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Iterative equations which can be expressed by the following form 𝑓𝑛(𝑥) = 𝐻(𝑥, 𝑓(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛−1(𝑥)), where 𝑛 ≥ 2, are
investigated. Conditions for the existence of locally expansive 𝐶1 solutions for such equations are given.

1. Introduction

Let 𝐶(𝑋,𝑋) be the set of all continuous self-mappings on a
topological space 𝑋. For any 𝑓 ∈ 𝐶(𝑋,𝑋), let 𝑓𝑚 denote
the 𝑚th iterate of 𝑓; that is, 𝑓𝑚 = 𝑓 ∘ 𝑓𝑚−1, 𝑓0 = 𝑖𝑑, 𝑚 =
1, 2, . . .. Equations having iteration as their main operation,
that is, including iterates of the unknownmapping, are called
iterative equations. It is one of the most interesting classes of
functional equations [1–4], because it includes the problem of
iterative roots [2, 5, 6], that is, finding some𝑓 ∈ 𝐶(𝑋,𝑋) such
that 𝑓𝑛 is identical to a given 𝐹 ∈ 𝐶(𝑋,𝑋). The well-known
Feigenbaum equation 𝑓(𝑥) = −(1/𝜆)𝑓(𝑓(𝜆𝑥)), arising in the
discussion of period-doubling bifurcations [7, 8], is also an
iterative equation.

As a natural generalization of the problem of iterative
roots, iterative equations of the following form

𝜆
1
𝑓 (𝑥) + 𝜆

2
𝑓2 (𝑥) + ⋅ ⋅ ⋅ + 𝜆

𝑛
𝑓𝑛 (𝑥) = 𝐹 (𝑥) ,

𝑥 ∈ 𝐼 = [𝑎, 𝑏]
(1)

are known as polynomial-like iterative equations. Here, 𝑛 ≥
2 is an integer, 𝜆

𝑖
∈ R (𝑖 = 1, 2, . . . , 𝑛), 𝐹 : 𝐼 → R

is a given mapping, and 𝑓 : 𝐼 → 𝐼 is unknown. As
mentioned in [9, 10], polynomial-like iterative equations are
important not only in the study of functional equations but
also in the study of dynamical systems. For instance, such
equations are encountered in the discussion on transversal
homoclinic intersection for diffeomorphisms [11], normal
form of dynamical systems [12], and dynamics of a quadratic
mapping [13]. Some problems of invariant curves for dynam-
ical systems also lead to such iterative equations [14].

For the case that 𝐹 is linear, where (1) can be written as

𝜆
𝑛
𝑓𝑛 (𝑥) + 𝜆

𝑛−1
𝑓𝑛−1 (𝑥) + ⋅ ⋅ ⋅ + 𝜆

1
𝑓 (𝑥) + 𝜆

0
𝑥 = 0, (2)

many results [15–17] have been given to present all of its
continuous solutions. Conditions that ensure the uniqueness
of such solutions are also given by [18, 19].

For the case that 𝐹 is nonlinear, the basic problems such
as existence, uniqueness, and stability cannot be solved easily.
In 1986, Zhang [20], under the restriction that 𝜆

1
̸= 0, con-

structed an interesting operator called “structural operator”
for (1) and used the fixed point theory in Banach space to
get the solutions of (1). Hence, he overcame the difficulties
encountered by the formers. By means of this method, Zhang
and Si made a series of works concerning these qualitative
problems, such as [21–24]. After that, (1) and other type
equations were discussed extensively by employing this idea
(see [25–31] and references therein).

On the other hand, great efforts have been made to solve
the “leading coefficient problem” which was raised by [32, 33]
as an open problem. The essence of solving this problem
is to abolish the technical restriction 𝜆

1
̸= 0 and discuss (1)

under the more natural assumption 𝜆
𝑛
̸= 0. As mentioned

in [34, 35], a mapping 𝑓 is said to be locally expansive
(resp., locally contractive) at its fixed point 𝑥

0
, if |𝑓(𝑥

0
)| >

1 (resp., 0 < |𝑓(𝑥
0
)| < 1). In 2004, Zhang [35] gave

positive answers to this problem in local𝐶1 solutions in some
cases of coefficients, but this paper only discussed the locally
expansive case and the nonhyperbolic case. In 2009, Chen
and Zhang [34] gave positive answers to this problem with
more combinations between locally expansive mappings and
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locally contractive ones and combinations between increas-
ingmappings and decreasing ones.Themain tools used in the
two papers above are Schröder transformation and Schauder
fixed point theorem. In 2012, J. M. Chen and L. Chen [36]
consider the locally contractive 𝐶1 solutions of the iterative
equation 𝐺(𝑥, 𝑓(𝑥), . . . , 𝑓𝑛(𝑥)) = 𝐹(𝑥), and some results
on locally contractive solutions of [34] were generalized.
In 2007, Xu and Zhang [37] answered this problem by
constructing𝐶0 solutions of (1).Their strategy is to construct
the solutions piece by piece via a recursive formula obtained
form (1). Following this idea, global increasing anddecreasing
solutions [38, 39] were also investigated.

Motivated by the above results, we will consider the
existence of locally expansive 𝐶1 solutions for the iterative
equation of the following form:

𝑓𝑛 (𝑥) = 𝐻 (𝑥, 𝑓 (𝑥) , 𝑓
2

(𝑥) , . . . , 𝑓
𝑛−1

(𝑥)) , (3)

where 𝑛 ≥ 2. Some results on locally expansive solutions in
[34] are generalized.

1.1. Basic Assumptions, Definitions, and Notations. Firstly, we
state some assumptions on the known function 𝐻 and the
solution 𝑓. Let 𝐼, 𝐽 be two intervals in R, 𝑘 ∈ Z

+
, 𝑚, 𝑛 ∈ N,

and let𝐶𝑘(𝐼𝑚, 𝐽𝑛) denote the set of all𝐶𝑘 maps from 𝐼𝑚 to 𝐽𝑛.
It is well known that, for a compact interval 𝐼, 𝐶0(𝐼,R) is a
Banach space with the norm ‖ℎ‖ = sup

𝑡∈𝐼
|ℎ(𝑡)|, ℎ ∈ 𝐶0(𝐼,R)

and 𝐶1(𝐼,R) is also a Banach space with the norm ‖ℎ‖
1
=

max{‖ℎ‖, ‖ℎ‖}, ℎ ∈ 𝐶1(𝐼,R).
For convenience, let𝑋 denote (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛−1
) ∈ R𝑛 and

𝑂 (0, 0, . . . , 0) ∈ R𝑛, where 𝑛 = 2, 3, . . .. Let 𝐻
𝑖
(𝑋) denote

(𝜕𝐻/𝜕𝑥
𝑖
)(𝑋), where 𝑖 = 0, 1, . . . , 𝑛 − 1.

The assumption on 𝑓 is

(f1) 𝑓 ∈ 𝐶1(𝐼, 𝐼), 𝑓(0) = 0, where 𝐼 is an interval to be
determined.

Assumptions on𝐻 are

(H1) 𝐻 ∈ 𝐶1(R𝑛,R), 𝐻(𝑂) = 0;
(H2) ∑𝑛−1

𝑖=0
|𝐻
𝑖
(𝑂)| > 1;

(H3) |𝐻
𝑖
(𝑋) − 𝐻

𝑖
(𝑌)| ≤ ∑

𝑛−1

𝑗=0
𝑀
𝑖𝑗
|𝑥
𝑗
− 𝑦
𝑗
| in a neigh-

borhood 𝑉 of 𝑂 ∈ R𝑛, where 𝑀
𝑖𝑗
are nonnegative

constants, 𝑖, 𝑗 = 0, 1, . . . , 𝑛 − 1.

Define a set

H = {𝐻 | 𝐻 : R𝑛 → R satisfies (H1) , (H2) , and (H3)} .
(4)

Let 𝛿 > 0, 𝜏 > 0, and 𝑀 > 0 be three constants, and
define a set

A (𝛿, 𝜏,𝑀) = {𝜙 ∈ 𝐶
1

([−𝛿, 𝛿] ,R) | 𝜙 (0) = 0, 𝜙


(𝑥)


≤ 𝜙 (0) = 𝜏,
𝜙


(𝑥) − 𝜙
 (𝑦)



≤ 𝑀
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ [−𝛿, 𝛿] } .

(5)

The set A(𝛿, 𝜏,𝑀) is nonempty and is a convex compact
subset of 𝐶1([−𝛿, 𝛿],R).

For 𝑐 ∈ R, |𝑐| > 1, 𝜙 ∈ A(𝛿, 𝜏,𝑀), and𝐻 ∈H, we define
two functions as follows:

𝜆𝜙 (𝑠) = 𝐻 (𝜙 (𝑐
−𝑛𝑠) , 𝜙 (𝑐−𝑛+1𝑠) , . . . , 𝜙 (𝑐−1𝑠)) ,

𝜆
𝜙

𝑖
(𝑠) =

𝜕𝐻

𝜕𝑥
𝑖

(𝜙 (𝑐−𝑛𝑠) , 𝜙 (𝑐−𝑛+1𝑠) , . . . , 𝜙 (𝑐−1𝑠)) ,
(6)

where 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑠 ∈ [−𝛿, 𝛿]. By the choices of 𝐻
and 𝜙, we have 𝜆𝜙(0) = 0 and 𝜆𝜙

𝑖
(0) = 𝐻

𝑖
(𝑂), where 𝑖 =

0, 1, . . . , 𝑛 − 1.
If the solution 𝑓 of (3) can be expressed as 𝑓(𝑥) =

𝜙(𝑐(𝜙−1(𝑥))) by the Schröder transformation, where 𝑐 is a
constant to be determined, then (3) can be reduced to the
following auxiliary equation:

𝜙 (𝑐𝑛𝑠) = 𝐻 (𝜙 (𝑠) , 𝜙 (𝑐𝑠) , . . . , 𝜙 (𝑐
𝑛−1𝑠)) . (7)

If function 𝑓 is a solution of (3), then we can differentiate
the equation. In fact, we can get that the derivative 𝑓(0) is a
zero of the following polynomial:

𝑃 (𝑥) = 𝑥
𝑛 − 𝐻
𝑛−1
(𝑂) 𝑥
𝑛−1 − ⋅ ⋅ ⋅ − 𝐻

1
(𝑂) 𝑥 − 𝐻



0
(𝑂) . (8)

We refer to the polynomial (8) as the characteristic polyno-
mial of (3).

Finally, we give a basic lemma.

Lemma 1. Let 𝐷 ⊂ R𝑚 be a convex open set, and let 𝑎 =
(𝑎
1
, . . . , 𝑎

𝑚
) and 𝑎 + ℎ = (𝑎

1
+ ℎ
1
, . . . , 𝑎

𝑚
+ ℎ
𝑚
) belong to𝐷. If

𝑓 : 𝐷 → R is continuous on 𝐷 and differentiable on 𝐷, then
there exists a 𝜃 ∈ (0, 1) such that

𝑓 (𝑎 + ℎ) = 𝑓 (𝑎) +
𝑚

∑
𝑖=1

𝜕𝑓

𝜕𝑥
𝑖

(𝑎 + 𝜃ℎ) ℎ
𝑖
. (9)

2. Main Results

Let 𝑆(𝑛) = {1, 2, . . . , 𝑛 − 1}.

Theorem 2. Suppose that 𝐻 ∈ H. Suppose that there is a
neighborhood 𝑈 of 𝑂 ∈ R𝑛 that satisfies

(𝐴+
1
) for all𝑋 ∈ 𝑈,𝐻

0
(𝑂) ≥ 𝐻

0
(𝑋) ≥ 0;

(𝐴+
2
) for all𝑋 ∈ 𝑈 and all 𝑖 ∈ 𝑆(𝑛),𝐻

𝑖
(𝑂) ≥ 𝐻

𝑖
(𝑋) ≥ 0.

Then, (3) has a locally expansive increasing 𝐶1 solution near 0.

Theorem 3. Suppose that 𝑛 is odd and 𝐻 ∈ H. Suppose that
there is a neighborhood 𝑈 of 𝑂 ∈ R𝑛 that satisfies

(𝐴−
1
) for all𝑋 ∈ 𝑈,𝐻

0
(𝑂) ≤ 𝐻

0
(𝑋) ≤ 0;

(𝐴±
2
) for all 𝑋 ∈ 𝑈,𝐻

𝑖
(𝑂) ≥ 𝐻

0
(𝑋) ≥ 0 for all odd 𝑖 ∈ 𝑆(𝑛)

and𝐻
𝑖
(𝑂) ≤ 𝐻

𝑖
(𝑋) ≤ 0 for all even 𝑖 ∈ 𝑆(𝑛).

Then, (3) has a locally expansive decreasing𝐶1 solution near 0.
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Theorem 4. Suppose that 𝑛 is even and𝐻 ∈H. Suppose that
there is a neighborhood 𝑈 of 𝑂 ∈ R𝑛 that satisfies

(𝐴+
1
) for all𝑋 ∈ 𝑈,𝐻

0
(𝑂) ≥ 𝐻

0
(𝑋) ≥ 0;

(𝐴∓
2
) for all 𝑋 ∈ 𝑈,𝐻

𝑖
(𝑂) ≤ 𝐻

𝑖
(𝑋) ≤ 0 for all odd 𝑖 ∈ 𝑆(𝑛)

and𝐻
𝑖
(𝑂) ≥ 𝐻

𝑖
(𝑋) ≥ 0 for all even 𝑖 ∈ 𝑆(𝑛).

Then, (3) has a locally expansive decreasing𝐶1 solution near 0.

3. Proof of the Main Results

Lemma 5. Under the conditions of Theorem 2 (Theorems 3
and 4, resp.), there is a constant 𝑐 > 1 (resp., 𝑐 < −1 in both
cases) and 𝜎 > 0 such that for arbitrary given 𝜏 > 0, (7) has a
𝐶1 solution 𝜙 on [−𝜎, 𝜎] with 𝜙(0) = 0 and 𝜙(0) = 𝜏.

Proof. If 𝑐 is real and (7) has a local 𝐶1 solution 𝜙with 𝜙(0) =
0 and 𝜙(0) ̸= 0, then by differentiating the equation, we can
see that 𝑐 is a root of characteristic polynomial (8).

If hypotheses of Theorem 2 hold, the hypothesis (H2)
implies

𝑃 (1) = 1 −
𝑛−1

∑
𝑖=0

𝐻
𝑖
(𝑂) = 1 −

𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)
 < 0. (10)

But 𝑃(𝑥) → +∞ when 𝑥 → +∞, and this means that 𝑃
has a root 𝑐 > 1. In the case of Theorems 3 and 4, 𝑃 has a
root 𝑐 < −1. Since for both of the cases 𝑐 > 1 and 𝑐 < −1,
0 < |𝑐−𝑛+𝑖| < 1, 𝑖 = 0, 1, . . . , 𝑛 − 1 and 𝑐 is a zero of (8), we
have

𝑐
2𝑛
 −
𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)

𝑐
2𝑖


=
𝑐
𝑛 (

𝑐
𝑛 −
𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)

𝑐
𝑖

𝑐
−𝑛+𝑖
)

>
𝑐
𝑛 −
𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)

𝑐
𝑖
 = 0.

(11)

The above inequality holds because of the choice of the sign
of 𝐻
𝑖
(𝑂), 𝑖 = 0, 1, . . . , 𝑛 − 1. This also means that 1 −

∑
𝑛−1

𝑖=0
|𝐻
𝑖
(𝑂)||𝑐−2𝑛+2𝑖| > 0. Now, we can choose a constant

𝜎
1
> 0 such that the following statements are true;

(1) (𝐴𝜎
1
) holds on [−𝜎

1
, 𝜎
1
], where 𝜎 ∈ {+, −};

(2) (𝐴𝛿
2
) holds on [−𝜎

1
, 𝜎
1
], where 𝛿 ∈ {+, ±, ∓};

(3) (H3) holds on [−𝜎
1
, 𝜎
1
]𝑛.

For a given 𝜏 > 0, let

𝐾
2
=

𝜏2∑
𝑛−1

𝑖,𝑗=0
𝑀
𝑖𝑗

𝑐
−2𝑛+𝑖+𝑗



1 − ∑
𝑛−1

𝑖=0

𝐻


𝑖
(𝑂)

𝑐
−2𝑛+2𝑖


. (12)

Furthermore, we can choose a 0 < 𝜎 < min{𝜎
1
, 𝜎
1
/𝜏} such

that for, for all 𝜙 ∈ A(𝜎, 𝜏, 𝐾
2
), we have

𝜙 ([−𝜎, 𝜎]) ⊂ [−𝜎
1
, 𝜎
1
] . (13)

Define a mapping G : A(𝜎, 𝜏, 𝐾
2
) → 𝐶1([−𝜎, 𝜎],R) as

follows:

G𝜙 (𝑠) = 𝜆
𝜙

(𝑠) = 𝐻 (𝜙 (𝑐
−𝑛𝑠) , 𝜙 (𝑐−𝑛+1𝑠) , . . . , 𝜙 (𝑐−1𝑠)) ,

𝑠 ∈ [−𝜎, 𝜎] .

(14)

In order to show thatG is a self-mapping onA(𝜎, 𝜏, 𝐾
2
),

we calculate

𝑑

𝑑𝑠
G𝜙 (𝑠) =

𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜙

𝑖
(𝑠) . (15)

Obviously,G𝜙(0) = 0. Since 𝑐𝑛 = ∑𝑛−1
𝑖=0
𝐻
𝑖
(𝑂)𝑐𝑖, we have

𝑑

𝑑𝑠
G𝜙 (0) =

𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (0) 𝜆
𝜙

𝑖
(0)

= 𝜙 (0) 𝑐
−𝑛

𝑛−1

∑
𝑖=0

𝐻
𝑖
(𝑂) 𝑐
𝑖 = 𝜏.

(16)

Moreover, for all 𝑠 ∈ [−𝜎, 𝜎], by𝐴𝛿
2
, 𝛿 ∈ {+, ±, ∓}, we have



𝑑

𝑑𝑠
G𝜙 (𝑠)


=



𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜙

𝑖
(𝑠)



≤
𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖

𝜙
 (𝑐−𝑛+𝑖𝑠)


𝜆
𝜙

𝑖
(𝑠)


≤
𝑐
−𝑛 (
𝑛−1

∑
𝑖=0

𝑐
𝑖

𝐻


𝑖
(𝑂)
) 𝜙


(0) = 𝜏.

(17)

By (H3) and the choice of 𝜙, we can get that


𝑑

𝑑𝑠
G𝜙 (𝑥) −

𝑑

𝑑𝑠
G𝜙 (𝑦)



=



𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (𝑐−𝑛+𝑖𝑥) 𝜆
𝜙

𝑖
(𝑥) −

𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (𝑐−𝑛+𝑖𝑦) 𝜆
𝜙

𝑖
(𝑦)



≤
𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖
 {
𝜙
 (𝑐−𝑛+𝑖𝑥)


𝜆
𝜙

𝑖
(𝑥) − 𝜆

𝜙

𝑖
(𝑦)


+
𝜙
 (𝑐−𝑛+𝑖𝑥) − 𝜙 (𝑐−𝑛+𝑖𝑦)


𝜆
𝜙

𝑖
(𝑦)
}

≤
𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖


×
{
{
{

𝜏2
𝑛−1

∑
𝑗=0

𝑀
𝑖𝑗

𝑐
−𝑛+𝑗

 +
𝑐
−𝑛+𝑖

𝐻


𝑖
(𝑂)
 𝐾2

}
}
}

𝑥 − 𝑦


= (𝜏2
𝑛−1

∑
𝑖,𝑗=0

𝑐
−2𝑛+𝑖+𝑗

𝑀𝑖𝑗

+
𝑛−1

∑
𝑖=0

𝑐
−2𝑛+2𝑖


𝐻


𝑖
(𝑂)
 𝐾2)

𝑥 − 𝑦
 .

(18)
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By the definition of𝐾
2
, we get that



𝑑

𝑑𝑠
G𝜙 (𝑥) −

𝑑

𝑑𝑠
G𝜙 (𝑦)


≤ 𝐾
2

𝑥 − 𝑦
 . (19)

Summing up the above discussion, we get that
G(A(𝜎, 𝜏, 𝐾

2
)) ⊂ A(𝜎, 𝜏, 𝐾

2
).

Now, we will prove that G is continuous. Considering
𝜙, 𝜑 ∈ A(𝜎, 𝜏, 𝐾

2
), by Lemma 1 and𝐴𝛿

2
, 𝛿 ∈ {+, ±, ∓}, we have

G𝜙 −G𝜑


= sup
𝑠∈[−𝜎,𝜎]

𝜆
𝜙

(𝑠) − 𝜆
𝜑

(𝑠)


≤ sup
𝑠∈[−𝜎,𝜎]

𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)

𝜙 (𝑐
−𝑛+𝑖𝑠) − 𝜑 (𝑐−𝑛+𝑖𝑠)



≤ (
𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)
)
𝜙 − 𝜑

 .

(20)

Furthermore, by (H3), we have


𝑑

𝑑𝑠
G𝜙 −

𝑑

𝑑𝑠
G𝜑


= sup
𝑠∈[−𝜎,𝜎]



𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜙 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜙

𝑖
(𝑠)

−
𝑛−1

∑
𝑖=0

𝑐−𝑛+𝑖𝜑 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜑

𝑖
(𝑠)



≤ sup
𝑠∈[−𝜎,𝜎]

𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖

𝜙
 (𝑐−𝑛+𝑖𝑠) 𝜆

𝜙

𝑖
(𝑠) − 𝜑

 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜑

𝑖
(𝑠)


≤ sup
𝑠∈[−𝜎,𝜎]

𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖


× {
𝜙
 (𝑐−𝑛+𝑖𝑠) 𝜆

𝜙

𝑖
(𝑠) − 𝜙

 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜑

𝑖
(𝑠)


+
𝜙
 (𝑐−𝑛+𝑖𝑠) 𝜆

𝜑

𝑖
(𝑠) − 𝜑

 (𝑐−𝑛+𝑖𝑠) 𝜆
𝜑

𝑖
(𝑠)
}

= sup
𝑠∈[−𝜎,𝜎]

𝑛−1

∑
𝑖=0

𝑐
−𝑛+𝑖


× {
𝜙
 (𝑐−𝑛+𝑖𝑠)


𝜆
𝜙

𝑖
(𝑠) − 𝜆

𝜑

𝑖
(𝑠)


+
𝜙
 (𝑐−𝑛+𝑖𝑠) − 𝜑 (𝑐−𝑛+𝑖𝑠)


𝜆
𝜑

𝑖
(𝑠)
}

≤
𝑛−1

∑
𝑖,𝑗=0

𝜏
𝑐
−𝑛+𝑖
𝑀𝑖𝑗

𝜙 − 𝜑
 +
𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)

𝜙
 − 𝜑

 .

(21)

Finally, let

𝐸 = max
{
{
{

𝑛−1

∑
𝑖,𝑗=0

𝜏
𝑐
−𝑛+𝑖
𝑀𝑖𝑗,

𝑛−1

∑
𝑖=0

𝐻


𝑖
(𝑂)


}
}
}

, (22)

and we get that
G𝜙 −G𝜑

1 ≤ 𝐸
𝜙 − 𝜑

1. (23)

Now, the continuity ofG is evident. By Schauder’s fixed point
theorem, there exists a 𝜙 ∈ A(𝜎, 𝜏, 𝐾

2
) such that G𝜙 = 𝜙.

This means that (7) with the chosen 𝑐 has a 𝐶1 solution on
[−𝜎, 𝜎] with derivative 𝜏 at 0.

Proof of Theorems 2–4. Let 𝜙 be the solution of (7) obtained
in Lemma 5. By the continuity of 𝜙, we are able to choose
a neighborhood 𝐽 ⊂ 𝜙([−𝜎, 𝜎]) of 0 such that 𝜙−1 exists
and is also 𝐶1 on 𝐽. Without any loss of generality, we can
assume that 𝐽 = 𝜙([−𝜎, 𝜎]). Hence, 𝜙 : [−𝜎, 𝜎] → 𝐽 is a
homeomorphism. Moreover, we can choose a neighborhood
𝐼 ⊂ 𝐽 of 0 which is so small that 𝑐𝑖𝜙−1(𝑥) ∈ [−𝜎, 𝜎] for all
𝑥 ∈ 𝐼, 𝑖 = 1, 2, . . . , 𝑛. Let 𝑓(𝑥) = 𝜙(𝑐𝜙−1(𝑥)) for 𝑥 ∈ 𝐼. Clearly
𝑓 is also 𝐶1 and invertible on 𝐼. Moreover, all iterates 𝑓𝑗, 𝑗 =
1, 2, . . . , 𝑛, arewell defined on 𝐼, and𝑓𝑗(𝑥) = 𝜙(𝑐𝑗𝜙−1(𝑥)), 𝑥 ∈
𝐼. Obviously, we have 𝑓(0) = 0, 𝑓(0) = 𝑐, and 𝑓 is locally
expansive. Finally, for any 𝑥 ∈ 𝐼, we have

𝐻(𝑥, 𝑓 (𝑥) , 𝑓
2

(𝑥) , . . . , 𝑓
𝑛−1

(𝑥))

= 𝐻(𝜙 (𝜙−1 (𝑥)) , 𝜙 (𝑐𝜙
−1

(𝑥)) ,

𝜙 (𝑐2𝜙−1 (𝑥)) , . . . , 𝜙 (𝑐
𝑛−1𝜙−1 (𝑥)))

= 𝐻(𝜙 (𝑐−𝑛 (𝑐𝑛𝜙−1 (𝑥))) , 𝜙 (𝑐
−𝑛+1 (𝑐𝑛𝜙−1 (𝑥))) ,

𝜙 (𝑐−𝑛+2 (𝑐𝑛𝜙−1 (𝑥))) , . . . , 𝜙 (𝑐
−1 (𝑐𝑛𝜙−1 (𝑥))))

= G𝜙 (𝑐𝑛𝜙−1 (𝑥)) = 𝜙 (𝑐
𝑛𝜙−1 (𝑥)) = 𝑓

𝑛

(𝑥) .

(24)

Therefore, 𝑓 is a locally expansive 𝐶1 solution of (3).

4. Examples

Example 1. Consider the following equation:

𝑓3 (𝑥) = 2 sin (𝑥) + sin (𝑓2 (𝑥)) . (25)

Obviously, 𝐻(𝑥
0
, 𝑥
1
, 𝑥
2
) = 2 sin(𝑥

0
) + sin(𝑥

2
). It is easy

to verify that 𝐻 satisfy the assumptions of Theorem 2. This
equation has at least one locally expansive increasing 𝐶1
solution in a neighborhood of 0.

Example 2. Consider the following equation:

𝑓3 (𝑥) = −2 sin (𝑥) − sin (𝑓2 (𝑥)) . (26)

Obviously, 𝐻(𝑥
0
, 𝑥
1
, 𝑥
2
) = −2 sin(𝑥

0
) − sin(𝑥

2
). It is easy

to verify that 𝐻 satisfy the assumptions of Theorem 3. This
equation has at least one locally expansive decreasing 𝐶1
solution in a neighborhood of 0.

Example 3. Consider the following equation:

𝑓4 (𝑥) = 2 sin (𝑥) + sin (𝑓2 (𝑥)) . (27)

Obviously, 𝐻(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) = 2 sin(𝑥

0
) + sin(𝑥

2
). It is easy

to verify that 𝐻 satisfy the assumptions of Theorem 4. This
equation has at least one locally expansive decreasing 𝐶1
solution in a neighborhood of 0.
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