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Abstract. Both techniques went different routes: The EPR explored an
enormous variety of paramagnets in solids, liquids, and gas phase. The focus
was to determine orbital- and spin-magnetic moments (g-tensor), hyperfine
interactions, and from the linewidth the spin dynamics (T1, T2 relaxation). In
FMR most of the experiments and theory assumed the total value M to be
constant in the equation of motion and used only one effective damping parameter
(Gilbert). This is an enormous, unnecessary limitation for today’s analysis of
magnetism in nanostructures and ultrathin films. To assume M = const ignores
spin wave excitations, scattering between longitudinal and transverse components
of M. Moreover, in the framework of itinerant ferromagnetism, the magnetic
moment/atom μ was assumed to be isotropic with g ≈ 2! That ignores the
anisotropy of μ in nanostructures and the importance of the orbital magnetic
moments with μL/μS = (g−2)/2. Without finite μL we would have no magnetic
anisotropy energy (MAE), no hard magnets, no magnetic storage media. Only
recently the ”language” of EPR was adapted to FMR in ultrathin films. A g-tensor
is discussed and its interrelation with the MAE is pointed out. Also recent theory
points out, that ”there is no reason to assume a fixed magnetization length for
nanoelements”. This allows a detailed discussion of magnon-magnon scattering,
spin-spin, and spin-lattice relaxation - useful, for example, for fs spin dynamics.
Recent FMR experiments using frequencies from 1 GHz up to several hundred
GHz, will allow measuring the proper g-factor components and μL, μS . From the
frequency dependent linewidth magnon-magnon scattering can be separated from
dissipative spin-lattice damping.
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1. Historical reminiscences

Shortly after the discovery of EPR, here in Kazan, Altshuler and Kosyrew published
a comprehensive book. Immediately after, this book was translated into German
[1], it is one of the first EPR-textbooks, others appeared more recently (e.g.[2]). The
main focus of EPR experiments with transition metal ions in solid state physics was to
determine orbital- and spin- magnetic moments, the chemical bonding of the magnetic
ion, its coupling to the nuclei, and its spin dynamic. In Fig.1 this is visualized in short,
illustrating the difference of the development in the ferromagnetic resonance (FMR),
as reviewed in the next paragraph. Low symmetry and spin-orbit coupling (SOC)
splits the eg and t2g degeneracy and mixes excited states into the ground state. In
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Figure 1. Schematic sketch of d-level energy splitting, the SOC, and the
perturbative part of the Spin Hamiltonian H′. For details see text and [1, 2].

second order perturbation theory the Λij matrix elements enter and modify the energy
levels and EPR spectrum in to ways: They modify the magnetic moment of the ion,
the g-factor components, and they produce an additional energy splitting, the so-
called zero field splitting (ZFS), the D or B2 parameters. This is textbook knowledge
and was tabulated and did characterize numerous paramagnetic crystals and solids.
Important for EPR and FMR students is, that Fig.1 visualizes the same origin for
anisotropic magnetic moments and the ZFS, namely the admixture of excited states
into the ground state by SOC. As an exercise for students it is interesting to note that
the off diagonal part of the SOC mixes also different spin states (orientations), ”−”
goes to ”+” and vice versa.

The FMR went a complete different route. The resonant microwave absorption
in ferromagnetic metals for a given frequency, let’s say X-band, is controlled by an
effective field Heff (see Fig.2), which is a vector sum of an external applied field and
various contributions of internal magnetization. Consequently it is almost impossible
to disentangle the product of the torque term in the Landau-Lifshitz equation (LL)
(Fig.2). In addition, a larger fraction of the literature, treats 3d ferromagnets (FM),
like Fe and Co, in the framework of itinerant ferromagnets with delocalized d-band
electrons with an isotropic value of g ≈ 2. Very little is said about an anisotropic

Figure 2. Standard equation of motion for a constant magnetization M in an
external field.

magnetic moment per ion, for example in Fe, Co, Ni in the standard literature of
the fundamentals of nanomagnetism [3, 4]. However, this is important for a proper
Hamiltonian H′ (Fig.1). An isotropic γ or g value, as given in the LL-equation (Fig.2),
ignores this. For example, the magnetic moment μ per atom in Ni single crystals is
larger along the [111] direction (see Fig.3 and [5]). Clearly the effect is small (< 10−3)
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Figure 3. Magnetic Anisotropy Energy (MAE) and orbital magnetic moment
μL and its interrelation via 2nd order perturbation theory. For details see [5].

but all important. Otherwise we would not understand hard and easy axis in FM. We
will come back to this in Section 2.

Fig.2 illustrates another handicap or ”incompleteness” in frequently reasoning of
the spin-dynamics in FM nanostructures [4]: It is assumed that the length of the
magnetization vector M is constant. If so, than it is clear that with some constant
α, the Gilbert damping in the LLG equation, the vector spirals on a sphere into
the z-axis. This is energy dissipation, an irreversible process. In the early days of
magnetism this may have been justified, experiments were carried out at ambient
temperature or below and the Curie temperatures were at TC ≈ 1000 or 1300 K. A

Figure 4. FMR resonance equation for in-plane and out-of plane orientation of
the external field H0 with respect to the crystallographic film plane. For details
and notation, see[6, 7].

T = 0 approach was reasonable, but for ultrathin films and nanostructures with low
TC , this ignores important information, which is contained in the FMR linewidth. Not
to be misunderstood, there exists classical literature discussing spin-wave excitations
at finite temperatures and more than one relaxation channel, e.g. Harry Suhl in [8] and
the nice book about Magnetic Oscillations and Waves [9]. But this literature is cited
and used very little by the FMR community. The majority of FMR papers, review
article, and textbooks use as an equation of motion the LLG equation (Fig.2) with
one relaxation channel, only. This is an unnecessary limitation, it ignores spin-
wave excitation at finite T. Historically it may be understandable, because in the early
days there was a heavy debate whether spin-waves could exist in ferromagnetic metals.
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One opinion (Peter Wohlfarth, et al.) said, no spin waves only Stoner excitations are
important in metallic FM. Others, like David Edwards, could show that long lived
spin waves indeed exist in metals. In Sec.3 we show how magnon-magnon scattering
can be extracted from the FMR linewidth [7, 10].

2. Orbital- and spin-magnetic moments μL, μS in ferromagnetic
monolayers

Is it possible to measure the g-tensor components and energy splitting (ZFS or MAE)
in magnetic resonance experiments separately? If yes, this will be a great success,
because both parameters are related, as indicated in Fig.1 and Fig.3. In Fig.4 the
solution of the LL-equation is given for two orientations of the external field (for a more
general solution, see [7]). For in-plane orientation we have a quadratic dependence of
ω(H), and a linear dependence for out-of-plane. But in both cases there are internal
contributions to the local field [6]. These contributions make it very difficult to
determine γ or g on the left hand side of the equation, if only one frequency is
used. Consequently most publications in FMR of metallic FM assume g ≈ 2 or keep
g = const and determine only the MAE and Ki parameters in the analysis of angular
dependent FMR experiments. In Sec.1 and Fig.1 we mentioned the interrelation
between ZFS, D, B2 and the Δg. This is a standard knowledge for EPR. In Fig.3 we
show the corresponding case for FMR: MAE ∝ ΔμL and the EPR Bleaney parameters
Bm

n can be related to the MAE parameters Km
n in FMR. Surprisingly, this standard

treatment (Fig.1) in EPR was transfered to itinerant electrons in the language of band
structure and k-space very late, only in 1989 by Patric Bruno (Fig.3) [11]. With this
pioneering work one bridge was established between localized and itinerant pictures
of EPR and FMR in metals.

Figure 5. EPR, FMR spectrometer in combination with an UHV-chamber. The
sample is prepared and characterized with LEED, AES, etc in the upper level.
The long manipulator moves the specimen down into the quarzfinger and rotates
it with respect to H0 [12, 13].

If however, multifrequency FMR is used, the first term at the right hand side of the
resonance equation in Fig.4 depends only on the external field, H0, which is know very
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precisely. Today multifrequency EPR and FMR is no problem, commercial equipment
for low frequencies 1, 4, 9 GHz is available, as well as frequency analyzer and high
frequencies up to THz. This allows to measure in addition to the Ki parameters also
γ or g, as indicated in a sketch of Fig.4. This new development of GHz technology
makes the full potential of the FMR technique accessible.

Figure 6. Analysis of g‖ for Fe2V5 according to the equation given in Fig.4.[14].

In Fig.5 a set-up of an UHV-FMR spectrometer is shown. In the bottom part of
the UHV chamber a quartzfinger is mounted with an one inch diameter. This allows
very easily to replace standard cavities with ”large excess hole” of 9, 4, 1 GHz (Varian,
Bruker). One example is given for 7 ML of Ni on a Cu single crystal surface (inset,
Fig.5). The ultrathin film stays in perfect UHV, no protecting cap layer is needed.
The microwave cavity operates in normal laboratory air. Within 30 min. cavity and
frequency can be changed and the identical sample is measured at different microwave
frequencies. Note the narrow linewidth at 1 GHz, the frequency dependent plot of
ΔH(ω) ends for ω = 0 almost at zero on the y-axis, no apparent residual linewidth at
ω = 0 appears [3]. Details of the set-up, its sensitivity, the preparation of ultrathin
films, and the adsorption of molecules, are given in [7, 12, 13].

In Fig.6 and 7 FMR results for a Fe2V5 multilayer or a Fe2/V5 superlattice
is shown[14]. The data follow perfectly a parabola of f2(Hr) with one g-factor
component of g‖ = 2.26. Note, that the spectroscopic g-factor is a fundamental
proportionality factor for the magnetic moment μ. In some FMR literature g is used
as a simple fitting parameter, yielding different values for 9 and 24 GHz, for example.
Other publications report on temperature dependent g-factors at low T. This should
not be mixed up with the discussion of orbital- and spin-magnetic moments, as defined
in EPR. It indicates only the difficulties to extract proper g-values in FMR. The table
in Fig.7 (top right) and diagram (bottom left) show the results. From the g-factor
for Fe2V5 we determine an orbital moment of 13 % for μL/μS . This is 3 to 4 times
larger than in bulk Fe. The diagram also shows the change of the μL/μS ratio for
thicker Fe4 superlattice films and for bulk Fe. Another experimental technique, the X-
ray Magnetic Circular Dichroism (XMCD), also measures orbital- and spin-moments,
by applying the sum rules (for details of XMCD see [15].) The right-hand diagram
in Fig.7 shows the element selective XMCD results, measured at the L3,2 absorption
edges of V and Fe. This is of interest, because it tells us, that at interfaces of FM films
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Figure 7. Schematic sketch for epitaxial grown FenVm superlattice structure,
FMR and XMCD results, table for g-factors, μL, and μS [7, 14].

and its nonmagnetic substrate or cap material, a magnetic moment may be induced
at the nonmagnetic element. Here at the Fe/V interface a magnetic moment at V is
induced with μL/μS < 0. This is in agreement with g < 2 for the beginning of the 3d
series. For Fe it is opposite, g > 2. Therefore it is not a surprise, that the measured
μL/μS value is larger in FMR than in XMCD. FMR is not element specific, it measures
the total moment (Fe+V, see the arrows in the X-rayMCD Fig.). This result shows
some warning, when discussing FMR results in nanostructures. An enhanced μL/μS

ratio in FMR does not necesserily mean that μL is larger. On the other hand, FMR
is in favor, it can measure both, the MAE and the g-tensor, as indicated in Sec.1 and
Fig.3.

In summary: The handicap and misinterpretation in the past of FMR in
nanostructures , was caused because only X-band (or at most K- and Q-band) were
used [16]. Now with a multifrequency technique the full potential and a proper
interpretation of FMR is available.

3. Spin-phonon, spin-spin dynamics

In Fig.8 two most popular equations of motion are given for the dynamics in
magnetism. Most of the FMR community uses the LLG-equation, as discussed in
Sec.1. In EPR and NMR very clearly a spin-spin and a spin-lattice relaxation rate are
used. This can be formulated by the Bloch-Bloembergen (BB) equation. There exists
some literature in which different relaxation channels in metallic FM are discussed
[8, 9]. But the FMR community made very little use out of it. The resonant microwave
absorption in a FM starts with a uniform motion of a k = 0 mode (Fig.8b), but this
uniform mode can scatter into spin waves. In the cartoon of Fig.8 this is indicated
by a variation of the transverse components of the magnetization. Path 2 in Fig.8b
indicates this. It is in principle a reversible process, the energy stays in the magnetic
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Figure 8. Two models for Larmor precision [1, 2, 9]. The arrows δHx,y indicate
transverse spin scattering, dephasing, see text. Fig.8b is taken from [8].

subsystem. In contrast, path 1, a scatter to the lattice, is irreversible with energy
dissipation [8]. Path 3 in Fig.8b indicates a magnon-phonon scattering. This is a vital
research topic, currently, for femtosecond LASER pump-probe experiments. This
community discusses very well transverse spin-spin relaxation, a T2 process in the
BB-model. Indeed, a dephasing in the spin wave dynamic is important. Details for
metallic FM can be seen in [17].

So the question arises: Can FMR contribute to disentangle scattering within
the magnetic subsystem from dissipation and energy flow to the thermal bath? The
standard FMR literature uses the LLG equation and concludes that the FMR linewidth
is strictly linearly dependent on the microwave frequency ω...[4] (left part of Fig.9). On
the other hand, already Suhl stated that spin wave excitations need to be taken into
account...and...the LLG damping no longer apply.... Similar reasoning can be found in
[9]. 1999 D. L. Mills and coauthors calculated magnon-magnon scattering in ultrathin
films and its contribution to the FMR linewidth (right part of Fig.9)[18]. As they
discuss: Two magnon scattering is a dephasing event, contributes to the transverse
relaxation time T2, but leaves the longitudinal relaxation time T1 unaffected [19].
For such a process, which describes the time evolution of the total magnetization
including magnon-magnon scattering, the LL equation is inappropriate. For ultrathin
films, some given surface structure, and anisotropy, it appears that dipolar interaction
between spins becomes important. As a consequence, the spin-wave dispersion relation
is not anymore a parabola, but a superposition of linear and quadratic terms. This is
indicated in the sketch ω(k) in Fig.9. Now it is easy to understand that the excitation
of the uniform FMR mode is degenerated with a finite wave vector mode. These
authors even, derive an analytical function for the contribution to the FMR linewidth
due to magnon-magnon scattering, as given in Fig.9. Now we have two contributions
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Figure 9. FMR linewidth in the LLG-model [3, 4] and for the 2-magnon-
scattering [18, 19]. See text

to the FMR linewidth ΔH(ω), the linear Gilbert damping with the prefactor G and
an arcsin function for the 2-magnon scattering with prefactor Γ. All other parameters
(MS , K2, ω0) are known from the static resonance parameters.

Figure 10. FMR linewidth of FenVm superlattices as function of microwave
frequencies from 1 to 225 GHz. Left: as model; right: experimental results taken
from [20, 21]. Note the very narrow ΔH for 1 GHz in the inset.

The left part of Fig.10 shows the result, a strong curvature at low frequencies
and a saturation at high ω. In other words: For realistic parameters of ultrathin films
magnon-magnon scattering strongly increases in the range of zero to 30 GHz, whereas
the Gilbert damping increases slowly linear with the microwave excitation frequency.
Here we demonstrate the importance of low frequency FMR. In former FMR analysis
a residual linewidth ΔH0 at ω = 0 was discussed [3, 4]. This may be an erroneous
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misinterpretation resulting from the fact, if only few frequencies (10, 24, 36 GHz) have
been measured - one always can fit a linear line through two or three data points. If
however at 1 GHz a very narrow linewidth is measured - like in Fig.5 and right-hand
diagram of Fig.10 - it becomes evident that the measured ΔH is a relaxation and no
inhomogeneous broadening! The data and diagram for Fe4V2 and Fe4V4 samples show
clearly the two relaxation processes. For H ⊥ to the film plane no magnon scattering
is possible, consequently we see only a linear frequency dependence (green dots). For
H in-plane strong magnon-magnon scattering is observed. Moreover, we observe that
the Gilbert damping G is more or less isotropic for different orientations of H in the
film plane, whereas the magnon-magnon γΓ is anisotropic by a factor of 2 or 3 for
different in-plane orientation (Fig.10 Table) [19, 20, 21]. No residual linewidth was
observed, the experimental width is purely a relaxation process. Finally, the fitting
procedure yields numbers for the relaxation times. The spin-spin relaxation is about
two orders of magnitude faster than the spin-lattice rate - a very plausible result. In
the table of Fig.10 we give the Gilbert relaxation rates in dimensionless units of α
and G in units of s−1. The 2-magnon scattering rates/second are given as γΓ and
as linewidth Γ in kOe. Field units (Oe) and dimensionless α parameters are very
little informative. For a better understanding of fundamental resonance physics, we
strongly recommend to return to the notation of EPR and give units of relaxation
rates in s−1. This is not a simple question of style and common language, it facilitates
the communication with theory of femtosecond dynamics in magnetism.

Figure 11. FMR linewidth for Heusler alloys as function of frequency taken
from [23]. Note the narrow line at 1 GHz. Fig11b shows the angular dependent
2-magnon scattering and isotropic Gilbert damping.

The results in [20, 21] were the only experimental FMR measurement, which
did check in a quantitative way the theoretical prediction for the magnon-magnon
scattering [18, 19]. All the other FMR literature for more than 10 years from 1999
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on, used only the LLG-equation [22]. Certainly the arcsin function may not be the
ultimate solution, but experimentalists should proof or disproof existing models. Or
even batter, they should not stick on old models, but publish experimental data free
of bias.

Recently similar results have been observed for ultrathin Fe3Si Heusler structures
[23]. The film was grown epitaxially on a MgO single crystal surface. This is an
interesting case because Heusler ultrathin films are used in many experiments of
nanomagnetism, and if FMR can help to determine specific parameters for the spin
dynamic, this will influence other interpretations of spin transport measurements.
Fig.11 shows the result for the FMR linewidth measured from 1 to 70 GHz. Again,
the non-linear frequency dependence of ΔB is seen, note the very narrow line at
1 GHz (inset of Fig.11a). More important is the frequency and angular dependent
(azimuthal and polar) measurement. In Fig.11b the results are shown for two(!)
frequencies, 9 and 24 GHz. With this complete set of FMR data the different
contributions to the linewidth are separated: A strong angular dependent 2-magnon
scattering with minimum along the [001] direction, an isotropic Gilbert damping,
and a vanishing inhomogeneous line broadening was observed. The detailed analysis
and fitting procedure by Zakeri et al. [23] used only the linewidth parameters for
the fitting, all other input parameters have been determined before from the static
resonance parameter (e. g. g = 2.075). As a results the authors find an isotropic
Gilbert damping of G ≈ 5 · 107 sec−1, a value which agrees very well with other Fe
damping parameters. However the magnon-magnon scattering is not as fast as in the
Fe/V superlattice, it is only a factor of 10 faster, than the Gilbert damping.

Figure 12. FMR resonance field and linewidth for a Co ultrathin film, measured
at 4 frequencies, taken from [24].

For a long time the first experimental evidence for magnon-magnon scattering,
determined from FMR has been ignored or criticized, to be a singularity and special
feature of the Fe/V superlattice. The previous results at the Heusler structure gave
some more confidence. As last and most recent case, we will shortly discus the FMR
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experiments on pure Co films by Lindner et al. [24]. To measure the dynamical
response of a prototype film of polycrystalline hcp Co film of about 10 nm thickness
on GaAs is of general interest for spin dynamics in nanostructures. In Fig.12 the
results are given. Fig.12a shows the field for resonance as function of the polar angle
for 3(!) frequencies. As discussed in Sec.2, for a proper interpretation all data together
need to be fitted with one set of parameters. As a result the g-factor of g = 2.18 is very
close to bulk Co. The error bar of ±0.02 is too large to see the anisotropy in hcp Co.
With these numbers the frequency dependent linewidth (Fig.12b+c) can be fitted. The
Gilbert damping of G ≈ 0.16·109 sec−1 is about a factor of 10 faster for polycrystalline
specimen, than in high purity epitaxially grown films. The magnon-magnon scattering
is in the same order of magnitude. The authors analyzed some residual linewidth at
ω = 0, however experiments at 1 GHz are missing. Our experience is, that in cases
with 1 GHz FMR data the line narrows again, surprisingly. In other words: The
remaining width may still be caused by scattering of some magnons in the range of
few GHz.

So far we have discussed the LLG- and BB- model and the magnon-magnon
scattering in the FMR linewidth by Arias and Mills [18]. This theory assumes a
certain model structure on the surface of ultrathin FMs. Not to be misunderstood,
this calculation and the classical models of spin dynamics are based on idealistic
structures, which may be far from reality. More and better theory is needed for a
better understanding of the FMR linewidth. But this is not the point. In Sec.3
we wanted to demonstrate the full potential of FMR linewidth analysis. Frequency
dependent experiments will give the FMR the same full potential in linewidth analysis
as it is a standard procedure in EPR.

4. Summary and future

Two aspects have been discussed for the future development of FMR in
nanomagnetism: The static resonance conditions and the spin dynamics in the
linewidth. The message of Sec.2 will be: The old-fashion standard procedure to discuss
magnetism of 3d-metallic FM in the framework of eg and t2g levels with eigenstates
like dz2 , dx2−y2 , dxy, dxz, dyz is insufficient. It may explain some MOKE, STM, or
photoemission experiments, but it misses orbital magnetism and MAE. For the above
unperturbed 3d-eigenstates 〈Lz〉 = 0. In reality the groundstate is an admixture via
SOC with 〈Lz〉 �= 0, see Fig.1. This produces a g-tensor, to be measured by FMR, and
an MAE, see Fig.4. The new development in multifrequency- and UHV-technology
opens a huge field for FMR. Old-fashion experiments and review papers, for X-band
only, etc. used the g-factor as a fitting parameter, but not as a fundamental property
of the magnetic moment (different g values for X- and K-band were published).

The spin wave dynamics in magnetic nanostructures is a very active and broad
research field, currently. Not only 2-magnon scattering, as discussed in Sec.3, is of
interest. 4-magnon scattering, for example, has been discussed in a high condensate of
magnons in YIG thin films. Microwave photons split into pairs of correlated magnons
[25]. In the same material X-ray detected magnetic resonance was performed in the
nonlinear regime of spin waves [26]. These authors discuss also the redistribution of
energy within internal degrees of freedom of the spin system, before it is transferred
to the lattice. They introduce also a T−1

1 and a T−1
2 , longitudinal and transverse,

relaxation rates. In LASER pump-probe experiments [17] the authors discuss magnon
induced damping and magnon-phonon scattering (path3 in Fig.8b). In particular these
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experiments initiated new theories [27], the Landau-Lifshitz-Bloch equation (LLB).
Two relaxation rates are introduced, α⊥ and α‖. Note, these rates are not identical to
the phenomenological T−1

1 and T−1
2 rates in the BB model. Sec.3 demonstrates that

todays FMR is able to measure separately scattering within the spin wave system and
energy dissipation. Multifrequency experiments seem to be essential. This is possible,
starting at ≈ 1 GHz up to THz [28].

Now, on the occasion of the 100th anniversary of S. A. Altshuler it seems to
be time that the young generation of FMR leaves the old-fashion path of LLG-
equation, assuming an isotopic g ≈ 2, fitting Gilbert parameter with an apparent
linear frequency dependence. All this is not completely wrong, but it gives very little
insight on the fundamental properties of nanomagnetism in 3d metallic FMs. Many of
the more recent aspects in the interpretation of FMR of nanostructures, as discussed
in Sec.2 and 3, are given in [29].
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