biased) non-linear S-boxes for their security.

## 2 Generalized Regularity

We now define formally the notion of generalized regularity. We generalize the regularity notion by relaxing its condition, which allows us to consider mappings with more output bits than input bits, i.e., those mappings from $V_{k}$ to $V_{m}$ with $k<m$.

Let $W$ be an $l$-dimensional linear subspace of $V_{m}$. From linear algebra, $V_{m}$ can be partitioned into $2^{m-l}$ parts:

$$
\begin{equation*}
V_{m}=\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{2^{m-l}-1}, \quad \text { where } \Pi_{0}=W \tag{1}
\end{equation*}
$$

such that for any $0 \leq j \leq 2^{m-l}-1, \beta, \gamma \in \Pi_{j}$ if and only if $\beta \oplus \gamma \in W$. It is known that $\Pi_{j}=2^{l}, j=0,1, \ldots, 2^{m-l}$. Each $\Pi_{j}$ is called a coset of $W$. It
should be noted that for a fixed $W$, the partition (1) is unique if the order of the cosets is ignored.

Next we introduce the concept of a mapping regular with respect to a subspace.
Definition 1 Let $P$ be a mapping from $V_{k}$ to $V_{m}$, and $W$ be an $l$-dimensional linear subspace of $V_{m}(0 \leq l \leq \min \{k, m\})$ and $s_{j}$ be zero or a positive integer, $i=0,1, \ldots, 2^{m-l}-1$, satisfying $s_{0}+s_{1}+\cdots+s_{2^{m-l}-1}=2^{k-l}$. We say that $P$ is regular with respect to $W$ and $\left(s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}\right)$ if for each fixed $j$, $0 \leq j \leq 2^{m-l}-1$ and each vector $\gamma \in \Pi_{j}$ (defined in (1)), we have $\#\{\alpha \mid P(\alpha)=$ $\left.\gamma, \alpha \in V_{k}\right\}=s_{j}$. When the choice of $\left(s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}\right)$ is not important, we simply say that $P$ is regular with respect to $W$.

Though trivial, two extreme cases need to be mentioned here.
Lemma 2 (i) Any regular mapping from $V_{k}$ to $V_{m}$ is a mapping regular with respect to $W=V_{m}$.
(ii) For any given mapping $P$ from $V_{k}$ to $V_{m}$, there exists a subspace $W$ of $V_{m}$ such that $P$ is regular with respect to $W$.

PROOF. (i) If we set $l=m$, i.e., $W=V_{m}$ in Definition 1, then any regular mapping from $V_{k}$ to $V_{m}$ is a mapping regular with respect to $W=V_{m}$ and $s_{0}=2^{k-m}$. Clearly we have $k \geq m$ in this case.
(ii) Let $l=0$, i.e., $W=\{0\}$. Then $P$ is regular with respect to $W=\{0\}$.

In general, from Definition 1, we know that $P$ is unbiased for all the vectors in each fixed coset $\Pi_{j}$. We give an example to explain Definition 1. Let $m=k+2$ and $l=k$ in Definition 1. Let $P$ be a mapping from $V_{k}$ to $V_{k+2}$ such that $P\left(a_{1}, \ldots, a_{k}\right)=\left(1,0, a_{1}, \ldots, a_{k}\right)$. Let $W$ be a $k$-dimensional subspace such as $W=\left\{\left(0,0, x_{1}, \ldots x_{k}\right) \mid\right.$ each $\left.x_{j} \in G F(2)\right\}$. Set $\Pi_{0}=W, \Pi_{1}=$ $\left\{\left(0,1, x_{1}, \ldots x_{k}\right) \mid\right.$ each $\left.x_{j} \in G F(2)\right\}, \Pi_{2}=\left\{\left(1,0, x_{1}, \ldots x_{k}\right) \mid\right.$ each $\left.x_{j} \in G F(2)\right\}$, $\Pi_{3}=\left\{\left(1,1, x_{1}, \ldots x_{k}\right) \mid\right.$ each $\left.x_{j} \in G F(2)\right\}$. Hence $V_{k+2}=\Pi_{0} \cup \Pi_{1} \cup \Pi_{2} \cup \Pi_{3}$ where $\Pi_{j} \cap \Pi_{i}=\emptyset$, where $\emptyset$ denotes the empty set, if $j \neq i$. Note that $P\left(V_{k}\right)=\Pi_{2}$ where $P\left(V_{k}\right)=\left\{P(\alpha) \mid \alpha \in V_{k}\right\}$. Since $P$ takes all vectors in $\Pi_{2}$ once, but not any vector in $\Pi_{0} \cup \Pi_{1} \cup \Pi_{3}, P$ is a regular mapping with respect to $W$ and $\left(s_{0}, s_{1}, s_{2}, s_{3}\right)$ where $s_{0}=0, s_{1}=0, s_{2}=1$ and $s_{3}=0$. Obviously $P$ is unbiased for all the vectors in any fixed $\Pi_{j}$.

The following theorem indicates the existence of a mappings from $V_{k}$ to $V_{m}$, that is regular with respect to a given subspace $W$ of $V_{m}$.

Theorem 3 Let $m$ and $k$ be two positive integers, $W$ be an l-dimensional linear subspace of $V_{m}$, and integers $s_{0}, s_{1}, \ldots, s_{2^{m-l-1}}$ satisfy $s_{j} \geq 0, j=$
$0,1, \ldots, 2^{m-l}-1$ and $s_{0}+s_{1}+\cdots+s_{2^{m-l}-1}=2^{k-l}$. Then there exists a mapping from $V_{k}$ to $V_{m}$, that is regular with respect to $W$ and $\left(s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}\right)$.

PROOF. Let $R=\left\{j \mid s_{j} \neq 0, \quad j=0,1, \ldots, 2^{m-l}-1\right\}$ and write $R=$ $\left\{j_{1}, \ldots, j_{t}\right\}$. Hence $s_{j_{1}}+\cdots+s_{j_{t}}=2^{k-l}$. We choose $\mu_{j_{1}} \in \Pi_{j_{1}}, \ldots, \mu_{j_{t}} \in \Pi_{j_{t}}$, where each $\Pi_{j}$ has been defined in the partition (1). Divide $V_{k}$ into $t$ disjoint subsets: $V_{k}=S_{1} \cup \cdots \cup S_{t}$ such that $S_{j} \cap S_{i}=\emptyset$ whenever $j \neq i$ and $\# S_{1}=s_{j_{1}} 2^{l}, \ldots, \# S_{t}=s_{j_{t}} 2^{l}$. Divide each $S_{u}$ into $2^{l}$ disjoint subsets: $S_{u}=S_{u}^{(1)} \cup \cdots \cup S_{u}^{\left(2^{l}\right)}$ such that $S_{u}^{(j)} \cap S_{u}^{(i)}=\emptyset$ whenever $j \neq i$ and $\# S_{u}^{(1)}=$ $\# S_{u}^{(2)}=\cdots \# S_{u}^{\left(2^{l}\right)}=s_{j_{u}}$. Write $\Pi_{j_{u}}=\left\{\gamma_{u}^{(1)}, \ldots, \gamma_{u}^{\left(2^{l}\right)}\right\}$. Define a mapping $P$, from $V_{k}$ to $V_{m}$, such that for each $u, 1 \leq u \leq t$ and each $i, 1 \leq i \leq 2^{l}$, $P\left(S_{u}^{i}\right)=\left\{\gamma_{u}^{(i)}\right\}$, where $P(X)=\{P(\alpha) \mid \alpha \in X\}$. Hence $P$ is mapping from $V_{k}$ to $V_{m}$, that is regular with respect to $W$ and $\left(s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}\right)$.

A function is a mapping from $V_{k}$ to $G F(2)$ (or simply a function on $V_{k}$ ). The truth table of a function $f$ on $V_{k}$ is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right)\right.$, $\left.\ldots, f\left(\alpha_{2^{k}-1}\right)\right)$, and the sequence of $f$ is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)}\right.$, $\left.(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f\left(\alpha_{2^{k}-1}\right)}\right)$. Let $\tilde{a}=\left(a_{1}, \cdots, a_{2^{k}}\right)$ and $\tilde{b}=\left(b_{1}, \cdots, b_{2^{k}}\right)$ be the sequences of functions $f$ and $g$ on $V_{k}$ respectively. The scalar product of $\tilde{a}$ and $\tilde{b}$, denoted by $\langle\tilde{a}, \tilde{b}\rangle$, is defined as $\langle\tilde{a}, \tilde{b}\rangle=a_{1} b_{1} \oplus \cdots \oplus a_{2^{k}} b_{2^{k}}$, where the addition and multiplication are over the reals. An affine function $f$ on $V_{k}$ is a function that takes the form of $f\left(x_{1}, \ldots, x_{k}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{k} x_{k} \oplus c$, where $a_{j}, c \in G F(2), j=1,2, \ldots, k$. Furthermore $f$ is called a linear function if $c=0$.

A $(1,-1)$-matrix $N$ of order $k$ is called a Hadamard matrix if $N N^{T}=k I_{k}$, where $N^{T}$ is the transpose of $N$ and $I_{k}$ is the identity matrix of order $k$. A Sylvester-Hadamard matrix of order $2^{k}$, denoted by $H_{k}$, is generated by the following recursive relation

$$
H_{0}=1, H_{k}=\left[\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right], k=1,2, \ldots
$$

Let $\ell_{i}, 0 \leq i \leq 2^{k}-1$, be the $i$ row of $H_{k}$. It is known that $\ell_{i}$ is the sequence of a linear function $\varphi_{i}(x)$ defined by the scalar product $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$, where $\alpha_{i}$ is the $i$ th vector in $V_{k}$ according to the ascending alphabetical order. The Hamming weight of a $(0,1)$-sequence $\xi$, denoted by $H W(\xi)$, is the number of ones in the sequence. Given two functions $f$ and $g$ on $V_{k}$, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{k}\right)$.

Let $P(y)$ be a mapping from $V_{k}$ to $V_{m}$, where $y \in V_{k}$. Write $P(y)=\left(p_{1}(y), \ldots\right.$
, $p_{m}(y)$ ), where each $p_{j}(y)$ is a function on $V_{k}$. We are concerned with all the linear combinations of $p_{1}(y), \ldots, p_{m}(y)$, denoted by $q_{0}(y), q_{1}(y), \ldots, q_{2^{m}-1}(y)$, where $q_{j}(y)=\oplus_{u=1}^{m} c_{u} p_{u}(y)$ and $\left(c_{1}, \ldots, c_{m}\right)$ is the binary representation of an integer $j, j=0,1 \ldots, 2^{m}-1$.

Let $R_{i}$ denote the sequence of $q_{i}(y), i=0,1, \ldots, 2^{m}-1$. Define a $2^{m} \times 2^{k}$ $(1,-1)$ matrix $B^{*}$ as follows:

$$
B^{*}=\left[\begin{array}{c}
R_{0} \\
R_{1} \\
\vdots \\
R_{2^{m}-1}
\end{array}\right]=\left[h_{0}, h_{1}, \cdots, h_{2^{k}-1}\right]
$$

where $R_{i}$ is the $i$ th row and $h_{j}$ is the $j$ th column of $B^{*}$. One can verify that each $h_{j}$ is the sequence of a linear function on $V_{m}$, i.e., a column of $H_{m}$.

Let $L_{0}, L_{1}, \ldots, L_{2^{m}-1}$ be the row vectors, from the top to the bottom of $H_{m}$. Assume that $L_{j}^{T}$ appears in matrix $B^{*} k_{j}$ times as a column of $B^{*}$. Using the same argument as that in the Appendix of [7], we know that

$$
\begin{equation*}
\left(\left\langle R_{0}, R_{0}\right\rangle,\left\langle R_{0}, R_{1}\right\rangle, \ldots,\left\langle R_{0}, R_{2^{m}-1}\right\rangle\right)=\left(k_{0}, k_{1}, \ldots, k_{2^{m}-1}\right) H_{m} \tag{2}
\end{equation*}
$$

holds even for the case of $k \geq m$ or $k<m$. Note that $L_{j}$ is the sequence of a linear function on $V_{m}, \psi_{j}(x)=\left\langle\gamma_{j}, x\right\rangle$, where $\gamma_{j}$ is the binary representation of integer $j, j=0,1, \ldots, 2^{m}-1$. Hence, from the definition of $k_{j}, k_{j}$ is also the number of times that $P(y)$ goes through $\gamma_{j} \in V_{m}$. Since $q_{0}(y)$ is the zero function on $V_{k}, R_{0}$ is the all-one sequence. Hence $\left\langle R_{0}, R_{i}\right\rangle$ is equal to the sum of the components in $R_{i}$. As a result, we have $\left\langle R_{0}, R_{i}\right\rangle=0$ if and only if $q_{j}$ is balanced.

Let $W$ be an $l$-dimensional linear subspace of $V_{m}$. From linear algebra, there exists an $(m-l)$-dimensional linear subspace of $V_{m}$, denoted by $W^{*}$, such that each $\gamma \in V_{m}$ can be uniquely expressed as $\gamma=\beta \oplus \mu$ where $\beta \in W$ and $\mu \in W^{*} . W^{*}$ is called a complementary subspace of $W$ in $V_{m}$. Furthermore let $W^{*}$ be composed of $\mu_{0}=0, \mu_{1}, \ldots, \mu_{2^{m-l}-1}$ where each $\mu_{j} \in W^{*}$. Then

$$
\begin{equation*}
V_{m}=\left(\mu_{0} \oplus W\right) \cup\left(\mu_{1} \oplus W\right) \cup \cdots \cup\left(\mu_{2^{m-l}-1} \oplus W\right) \tag{3}
\end{equation*}
$$

where $\mu \oplus W=\{\mu \oplus \gamma \mid \gamma \in W\},\left(\mu_{j} \oplus W\right) \cap\left(\mu_{i} \oplus W\right)=\emptyset$ for all $j \neq i$. It should be noted that $W^{*}$ is not unique except for the special cases where $W=V_{n}$ and $W=\{0\}$. However, since the partition (1) is unique, (3) is identical to (1) except for the order of the cosets.

The following Theorem is called the Generalized XOR Lemma.

Theorem 4 Let $P(y)=\left(p_{1}(y), \ldots, p_{m}(y)\right)$ be a mapping from $V_{k}$ to $V_{m}$ where each $p_{j}(y)$ is a function on $V_{k}, W$ be an l-dimensional linear subspace of $V_{m}$, where $l \leq \min \{k, m\}$.
(i) If $P(y)$ is regular with respect to $W$, then for any complementary $W^{*}$ subset of $W$ in $V_{m}$, and any $\left(b_{1}, \ldots, b_{m}\right) \in V_{m}$ with $\left(b_{1}, \ldots, b_{m}\right) \notin W^{*}$, $b_{1} p_{1}(y) \oplus \cdots \oplus b_{m} p_{m}(y)$ is balanced.
(ii) If there exists a complementary subset $W^{*}$ of $W$ in $V_{m}$, such that for any $\left(b_{1}, \ldots, b_{m}\right) \in V_{m}$ with $\left(b_{1}, \ldots, b_{m}\right) \notin W^{*}, b_{1} p_{1}(y) \oplus \cdots \oplus b_{m} p_{m}(y)$ is balanced, then $P(y)$ is regular with respect to $W$.

PROOF. First we consider the special case of $W=\left\{\left(0, \ldots, 0, c_{1}, \ldots, c_{l}\right) \mid\right.$ $\left.\left(0, \ldots, 0, c_{1}, \ldots, c_{l}\right) \in V_{m}\right\}$ and $W^{*}=\left\{\left(d_{1}, \ldots, d_{m-l}, 0, \ldots, 0\right) \mid\left(d_{1}, \ldots\right.\right.$, $\left.\left.d_{m-l}, 0, \ldots, 0\right) \in V_{m}\right\}$. Note that each $\gamma \in V_{m}$ can be uniquely expressed as $\gamma=\left(d_{1}, \ldots, d_{m-l}, c_{1}, \ldots, c_{l}\right)$. Set

$$
\begin{equation*}
j=u 2^{l}+v, 0 \leq j \leq 2^{m}-1,0 \leq u \leq 2^{m-l}-1,0 \leq v \leq 2^{l}-1 \tag{4}
\end{equation*}
$$

Hence $\left(d_{1}, \ldots, d_{m-l}\right)$ is the binary representation of $u$ and $\left(c_{1}, \ldots, c_{l}\right)$ is the binary representation of $v$.

Since $H_{m}=H_{m-l} \times H_{l}$, where $\times$ is the Kronecker Product [6], the $j$ th row $L_{j}$ of $H_{m}$ can be expressed as $L_{j}=e_{u} \times \ell_{v}$, i.e., $L_{j}=\left(a_{0} \ell_{v}, a_{1} \ell_{v}, \ldots, a_{2^{m-l}-1} \ell_{v}\right)$ where $e_{u}=\left(a_{0}, a_{1}, \ldots, a_{2^{m-l}-1}\right)$ is the $u$ th row of $H_{m-l}$ and $\ell_{v}$ is the $v$ th row of $H_{l}$.

Comparing the $j$ terms in the two sides of equality (2), we obtain $\left\langle R_{0}, R_{j}\right\rangle=$ $\left\langle K, L_{j}\right\rangle$ where $K=\left(k_{0}, k_{1}, \ldots, k_{2^{m}-1}\right)$. Rewrite $K$ as $K=\left(K_{0}, K_{1}, \ldots, K_{2^{m-l}-1}\right)$ where $K_{i}=\left(k_{i \cdot 2^{l}}, k_{i \cdot 2^{l}+1}, \ldots, k_{i \cdot 2^{l}+2^{l}-1}\right), i=0,1, \ldots, 2^{m-l}-1$. Hence

$$
\begin{equation*}
\left\langle R_{0}, R_{j}\right\rangle=\sum_{i=0}^{2^{m-l}-1} a_{i}\left\langle K_{i}, \ell_{v}\right\rangle, \text { where } e_{u}=\left(a_{0}, a_{1}, \ldots, a_{2^{m-l}-1}\right) \tag{5}
\end{equation*}
$$

where $u$ and $v$ are defined in (4).
Suppose that $P(y)$ is regular with respect to $W$. Then there exist integers $s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}$, such that $s_{j} \geq 0, i=0,1, \ldots, 2^{m-l}-1, s_{0}+s_{1}+\cdots+$ $s_{2^{m-l}-1}=2^{k-l}$, and $P(y)$ is regular with respect to $W$ and $\left(s_{0}, s_{1}, \ldots, s_{2^{m-l}-1}\right)$. Hence $K_{i}=s_{i}(1, \ldots, 1)$, where $i=0,1, \ldots, 2^{m-l}-1$.

Consider $\gamma_{j}=\left(d_{1}, \ldots, d_{m-l}, c_{1}, \ldots, c_{l}\right)$, where $\gamma_{j}$ is the binary representation of integer $j$ and $\gamma_{j} \notin W^{*}$. Note that $\gamma_{j} \notin W^{*}$ implies $\left(c_{1}, \ldots, c_{l}\right) \neq(0, \ldots, 0)$ and hence $v \neq 0$, where $v$ is defined in (4). Hence $\ell_{v}$ is $(1,-1)$ balanced.

Since $K_{i}=s_{i}(1, \ldots, 1), i=0,1, \ldots, 2^{m-1}-1$, we have $\left\langle K_{i}, \ell_{v}\right\rangle=0$ for $i=$ $0,1, \ldots, 2^{m-1}-1$ and $v \neq 0$. From (5), $\left\langle R_{0}, R_{j}\right\rangle=0$. This means $q_{j}$ is balanced, where $q_{j}=d_{1} p_{1}(y) \oplus \cdots \oplus d_{m-l} p_{m-l}(y) \oplus c_{1} p_{m-l+1}(y) \oplus \cdots \oplus c_{l} p_{m}(y)$ with $\left(d_{1}, \ldots, d_{m-l}, c_{1}, \ldots, c_{l}\right)=\gamma_{j} \notin W^{*}$. By using a nonsingular linear transform on the variables, we can change the special case of $W$ and $W^{*}$ to any general case. This proves (i) of the theorem.

Conversely, let us assume that for every $\gamma_{j}=\left(d_{1}, \ldots, d_{m-l}, c_{1}, \ldots, c_{l}\right)$, where $\gamma_{j}$ is the binary representation of an integer $j$ and $\gamma_{j} \notin W^{*}, q_{j}$ is balanced, where $q_{j}=d_{1} p_{1}(y) \oplus \cdots \oplus d_{m-l} p_{m-l}(y) \oplus c_{1} p_{m-l+1}(y) \oplus \cdots \oplus c_{l} p_{m}(y)$. Write $j=u 2^{l}+v$ where $j, u$ and $v$ are defined in (4). Hence $\left(d_{1}, \ldots, d_{m-l}\right)$ is the binary representation of $u$ and $\left(c_{1}, \ldots, c_{l}\right)$ is the binary representation of $v$.

Note that $\gamma_{j} \notin W^{*}$, if and only if $\left(c_{1}, \ldots, c_{l}\right) \neq(0, \ldots, 0)$, and $v \neq 0$. The balance of $q_{j}$ implies that $\left\langle R_{0}, R_{j}\right\rangle=0$. Hence from (5) we have

$$
\begin{equation*}
\sum_{i=0}^{2^{m-l}-1} a_{i}\left\langle K_{i}, \ell_{v}\right\rangle=0, \text { where } e_{u}=\left(a_{0}, a_{1}, \ldots, a_{2^{m-l}-1}\right) \tag{6}
\end{equation*}
$$

Since $u$ ( or $e_{u}$, a row of $H_{m-l}$ ), can be arbitrary whenever $0 \leq u \leq 2^{m-l}-1$, from (6), we conclude $\left(\left\langle K_{0}, \ell_{v}\right\rangle,\left\langle K_{1}, \ell_{v}\right\rangle, \ldots,\left\langle K_{2^{m-l}-1}, \ell_{v}\right\rangle\right) H_{m-l}=(0,0, \ldots, 0)$, $v=1, \ldots, 2^{l}-1$, from which we have $\left\langle K_{i}, \ell_{v}\right\rangle=0$, where $v=1, \ldots, 2^{l}-1$, $i=0,1, \ldots, 2^{m-l}-1$.

We fix $i$ with $0 \leq i \leq 2^{m-l}-1$. Note that both $\left\langle K_{i}, \ell_{v}\right\rangle=0$ and $\left\langle\ell_{0}, \ell_{v}\right\rangle=0$ hold for $v=1, \ldots, 2^{l}-1$. Recall $H_{l}$ is a Hadamard matrix. Hence $K_{i}=s_{i} \ell_{0}$ must hold for an integer $s_{i}$ with $s_{i} \geq 0$. Recall $\ell_{0}=(1, \ldots, 1)$. Hence $K_{i}=$ $s_{i}(1, \ldots, 1)$ and $s_{0}+s_{1}+\cdots+s_{2^{m-l}-1}=2^{k-l}$. By using a nonsingular linear transform on the variables, one can show that Part (ii) of the theorem also hold more general $W$ and $W^{*}$. This completes the proof for the theorem.

It should be noted that Theorem 4 will be trivial when $P$ is regular with respect to $W=\{0\}$, as in this case we have $W^{*}=V_{m}$. Another fact is that the XOR Lemma is a special case of Theorem 4. In fact, by letting $k \geq m$ and $l=m$ in Theorem 4, we have $W=V_{m}$ and $W^{*}=\{0\}$ and Theorem 4 becomes the XOR Lemma.

## Acknowledgement

The authors would like to thank reviewers for their comments and suggestions that helped improve the presentation of this paper.

## References

[1] C. Adams. The cast-128 encryption algorithm. Request for Comments RFC 2144, IETF, 1997.
[2] C. H. Bennett, G. Brassard, and J. M. Robert. Privacy amplification by public discussion. SIAM J. Computing, 17:210-229, 1988.
[3] Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman Smolensky. The bit extraction problem or $t$-resilient functions. IEEE Symposium on Foundations of Computer Science, 26:396-407, 1985.
[4] Rudoff Lidl and Harald Niederreiter. Finite Fields, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1983.
[5] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptology. CRC Press, Inc., 1997.
[6] R. Yarlagadda and J. E. Hershey. Analysis and synthesis of bent sequences. IEE Proceedings (Part E), 136:112-123, 1989.
[7] X. M. Zhang, Y. Zheng, and Hideki Imai. Relating differential distribution tables to other properties of substitution boxes. Designs, Codes and Cryptography, 19:45-63, 2000.

