
Design and Implementation of Application-Level
Multicasting Services over ATM Networks�

Sung-Yong Park1, Jihoon Yang1, and Yoonhee Kim2

1 Department of Computer Science and Engineering
Sogang University, Seoul Korea

{parksy,jhyang}@ccs.sogang.ac.kr,
2 Department of Computer Science

Sookmyung Women’s University, Seoul Korea
yulan@cs.sookmyung.ac.kr

Abstract. The ACS (Adaptive Communication System) is a multi-
threaded message-passing system that provides application programmers
with multithreading and flexible communication services. This paper out-
lines the general software architecture of ACS and describes how the
ACS architecture is applied to implement its flexible application-level
group communication services. We provide the performance results of
ACS multicasting services and compare them with those of p4, PVM,
and MPI.

1 Introduction

The Adaptive Communication System (ACS) [1] is a multithreaded message-
passing system that provides users with multithreading and dynamic commu-
nication services (e.g., point-to-point and group communication services). The
ACS capitalizes on thread-based programming model to overlap computation
and communication, and develop a dynamic message-passing environment with
separate data and control paths. This leads to a flexible and scalable message-
passing environment that can support multiple communication algorithms (e.g.,
error control, flow control, multicasting algorithms) and interfaces at runtime.
This paper primarily focuses on the flexible, scalable, and application-level group
communication services provided by ACS.

The group communication services provided by current message-passing sys-
tems have several drawbacks. First of all, some message-passing systems (e.g.,
PVM) implement group communication operations (e.g., collective communica-
tion) by repeatedly calling send routines for portability, which is computation-
ally expensive and not scalable for groups with large members. Although the
tree-based multicasting operations can be implemented at the source level, this
process is cumbersome and prone to errors. Second, their communication primi-
tives are static, which means that they are not able to adapt to rapidly changing
� The publication of this paper was supported in part by Institute for Applied Science
and Technology of Sogang University

M.H. Shafazand and A M. Tjoa (Eds.): EurAsia-ICT 2002, LNCS 2510, pp. 479–486, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



480 S.-Y. Park, J. Yang, and Y. Kim

network dynamics. The ability to adapt to varying network conditions is one
of the important features that need to be supported in the communication sys-
tems, especially for wide-area computing. Third, in traditional message-passing
systems, the transfer of control and data are usually tightly coupled. For a large
number of small groups, this results in generating a large amount of control traf-
fic associated with group operations and potentially decreases the performance
of applications. There have been several distributed computing software systems
specially designed to support group communication services such as Horus [5],
Totem [6] and Transis [7]. However, most of them are designed to support special
functionalities (e.g., fault tolerance, message ordering, virtual synchrony, group
partition) rather than to provide high throughput or scalable group communi-
cation services. They fail to address the issues mentioned above.

The group communication services in ACS are based on the dynamic group-
ing. Each ACS process can dynamically create, join or leave a group during the
lifetime of the process. The multicasting operation in ACS is implemented by
using a spanning tree (e.g., binary tree) and this is more efficient than repeti-
tive techniques for large group size. The multicasting tree is virtually created at
the application level upon unicast connections using the application specific per-
formance metric (e.g., topology, latency, or bandwidth). The ACS architecture
which separates the data and control transfer allows the multicasting operations
to be implemented efficiently by utilizing the control connections when transfer-
ring status information (e.g., membership change, acknowledgment to maintain
reliability etc.). This separation optimizes the data path and thus improves the
performance of ACS applications.

The rest of the paper is organized as follows. We begin by providing an
overview of the ACS architecture in Section 2. Section 3 presents an implemen-
tation approach to the ACS group communication services. Section 4 compares
the multicasting performance of ACS with those of other message-passing sys-
tems such as p4 [2], PVM [3], and MPI [4]. Section 5 contains the summary and
conclusion.

2 Overview of ACS Architecture

ACS is a multithreaded message-passing system that provides multithreading
(e.g., thread synchronization, thread management) and communication services
(e.g., point-to-point communication, group communication) for High Perfor-
mance Distributed Computing (HPDC) applications with different Quality of
Service (QoS) requirements (See Figure 1). ACS uses multiple Compute Threads
to implement the computations of HPDC applications. These threads use the
ACS primitives to communicate and synchronize with other Compute Threads.
This allows ACS to provide efficient support for fine-grained applications, and to
reduce the propagation delay impact on HPDC applications especially in Wide
Area Network (WAN)-based distributed computing by overlapping computation
and communication.



Design and Implementation of Application-Level Multicasting Services 481

ACS decouples the control and data paths by creating different threads for
both control and data functions. Moreover, the control and data information
from the two paths are transmitted on separate connections. The control threads
implement important control functions such as connection management, flow
control, error control, and configuration management in an independent manner.
The data transfer threads are spawned based on a per-connection basis to perform
only the data transfers associated with a specific connection. The separation of
control and data functions eliminates the process of demultiplexing control and
data packets within a single connection, and allows the concurrent processing of
control and data functions.

S R

MCFC

S

S

R

R

FC MCEC EC

C C

C

C C

C

S RCRCS CRCS

MT MT

User Application

Control

Data

Control Threads
Data Transfer

Threads
Control Threads Data Transfer

Threads

User Application

Communication
Interface

(Socket, ATM API, Trap)

Information
Control Control

InformationData Data

Data Connection

Network Interface Network Interface

Control Connection

FC - Flow Control Thread, EC - Error Control Thread, MC - Multicast Thread

C - Compute Thread, MT - Master Thread

CS - Control Send Thread, CR - Control Receive Thread, S - Send Thread, R - Receive Thread

Adaptive Communication System Adaptive Communication System

Fig. 1. ACS General Architecture

In ACS, multiple flow control (e.g., window-based, credit-based, or rate-
based), error control (e.g., go-back N or selective repeat), and multicasting algo-
rithms (e.g., repetitive send/receive or a multicast spanning tree) are provided
as control threads and programmers activate the appropriate thread when estab-
lishing a connection to meet the QoS requirements of a given connection. This
allows the HPDC programmers to select for a given HPDC application the ap-
propriate flow control, error control, and multicasting algorithms per-connection
basis at runtime.

ACS is designed to support these classes of applications by offering three ap-
plication communication interfaces: 1) Socket Communication Interface (SCI);
2) ATM Communication Interface (ACI); 3) High Performance Interface (HPI).
The SCI is used mainly for providing high portability over a network of com-
puters (e.g., workstations, PCs, parallel computers). The ACI is the application
communication interface that allows programmers to access the inherent features
of ATM network. The HPI is built to achieve high-throughput and low-latency
inter-process communications.



482 S.-Y. Park, J. Yang, and Y. Kim

3 ACS Group Communication Services

ACS group communication services support dynamic groups as shown in Fig-
ure 2. At program startup, a default ACS group, called ACS GRP, is created and
each ACS process in the hostfile joins this group automatically. The first process
specified in the hostfile becomes a Master Group Server (MGS). Each process
that creates a new group with a unique name becomes a Local Group Server
(LGS) of that group by default. The MGS represents the whole LGSs and co-
ordinates the group communication operations between these servers. The LGS
is responsible for multicasting operations within the local group and maintains
the membership information of the local group only. A Global Multicasting Tree
(GMT) is built to connect all the LGSs rooted at the MGS. All the group mem-
bers within the same group are connected by a Local Multicasting Tree (LMT)
rooted at the LGS of that group.

Group ACS_GRP
Hostfile

.

Hostname 1
Hostname 2
Hostname 3

.

B
1

B
2

B
1

B
2

C C

MGS

Local Multicasting Tree

Global Multicasting Tree

P5

P1

P3

P2
P4

(6) (4)

LGS

Data Packet

Control Packet

(5)

(5)

(6)

P1

Local Multicasting Tree

LGS

(4) P2

Data Packet

Control Packet
(5)

(6)

(5)

(6)

Group 2Group 1

Store for
Retransmission

(3) (2)

MGS - Master Group Server, LGS - Local Group Server, P1~Pn - Processes, B1~2 - Buffers

(1)

User Application

ACS_Multicast

Data

Control

Fig. 2. Multicasting in the ACS Environment

The MGS and LGSs periodically exchange the status information of each
group. By having a distributed group server in each group and making it to
manage the local group only, the status traffic can be minimized and the infor-
mation is managed with reliability. Each process that joins a particular group
is identified by the rank within that group. Since ACS group communication
primitives allow the overlapping of different groups, all ACS processes can join
multiple groups at the same time.

When a group is created or destroyed, the MGS updates the GMT based
on the application specific performance metric (e.g., topology, latency or band-
width) and broadcasts the information to all the LGSs over the control connec-
tions. Each LGS updates the group information it is maintaining such as routing



Design and Implementation of Application-Level Multicasting Services 483

information (e.g., left child, right child) and group server information (e.g., iden-
tifier of each group server) after receiving the information from the MGS. Each
LGS in turn broadcasts the group server information to all the members of its
group over the control connections. On the other hand, when a group member
joins or leaves a particular group, the LGS of that group also updates the LMT
and broadcasts the information to all the members of the same group only. Con-
sequently, the information of the MGS and LGSs are visible to all the members
within the global group ACS GRP and the information of the group members
are known only to the members within the same group. Therefore, the GMT
and LMT are built before the multicasting operation is invoked. This reduces
the setup time to perform multicasting operations and thus improves the perfor-
mance. The ACS architecture that separates the control and data path allows
us to implement this scheme efficiently by using the control path to transfer the
membership changes without interfering with the data traffic.

3.1 Multicasting Protocol

ACS group communication primitives support open groups by providing three
classes of multicasting operations: (1) Global Broadcast; (2) Local Broadcast; and
(3) Global Multicast.

The Global Broadcast is used to transmit messages to the entire groups de-
fined in the global group ACS GRP. The Local Broadcast is used to transmit
messages to the all members within the same group. The Global Multicast is
used to transmit messages to the part of the entire groups. For all three opera-
tions, the destination end-point is not the members but the group server. The
configuration information of the destination group (e.g., How many members are
in the group, topology of the group) need not be visible to the multicasting pro-
cess and the destination group server takes care of broadcasting the message to
the its members. Keeping the state information for each member of all different
groups is not efficient and generates a lot of broadcasting traffic whenever the
membership status of a process is changed. In the dynamic group where a lot
of membership changes are expected, the performance of the applications can
be improved by reducing the traffic associated with the transfer of the status
messages.

Since the three classes of multicasting operations are implemented using sim-
ilar schemes, we will provide the algorithm for the Global Broadcasting only. The
multicasting algorithm for the Global Broadcasting consists of six steps as shown
in Figure 2 :

1. When the Compute Thread of a process invokes the ACS mcast() prim-
itive, the Multicast Thread of that process activates the corresponding
Send Thread to transmit an actual message to the MGS.

2. The MGS transmits the received message to the other LGSs using its GMT.
3. If the ACS mcast() is invoked with reliable mode, each LGS that received the

message sends an acknowledgment back to the MGS. The acknowledgment
is merged along the GMT and the MGS should guarantee that all the LGSs
receive the message.



484 S.-Y. Park, J. Yang, and Y. Kim

4. A LGS maintains two buffers. The first buffer is used to assemble the mes-
sages, which are then transferred to the second buffer. The second buffer is
used to retain the messages that have not been correctly received by group
members.

5. Each LGS locally multicasts the message to its group members using its
LMT.

6. If the ACS mcast() is invoked with reliable mode, each member that received
the message sends an acknowledgment back to the LGS. Again, the acknowl-
edgment is merged along the LMT and the LGS should guarantee that all
the members receive the message. If there is any group member which has
not received a message within the timeout period, the LGS of the group
retransmits the message again. This reduces the retransmission traffic from
the source process.

4 Benchmarking Results

In this section, we analyze and compare the performance of ACS with those of
other message-passing systems such as p4, PVM, and MPI in two levels: primitive
performance level and application performance level using Back-Propagation
Neural Network (BPNN) learning algorithm.

4.1 Primitive Performance

Figure 3 shows the performance of broadcasting primitives (e.g., ACS mcast(),
pvm mcast(), p4 broadcast(), and MPI Bcast()) of four message-passing systems
over an ATM network for message sizes from 1 byte to 32 Kbytes. The group
size varies from two to ten.

As we can see from Figure 3, ACS primitive (ACS mcast()) shows the
best performance for various message sizes and group sizes. Furthermore,
ACS mcast() primitive shows almost similar performance for large group sizes
(over six members) as we increase the message size (over 4 Kbytes). In the
ACS mcast() primitive where most of the information for performing group com-
munications (e.g., setup binary tree, setup routing information) is set up in ad-
vance by using the separate connections, the start-up time for the broadcasting
operations is very small. Also, the tree-based broadcasting scheme improves the
performance as the group size gets bigger.

The performance of PVM primitive (pvm mcast()) is not so good for small
message sizes but as the message size and group size increase, it shows better per-
formance. In the pvm mcast() where the broadcasting operation is implemented
by repeatedly invoking a send primitive, the performance is expected to increase
linearly as we increase the group size. Moreover, pvm mcast() constructs a mul-
ticasting group internally for every invocation of the primitive, which results in
the high start-up time when transmitting small messages as shown in Figure 3
(message size 1 byte).



Design and Implementation of Application-Level Multicasting Services 485

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10

T
im

e 
(m

s)

Group Size

Broadcasting Performance over ATM (Message Size = 1 Byte)

ACS
P4 
MPI

PVM

0

5

10

15

20

25

30

35

40

2 4 6 8 10

T
im

e 
(m

s)

Group Size

Broadcasting Performance over ATM (Message Size = 4 KBytes)

ACS
P4 
MPI

PVM

0

10

20

30

40

50

60

2 4 6 8 10

T
im

e 
(m

s)

Group Size

Broadcasting Performance over ATM (Message Size = 8 KBytes)

ACS
P4 
MPI

PVM

0

50

100

150

200

250

2 4 6 8 10

T
im

e 
(m

s)

Group Size

Broadcasting Performance over ATM (Message Size = 32 KBytes)

ACS
P4 
MPI

PVM

Fig. 3. Comparison of Broadcasting Performance over ATM

The p4 primitive (p4 broadcast()) and MPI primitive (MPI Bcast()) shows
comparable performance to ACS for relatively small message sizes and small
group sizes but it is getting worse drastically when it is running for large message
sizes and large group sizes.

4.2 BPNN Learning Algorithm

Training BPNN for character recognition is one of the problems in the Artifi-
cial Intelligence (AI) area which require highly intensive computation. We used
master/slave programming model to parallelize this application. This applica-
tion intensively uses the broadcasting primitives when distributing the weight
vectors to all the slave processes. The BPNN used in this experiment has 100
input nodes, 630 hidden nodes, and 4 output nodes to train 16 input vectors
which represent the hexadecimal digits from 0x01 to 0x0F.

Figure 4 shows the performance comparison of each message-passing sys-
tem running over four homogeneous workstations (e.g., four SUN-4 worksta-
tions running SunOS 5.5 or four IBM/RS6000 workstations running AIX 4.1)
and eight heterogeneous workstations (e.g., four SUN-4 workstations and four
IBM/RS6000 workstations) interconnected by an ATM network.

As we can see from Figure 4, the ACS implementation outperforms other im-
plementations regardless of the platform used. In the BPNN application where
large messages are broadcasted repeatedly, the performance improvement is no-
ticeable and it is widening as we increase the group size. We believe that most



486 S.-Y. Park, J. Yang, and Y. Kim

0

100

200

300

400

500

600

700

SUN IBM

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Workstation Platform

Backpropagation Neural Network (Input Nodes:100, Hidden Nodes:630, Output Nodes:4)

ACS
MPI
P4

PVM

0

200

400

600

800

1000

1200

4 8

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Number of Workstations

Backpropagation Neural Network (Input Nodes:100, Hidden Nodes:630, Output Nodes:4)

ACS
MPI
P4

PVM

Fig. 4. Comparison of Application Performance

of the improvements of ACS are due to the overlapping of communication and
computation and the tree-based broadcasting primitive.

5 Conclusion

In this paper, we have outlined the software architecture of a multithreaded
message-passing system, ACS, and presented how ACS architecture can be ap-
plied to provide flexible and application-level group communication services.
We have evaluated the performance of ACS group communication services and
showed that ACS outperforms other message-passing systems. It is clear that
the ACS novel architecture, which separates the data and control transfer and
tree-based multicasting scheme played an important role in improving the per-
formance of the communication primitives and the ACS applications.

References

1. S. Park and S. Hariri, “ACS: An Adaptive Communication System for Heteroge-
neous Wide-Area ATM Clusters”, Cluster Computing Journal, pp. 229–246, 1999.

2. R. Butler and E. Lusk, “Monitors, message, and clusters: The p4 parallel program-
ming system”, Parallel Computing, Vol. 20, pp. 547–564, April 1994.

3. V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing”, Con-
currency: Practice and Experience, Vol. 2, No. 4, pp. 315–340, December 1990.

4. MPI Forum, “MPI: A Message Passing Interface”, Proc. of Supercomputing ’93,
pp. 878–883, November 1993.

5. R. Renesse, T. Hickey, and K. Birman, “Design and performance of Horus: A
lightweight group communications system”, Technical Report TR94-1442, Cornell
University, 1994.

6. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia and C. A. Lingley-
Papadopoulos, “Totem: A Fault-Tolerant Multicast Group Communication Sys-
tem”, Communications of the ACM, Vol. 39, No. 4, pp. 54-63, 1996.

7. D. Dolev and D. Malki, “The Transis Approach to High Availability Cluster Com-
munication”, Communications of the ACM, Vol. 39, No. 4, pp. 64–70, 1996.


	Introduction
	Overview of ACS Architecture
	ACS Group Communication Services
	Multicasting Protocol

	Benchmarking Results
	Primitive Performance
	BPNN Learning Algorithm

	Conclusion

