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The rationale that underlies imputation 
methods is that even though the causal SNP 
may not have been genotyped in the study at 
hand, it may have been genotyped in the ref-
erence population. In this case, simulations 
have revealed that the imputation of SNPs that 
appear in the reference population facilitates 
detection of association. Imputation methods 
are also invaluable when multiple data sets, 

the same haplotype distribution for every set 
of SNPs. Thus, the structure of the linkage 
disequilibrium in the reference population, in 
conjunction with the structure of the linkage 
disequilibrium of the observed SNPs within 
both the cases and the controls, can be used to 
impute the alleles of a hidden SNP. Imputed 
SNPs can then be tested for association using 
an appropriate statistical test.

The large amount of data generated in 
whole-genome association studies, involv-

ing hundreds of thousands of SNPs genotyped 
in thousands of individuals, complicates the 
statistical and computational analysis of that 
data. The correlation between SNPs (linkage 
disequilibrium) enables much of the variation 
to be captured despite the inability to genotype 
all SNPs, and our previous primer1 described 
how tagSNPs and haplotypes have been used as 
proxies for neighboring associations. However, 
especially with the advent of high-throughput 
genotyping technologies, the key challenge has 
started to shift from identifying tagSNPs that 
best capture genetic variation in the popu-
lation to the ability to interrogate SNPs not 
covered by these technologies. Moreover, how 
does one consolidate distinct data sets when 
subsets of the same population are genotyped 
with slightly different technologies that have 
different capacities?

Imputation methods address these problems 
by using the linkage disequilibrium structure 
in a region to infer the alleles of SNPs not 
directly genotyped in the study (hidden SNPs). 
The starting point of imputation methods is 
a reference data set such as the HapMap, in 
which a large set of SNPs is being genotyped. 
The underlying assumption is that the refer-
ence samples, the cases and the controls are 
all sampled from the same population. Under 
this assumption, the three populations share 
the same linkage disequilibrium structure and 

SNP imputation in association studies
Eran Halperin & Dietrich A Stephan

Only a subset of single-nucleotide polymorphisms (SNPs) can be genotyped in genome-wide association studies. Imputation 
methods can infer the alleles of ‘hidden’ variants and use those inferences to test the hidden variants for association.
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Figure 1  Models used in imputation methods. (a) A generic Hidden Markov Model used for imputation 
and phasing. Every circle is a state, each column corresponds to a SNP and each row corresponds to an 
ancestral haplotype. According to this model, a haplotype is generated by a random walk on the Markov 
chain from left to right, where the transition probabilities from one haplotype to another (denoted 
by the dashed arrows) are determined by the recombination rate and physical distance between the 
two SNPs. At each position, there is a small probability that the resulting haplotype will be mutated 
further. A genotype is generated at the conjunction of two such haplotypes. (b) A perfect phylogeny tree 
explaining the genealogy of the haplotypes, and leading to a test of the hidden SNP 6. Each node in the 
tree corresponds to a haplotype, and each edge corresponds to a mutating position. A perfect phylogeny 
model assumes no recurrent mutations or recombination events. The dashed line corresponds to an 
unobserved SNP (at position 6), which can be tested for association by testing the haplotypes spanned 
by SNPs 4 and 5.
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realistic model that includes the modeling of 
recombination events. However, Kimmel et 
al.10 show that this approach in fact reduces 
power, probably owing to inaccuracies in the 
genealogy reconstruction and an increased 
multiple hypotheses burden.

An advantage of genealogy-based methods 
is that they do not rely on the assumption 
that there exists a reference data set which is 
sampled from the exact same population as 
the studied population. In fact, the choice of 
the reference data set has a tremendous effect 
on the accuracy of the imputation12. First, if 
the reference data set is too small, imputation 
methods will over-fit the data, which in turn 
affects the accuracy of the imputation. In this 
regard, it seems that the limited number of 
individuals (30 trios of European descent) 
genotyped in the current HapMap phase II 
data set may limit improvements of imputa-
tion accuracy. Second, Huang et al.12 show that 
the fraction of missing data in the studied data 
set has a considerable effect on the imputation 
accuracy, and it can reduce the accuracy from 
90–95% to 80–85%12 when half of the data is 
missing. Finally, they show that the population 
of the reference data set plays an important 
role in the accuracy of the imputation. The 
accuracy of the imputation drops consider-
ably, especially when the reference population 
and the study population differ. Moreover, it 
turns out that when trying to impute genotype 
information on some populations for which 
a reference population does not exist (e.g., 
populations from central Asia or the Middle 
East), it is beneficial to use a mixed reference 
population with different proportions of the 
HapMap data sets (that is, a mix of European, 
African and Asian populations).

The possibility of imputation errors must be 
considered when testing an imputed SNP for 
association4. Particular care should be taken 
when analyzing SNPs with low minor allele 
frequency, as imputation methods tend to be 
less accurate for such SNPs. Ultimately, the null 
hypothesis is invalid in any test that does not 
consider the accuracy of the imputation, and 
therefore, such analyses may result in an excess 
of false positives and loss of power. To account 
for this, a few methods (e.g. refs. 3,7,13) incor-
porate the uncertainty in the imputation result 
into the association test. Servin and Stephens13 
propose a Bayesian framework for association, 
which takes into account the uncertainty in 
imputation by averaging across the distri-
bution of the imputed alleles. Although 
their framework is more robust than other 
frameworks that do not take into account the 
uncertainty in imputation, it is still advisable 
to genotype the associated imputed SNPs as 
a follow-up.

not known, we can estimate the parameters by 
taking the average across all possible pairs of 
haplotypes that are compatible with the geno-
type. Methods such as IMPUTE and Fastphase 
use Markov Chain Monte Carlo methods to 
perform this integration. In contrast, MACH 
performs a local search, leveraged on the long 
identical stretches of DNA still shared by unre-
lated individuals.

Many of the imputation methods are based 
on ideas that were previously developed in the 
context of phasing, or haplotype inference 
from genotypes. For example, Fastphase5 and 
Gerbil8 are phasing methods based on HMMs 
like the one shown in Figure 1a. To date, the 
most accurate methods for phasing are based 
on genealogical models, in which the genea-
logical tree of the haplotypes is used to con-
strain dependencies. For instance, the method 
PHASE9 assumes that the haplotypes are 
generated by a genealogical tree that follows 
the coalescent model; it samples haplotypes 
and genealogies conditioned on the genotype 
information.

Genealogy-based methods have been sug-
gested in cases where imputation is implicit. 
If the causal SNP has not been genotyped 
in the reference population, or if there is 
no reliable reference population (that is, 
one derived from the exact same popula-
tion of the cases and the controls), one can 
still use the genealogy of the haplotypes to 
implicitly impute the causal SNP and then 
test it. For instance, Kimmel et al.10 suggest 
approximating the genealogy using a perfect 
phylogeny tree, which explains the order of 
mutations throughout history under the 
assumption of no recurrence mutations 
and no recombination events. They con-
struct such a tree locally for each region in 
the genome; subsequently, the causal SNP is 
characterized by an unobserved branch in 
the tree (Fig. 1b), which can be translated 
into a statistical test involving multiple SNPs 
in the region. Other methods, such as that 
of Minichiello and Durbin11, aim at a more 

obtained using different genotyping plat-
forms that span different sets of SNPs, need 
to be consolidated into a single meta-analysis. 
As some SNPs are present in one data set and 
not in the others, a naive approach can at best 
only hope to gain power for those SNPs geno-
typed in more than one study. Imputation can 
increase power for the SNPs participating in 
the union of the studies.

Methods for haplotype proxies follow a 
similar rationale, as described in a companion 
primer1. Imputation methods, such as TUNA2, 
are based on haplotype proxies, and more 
direct approaches for imputations, based on 
variants of Hidden Markov Models (HMM) in 
which the haplotype structure is used implic-
itly, have been suggested more recently3–7. The 
basic model comprises a few hidden states per 
SNP, representing the possible ancestral hap-
lotypes at the SNP. The assumption is that the 
alleles across a chromosome (haplotypes) are 
generated by a random walk across these states, 
where the transition probability from one state 
to another depends on the population-scaled 
recombination rate (ρ) between the two SNPs 
(Fig. 1). Each state corresponds to an allele, 
however, with some small probability the 
haplotype’s allele could differ from the state’s 
allele, representing a mutation or a genotyp-
ing error. The different imputation methods 
differ mainly in the way in which the ancestral 
haplotypes are chosen, in the assignments of 
transition probabilities and in the optimiza-
tion procedures used.

The HMM-based imputation methods can 
be distinguished by the way the Markov chain’s 
states are defined, as well as by how the para- 
meters of the Markov chain are learned 
(Table 1). Whereas Fastphase5 defines a Markov 
model with a small number of states at each 
position, IMPUTE3 and MACH7 each have 
a very large state set. The parameters of the 
Markov chain can be estimated using integra-
tion; if the haplotypes were known, we could 
find the transition probabilities of the chain by 
a simple counting procedure. Even if they are 

Table 1  Comparisons of imputation methods
Software Model Uses 

reference?
Optimization method

IMPUTE3 Hidden Markov Model Yes Markov Chain Monte Carlo

MACH7 Hidden Markov Model Yes Iteratively assigns haplotypes to the genotypes 
based on the converging model

BIMBAM13 
(FastPHASE5)

Hidden Markov Model Yes Uses a small number of states (haplotype 
clustering)

TUNA2 Weighted haplotype 
proxies

Yes Greedily searching for the proxies

SNPMStat6 Likelihood-based diplo-
type proxies

Yes Maximizes likelihood based on the possible 
diplotypes explaining the genotype

CAMP10 Coalescent No Builds an approximate perfect-phylogeny tree
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A particularly successful implementation 
of imputation identified 21 new associations 
for Crohn’s disease following meta-analysis 
of three data sets14. The imputed SNPs were 
then genotyped across the three populations 
to ensure that the associations were not due 
to imputation errors. As only 11 associations 
were known before this study, this exempli-
fies the potential of imputation to enhance 
the power of association studies and under-
scores the importance of rigorous and efficient 
methods for the analysis and interpretation of 
association studies.
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