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On the Derivation of Shell Theories by 
Direct Approach 
A constrained theory of shells by a direct approach, based on a general theory of a 
Cosserat surface, is derived and its relation to other recent developments obtained by 
direct procedures is indicated. 

Introduction 

IN recent years there has been much interest in the 
derivation of theories of shells and plates by a direct procedure, 
rather than from the three-dimensional equations of the classical 
(nonpolar) continuum mechanics. However, with reference to 
the former approach, the basic concepts and definitions differ 
from one paper to another and this has created a somewhat con­
fusing situation. A number of recent works on the subject claim 
to present new shell theories when, in fact, they are special cases 
of others which have appeared previously or are closely related to 
previous papers. There is some value in an ab initio develop­
ment of a special theory (in contrast to one resulting from special­
ization of a more general theory) but it is also important to show 
what relation, if any, one theory has to another. 

I t is not the purpose of this paper to decide either on the de­
sirability of different forms or even the most appropriate form of 
derivation of shell theory by a direct approach. We restrict our 
attention mainly to an examination of the relation between a 
theory in which the shell is defined as a surface with a finite 
rotation vector associated with every point of the surface, and 
the theory of a two-dimensional directed continuum called a 
Cosserat surface, i.e., a surface with a single deformable director 
assigned to every point of the surface. We show that the field 
equations of the former, including the energy equation or the ex­
pression for rate of work in the purely mechanical theory, can be 
obtained as a special (constrained) case of the general theory of a 
Cosserat surface. The relationship between the general con­
stitutive equations for elastic shells in the two developments is, 
however, clear only in special circumstances. 

While each of the foregoing developments has its own interest, 
't is essential that a proper interpretation should be given to the 
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results of each if they are to reflect adequately the three-dimen­
sional effects in thin shells. For interpretations of the various 
results in the theoiy of a Cosserat surface and other details and 
definitions we refer the reader to [3],1 which contains extensive 
references on the subject. Authors employing a theory in which 
the rotation vector is a kinematic ingredient appear to interpret 
the vector M [see equation (10)] as a couple vector with three 
components, rather than a couple having only tangential com­
ponents at each point of the surface. The third component 
would appear to be of the type ordinarily associated with a 
"couple-stress" or "multipolar stress," i.e., orie arising in a theory 
which is deduced from the three-dimensional equations of polar 
media. To this extent, it is not a suitable property of a con­
ventional shell theory and is, therefore, unsatisfactory. In this 
connection, it should be noted that a restricted theory derived by 
a direct approach and involving only a tangential couple vector is 
discussed in [3]. We also remark that the vectors N", m, M a 

[see equations (3)-(5)] in the theory of a Cosserat surface have 
simple interpretations as force and couple resultants, defined in 
terms of three-dimensional stresses [3, Section 22], and that only 
two components of the vector M in (2) represent couples. 

Summary of Theory of a Cosserat Surface 
A Cosserat surface is a body e comprising a surface (embedded 

in Euclidean 3-space) and a single deformable director attached 
to every point of the surface. Let the particles of the material 
surface of e be identified with a system of convected coordinates 
6"' (a = 1, 2) and let the surface occupied by the material surface 
of e in the present configuration at time t be referred to by S.2 

Let r and d, each a function of da and t, denote the position vector 
of a typical point of S and the director at the same point, respec­
tively. We define the base vectors along the ^"-curves on S by 

a« = aa(0
a, t) = 

bBa 

1 Numbers in brackets designate References at end of paper. 
2 The use of the symbol cap script " S " used here differs from the 

corresponding usage for the surface in the present configuration in 
reference [3]. 
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and denote by a3(0", t) the unit normal to S. The motion of a 
Cosserat surface is defined by 

r = r(0a, t), d = d(0", t) 

and we assume that the director d is nowhere tangent to S. The 
velocity and the director velocity vectors are given by 

v = f, w = d, 

where a superposed dot denotes differentiation with respect to t 
holding 6a fixed. Throughout this paper, we use a standard 
vector and tensor notation. In particular, all Greek indices take 
the values 1, 2, and the usual summation over a subscript and a 
superscript is employed. 

A general theory of a Cosserat surface given by Green, Naghdi, 
and Wainwright [1] is developed within the framework of thermo­
dynamics; the derivation in [1] is carried out mainly from an ap­
propriate (two-dimensional) energy equation, together with in-
variance requirements under superposed rigid-body motions. 
A related development utilizing three directors at each point of 
the surface, carried out in the context of a purely mechanical 
theory and with the use of a (two-dimensional) virtual work 
principle, is given by Cohen and DeSilva [2]. Here we adopt the 
mode of derivation of the basic theory employed by Naghdi [3, 
Section 8]. Let <?, bounded by a closed curve dff, be a part of S 
occupied by an arbitrary material region of the surface of 6 in 
the present configuration at time t and let 

be the outward unit normal to the closed curve d(P. I t is con­
venient at this point to define certain additional quantities as 
follows: The mass density p = p{0y, t) of the surface S in the 
present configuration; the contact force N = N(0T, t; v) and the 
contact director couple M = M(dy, t; v), each per unit length of a 
curve in the present configuration; the assigned force f = f(07, t) 
and the assigned director couple I = \(6y, t), each per unit mass 
of the surface S; the intrinsic (surface) director couple m per unit 
area of S which makes no contribution to the supply of momen­
tum; the inertia coefficient a = a(6y) which is independent of 
time and is associated with the director velocity; the specific in­
ternal energy e = e(6y, t); the heat flux h = h(8y, t; v) per unit 
time and per unit length of a curve in the present configuration; 
the specific heat supply r = r(8y, t) per unit time; and the ele­
ment of area d<r, and the line element ds of the surface S. 

With the foregoing definitions of the various field quantities and 
with reference to the present configuration, the conservation laws 
for a Cosserat surface are:3 

d C 
— I pd<r = 0, 
At J,,, 

— I pvdcr = I pfda + I Ncte, 
at Jff J(? Ja<p 

— j pawdcr = I (pi — m)da + I Mds, 
dt Ja> J<? Jaa> 

I p(r X v + d X aw)da = I 
J <? J a> 

I (r X N 
J d(P 

- | p(r X v + d X aw)cZcr = | p(r X f + d X \)dcr (1) 

+ + d X M)ds, 

- ; 

(v-v + aw-w) \ da ] • 

/ p(r + f-v + l'w)rf<r+ | (N-v + M-w - h)ds. 
&(P 

The first of (1) is a statement of the conservation of mass, the 
second the conservation of linear momentum, the third that of the 
director momentum, the fourth the conservation of moment of 
momentum, and the fifth represents the conservation of energy. 
The left-hand sides of the last four in (1) represent, respectively, 
the rate of increase of the linear momentum, the director momen­
tum, the moment of momentum (including contributions from 
both ordinary and director momentum) and the total energy, 
i.e., the sum of internal energy and the kinetic energy due to 
both velocity v and director velocity w. 

Under suitable continuity assumptions, the curve force vector 
N, the director couple vector M, and the heat flux h can be ex­
pressed as4 

N = Haua, M = M % , h = qava. (2) 

The first four equations in (1) are then equivalent to 

pal- = k, (3) 

N % + pf = pv, (4) 

M " / a + pi = m + paw, (5) 

aa X N« + (d X M")|« + pd X (I - aw) = 0, (6) 

where k is a function of 6a only, [818283] = a1'2, a vertical line de­
notes covariant differentiation with respect to the first funda­
mental form of S and the inertia coefficient a is a function of 6" 
and independent of time. Also, with the help of (2)3, (3), and 
(5), the energy equation (l)e can be reduced to 

pr - qa\a - pi + N a -v ,„ + m-w + M"-w, a = 0, (7) 

where a comma denotes partial differentiation with respect to the 
surface coordinates 6a. 

Constrained Theory of a Cosserat Surface 
We consider now a special case of the foregoing results in which 

the director is constrained to be of constant length at each point 
of S, i.e., 

d-d = d2, (8) 

where d is a function of 6a, independent of t. I t follows from 
(8) tha t 

w-d = 0. 

Hence there exists an axial vector w = o)(0", t), called angular 
velocity, such that 

w = w X d. (9) 

Next, we introduce the notations 

M = d X M, M« = d X M « , Ivt = faava, 

t = d X I 

and note that 

M-w = M-w, l w = t •«. (11) 

Also, let 

6 = d X ra, d = d X aw, (12) 

so that 

d-w = aw-w, ci-w = d o ) = aw-w. (13) 

Introducing (9) into (12)i and using the expansion formula for 
the vector triple product, d can be expressed in terms of w and an 
inertia tensor J in the form 

(10) 

3 The conservation laws in (1) correspond to those given by equa­
tions (8.17) in [3]. 

4 The director couple M is an ordinary vector and not an axial vec­
tor, whereas the vector M in (10) is an axial vector. 
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where 

d = Jo), 

J = a(d21 - dd) 

(14) 

(15) 

and 1 is the unit tensor. Moreover, suppose that i i is the skew-
symmetric tensor associated with the axial vector <o such that for 
any vector u: 

flu = (O X a. (16) 

Then, using (9) and (15), it can be verified that J satisfies the dif­
ferential equation 

j = QJ - Jii. (17) 

Some writers use an inertia term in the form (14) with J satisfying 
(17) instead of that given by (15). Although the inertia tensor 
in the form (15) is to some extent less general, the inertia coef­
ficient a associated with the director velocity w in the uncon­
strained theory is well established for thin shells [3]. 

Returning to the energy equation, we now substitute (11) and 
(13) into the last equation in (1) to obtain 

I P 6 + ~2 ^ V + dW') 

f p(r+ f-y+ T'(0)&r + j ( N - v + rVlfa>- h)ds. (18) 

Conservation equations for mass and linear and angular momen­
tum can be deduced from (18), with the help of invariance con­
ditions under superposed rigid-body motions. Alternatively, the 
local forms of these equations can be obtained directly as a special 
case of (3)-(6). Thus, under the constraint condition (8), equa­
tions (3) and (4) remain unaltered while (6) becomes 

aa X N a + rVt«|0 + p ! = p'd. (19) 

Also, under the constraint condition (8), the energy equation (7) 
can be reduced to the form 

pr - qa\a ~ pi + &"• (v,« - (o X a„) + /vt"-6),a = 0. (20) 

Within the scope of the previous constrained thermomechanical 
theory, the field equations (3), (4), (19), and (20) are sufficient if 
we are not interested in the detailed behavior of the director. 
From this point of view, the director momentum equation (5) can 
be discarded. Of course, equation (5) does not arise if we pro­
ceed directly from the energy equation (18) and invariance re­
quirements under superposed rigid-body motions. Equations 
such as (3), (4), and (19), or their corresponding integral forms, 
are the starting point of some authors for a special shell theory by 
a direct approach.6 

Before proceeding further, we observe that the foregoing con­
strained theory can also be developed in quite a different manner 
and without the use of the angular velocity vector as a kinematic 
ingredient. For example, as in the three-dimensional theory of 
liquid crystals which is based on a constrained directed media, 
the original structure of a Cosserat surface is retained and some 
indeterminancies are introduced into the constitutive equations 
for m and M a (see, e.g., [5]). This procedure has the advantage 
of providing a simple interpretation of the theory in relation to 
available results for shells derived from the nonpolar three-di­
mensional equations and does not introduce ingredients asso­
ciated with "couple stresses." 

The foregoing clearly shows the relationship between the 
(dynamical and thermodynamical) field equations of a theory 

6 For example see Simmonds and Danielson [4]. These authors 
consider only a mechanical theory and, apart from the thermody­
namic terms, (18) and "(20) correspond to equations (23) and (24) in 

such as that in [4], where the basic kinematic ingredients are 
taken as a velocity vector and an angular velocity vector at each 
point of the surface, and the constrained theory of a Cosserat 
surface obtained under the condition (8). For the purpose of a 
further comparison, we consider below constitutive equations 
for elastic shells. In this connection, we observe that from the 
point of view of thermodynamics, an entropy production in­
equality must be added to the list of conservation equations (1) 
and this inequality is the same for both the unconstrained or the 
constrained Cosserat surface. Also, within the framework of 
thermomechanical theory, it is more convenient to employ the 
specific Helmholtz free energy \(/ in place of the specific internal 
energy e. 

Elastic Shells 
Simmonds and Danielson [4] do not consider constitutive equa­

tions for their general theory but limit their attention to a special 
case, which is in line with the conventional shell theory. We 
deal with this special case later but examine first the nature of the 
constitutive equations for an elastic shell associated with the field 
equations (3), (4), (19), and (20). Simmonds and Danielson [4] 
employ a rigid frame of reference { A a , N} rotating with angular 
velocity o , and which coincides with { A a , A 3 j in the reference 
configuration so that6 

Aap — Aa- A A Aa-Aa 
We set 

N« = fiaPAf, + 0"N, 

face = $aPAfj X N + MaH 

(21) 

(22) 

and quote the following three formulas (in a slightly different 
notation) from [4] :7 

r,« = (Aais + r ^ )A" + 7*N, 

v,« - to X a a = f apA? + yM, (23) 

o,« = BXaA
x X N + f«N . 

Then, the energy equation (20) reduces to 

pr - pq"\a - pi + N^taf, + Qaia 

+ M^Efjv + MaVa = 0. (24) 

We now restrict attention to the isothermal theory and consider 
the constitutive equations for an elastic shell, which is homoge­
neous in its reference state. Guided by (24), we assume that 

>A = '/'(ra/S, ya, Bap, Va; Aap, Bap), (25) 

where Bap in the argument of \p are the components of the second 
fundamental form of the surface in the reference configuration. 
Then, with similar constitutive assumptions for iv"'3, Q" Mal3, 
and Ma, from (24) and the appropriate entropy inequality, we ob­
tain8 

(26) 

6 Most of the notations used here differ from those in [4]. The 
triad ) Aa, A3I consist of base vectors Aa in the reference surface and 
the unit normal A3 to the reference surface. 

7 Equations (23) correspond to equations (11), (26), and (27) 
of [4]. 

8 For the present purpose, this is the local Clausius-Duhem inequal­
ity. Instead of using the entropy production inequality, the results 
(26) may also be obtained in the context of the purely mechanical 
theory and from a consideration of rate of work in which tp is regarded 
as the strain-energy density. The latter development would be 
similar to that discussed in [3, Section 14]. 

ft~e 

&<*$ 
C>l£ 

~ 0 —=—J 

Qa 

Ma 

= p ——1 
i>ya 
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The specific Helmholtz free energy and the various resultants in 
(25)-(26) are measured per unit mass and per unit length in the 
present configuration but corresponding results in terms of quan­
tities measured with respect to the reference configuration can 
easily be obtained from (26). 

We now turn to the theory of a Cosserat surface, again restrict 
attention to the isothermal theory, and for simplicity limit the 
discussion of constitutive equations to that for an elastic shell 
which is homogeneous in its reference configuration. Thus we 
begin by assuming that [3, Section 13] 

$ = i?(i>, d, d,«; Aa, D, D,a), (27) 

where Aa, D, D]Q. are the values of the kinematic variables aa 

( = r,a)) d, d,a, respectively, in the reference configuration. Then, 
either in the context of the isothermal theory or within the scope 
of the purely mechanical theory, using (27) and similar assump­
tions for N a , m, M", it can be shown that 

dJ/ diJ bj/ 
N " = P ~> m = p - ^ . M» = p -f-, (28) 

Ot,a Od 0d,a 

where \fi satisfies the invariance condition 

b\L diJ dd> 
t.a X - ^ + d X - J + d.or X ~ = 0. (29) 

or,a od ddtU 

Further, by invariance arguments (under superposed rigid-body 
motions), equation (27) can be reduced to the form used in [1] or 
to the various forms obtained in [3]. The constitutive equations 
(28) may be expressed in terms of tensor components with respect 
to any desired set of base vectors. For example, we may consider 
the components of (28) with respect to base vectors {a„, a3} or 
with respect to their duals {A a , A3} in the reference configuration. 

The results (28) hold in the unconstrained theory of a Cosserat 
surface. However, with the introduction of the constraint 
condition (8) and the relations (10), it does not appear to be 
possible to deduce the results (25)-(26) from (27)-(28) except in 
certain restricted circumstances. For example, since ^ • d = 0 
by (10)i, we could deduce^ (25) from (27), provided Bap and r a 

occur in the argument of $ in (25) in such a way that this condi­
tion is satisfied. I t should be observed that the results (26) in­
clude the couple components Ma, which is of the type ordinarily 
associated with a "couple-stress" theory and to this extent is an 
unsatisfactory property for a conventional shell theory. 

Simmonds and Danielson early in their work concentrate their 
attention to the case in which (see the statements between equa­
tions (39)-(40) in [4]) 

A" = 0, (30) 

and in this situation we can pass from (27) to the results (26 ).9 

With reference to the constitutive equation (27) for a Cosserat 
surface, we now choose the special values 

d = N, D = A3 (31) 

and recall from equation (7) of [4] (in a slightly different nota­
tion) the expression 

N,« = - B x a A \ 

We observe that the constraint condition (8) is satisfied with d a 
constant. Moreover, since d - M a = 0, we recover (30) using 
(10)i and (22). Then, with the help of invariance conditions 
under superposed rigid-body motions, ^ in (27) reduces to the 
form 

9 Simmonds and Danielson [4], in addition to (30), also impose the 
restrictions ya = 0 and Tap — Tpa which are not necessary for our 
present purpose. 
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<A = ${?<#, 7m Baf); Aafl, Baft), (32) 

and the results (26)1,2,3 follow. 
In addition to (30), Simmonds and Danielson [4] also add the 

restrictions 

r « 3 = Tf,m ya = 0, (33) 

which imply that N coincides with the unit normal a3 and that 
to is no longer independent of v in view of (23)2. In this way, they 
suppress the effect of "transverse shear" deformation, but also 
avoid retaining the effect of the third component of the couple 
M ° around the normal to the surface. This special form of the 
theory also follows from the restricted theory discussed by Naghdi 
[3, Sections 10 and 15] employing methods similar to those used 
above in deriving the special constrained theory. To see this, 
we recall tha t the rate of work by tangential couple vector M and 
the assigned tangential couple vector i which occur in the energy 
equation of the restricted theory are 

lvl-w, l w , (34) 

where w = A3 and all symbols are those defined in [3]. Since 
a3-a3 = 0, it follows that an angular velocity vector u = <o(0a, t) 
exists such that 

w = w X a8. (35) 

Now, if we identify a3 X M" with M a , a3 X 1 with t and the 
angular velocity o) with to, a 1-1-correspondence holds between all 
field equations of the mechanical theory in [4] under the condi­
tions (30), (33) and the corresponding equations of the restricted 
theory in [3].10 Moreover, the rate of work terms in (34) become 

M-w = M u X ai = aj X M-d) = M o , 

with a similar reduction for I • w. 
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