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Abstract 

Evidence theory has a strong capacity to deal with epistemic uncertainty, in view of 
the overestimation in interval analysis, the responses of structural-acoustic problem 
with epistemic uncertainty could be untreated. In this paper, a numerical method is 
proposed for structural-acoustic system response analysis under epistemic 
uncertainties based on evidence theory. To improve the calculation accuracy and 
reduce the computational cost, the interval analysis technique and radial point 
interpolation method are adopted to obtain the approximate frequency response 
characteristics for each focal element, and the corresponding formulations of 
structural-acoustic system for interval response analysis are deduced. Numerical 
examples are introduced to illustrate the efficiency of the proposed method. 

Key words: Structural-acoustic system response analysis; Evidence theory; Radial 
point interpolation method; Interval analysis; Finite element method; Epistemic 
uncertainty 

Introduction  

In the last two decades, with the increasing of people’s interest in the performance of 
NVH (noise, vibration and harshness), researches on the structural-acoustic field have 
been experienced a rapid development in engineering [1-3]. In most engineering cases, 
the structural-acoustic problems have been analysed by Probabilistic methods, in 
which the probability distribution, the boundary conditions and the external loads are 
defined unambiguously. However, due to the effects of manufacturing/assembling 
errors, original algorithm defect, imprecise environment factors and external 
excitations, uncertainties associated with geometric tolerances, material properties 
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and boundary conditions are unavoidable [4,5]. Generally, uncertainty can be divided 
into epistemic and aleatory categories based on the source of uncertainty. Epistemic 
uncertainty is related to the incomplete knowledge or imprecise information in any 
activity, which can be reduced by collecting more knowledge or experimental data. 
Aleatory uncertainty, on the other hand, derives from inherent variation in a physical 
system or environment, which is always regarded as random variables in probability 
theory [6]. Numerous mathematical theories or methods are developed to deal with 
the structural-acoustic problems under epistemic uncertainties, including possibility 
theory, D-S evidence theory, Bayesian theory, interval analysis, p-box method, 
Monte–Carlo method, spectral stochastic method, etc [7-9]. 

Among the approaches above, evidence theory seems to be more capable or more 
flexible to define epistemic uncertainty in the practical engineering problems. 
According to the D-S theory, it defines BPAs (basic probability assignment) to each 
focal element, which can provide corresponding formulations as possibility theory. 
Besides, the basic axioms in evidence theory can also deal with hybrid uncertainties 
in which aleatory and epistemic uncertainties combined in a very natural way. Thus, 
evidence theory has been widely used in artificial intelligence related fields and has 
been extended to conduct engineering structures and mechanical systems design, and 
reliability analysis, recently. The benefits and drawbacks of evidence theory in 
reliability analysis were summed by Oberkampf and Helton through a simple 
algebraic function [10]. An evidence-theory-based reliability analysis method was 
developed by Jiang et al., in which the concept of focal element was proposed firstly 
[11,12]. H. R. Bae proposed an efficient method based on evidence theory for 
reliability analysis using a multi-point approximation [13,14]. Helton et al. combined 
evidence theory with sampling-based sensitivity analysis when determining the 
epistemic uncertainty in model inputs [15]. A non-probability convex model was 
created by Elishakoff et al. to handle uncertain problems without sufficient 
information [16]. Qiu et al. proposed an interval perturbation method for narrow 
parameter intervals due to the unpredictable effect of neglecting the higher order 
terms of Taylor series or Neumann series [17]. An exploration of evidence theory has 
been conducted by J. C. Helton by using three uncertain quantification methods to 
address the challenge problems at model predictions [18]. An evidence-theory-based 
interval method was proposed by Rao et al. to analyse uncertain structural systems 
[19]. The application of fuzzy set theory in finite element method had developed the 
fuzzy finite element method (FFEM) for non-deterministic models [20–23]. Bae et al. 
applied an efficient method under a multi-point approximation to process 
evidence-theory-based reliability analysis [24,25]. The evidence theory and Bayesian 
theory were used for decision-making problems to compare the effectiveness of 
uncertainty quantification [26]. 

The response characteristics of structural-acoustic system is one of the hot points in 
noise prediction, which is important for NVH performance in engineering design and 
manufacturing [27]. From the works above, some inspiring progresses have been 
made for the response analysis of structure-acoustic coupling system with epistemic 
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uncertainties and evidence-theory-based reliability analysis. However, from an 
overall perspective, research on the hybrid uncertain analysis and response 
characteristics of complex system are still at the very beginning. Moreover, some 
crucial issues have not yet been solved [28]. Traditional numerical methods for the 
structural–acoustic problems are possibility theory or FEM (Finite Element method) 
in which the parameters are always regarded as random variables and the probability 
distributions are defined unambiguously. This assumption would ignore the influence 
of uncertainty and correlation in complex system [29].  

In this paper, an evidence-theory-based radial point interpolation method (DSRPIM) 
is proposed for structure-acoustic coupling system under epistemic uncertainties, 
which can acquire the frequency response characteristics of complex system. The 
remainder of this paper is organized as follows. In chapter 2, the fundamentals of 
evidence theory are introduced. The equilibrium equation for structure-acoustic 
coupling system is deduced in chapter 3. In chapter 4, DS-RPIM is proposed to 
predict the frequency response characteristics of structural-acoustic problems. Two 
numerical examples are investigated in chapter 5. In chapter 6, some conclusions are 
given. 

1. Evidence theory 
1.1. Fundamentals of evidence theory 

Evidence theory, also called as DS (Dempster-Shafer) theory, was firstly introduced 
by Dempster through studying statistical problems in 1976. And further developed by 
Shafer who defined probability to make it more suitable for general cases [30]. 
Compared with probability theory, evidence theory uses a prior probability 
distribution to get a posterior evidence interval, which quantifies the belief and 
plausibility of each proposition to handle the uncertainty in system response.  

As probability theory, evidence theory firstly defines FD (a frame of discernment) Θ, 
which contains a set of mutually exclusive propositions. 2Θ is a non-blank finite set 
that always denotes the power set of Θ, which means all possible various propositions. 
For example, if the frame of discernment Θ includes three mutually exclusive 
elementary propositions X1, X2 and X3, the power set of Θ can be illustrated as follows 

              2Θ = {Ø,{X1},{X2},{X3},{X1,X2},{X1,X3},{X2,X3},{X1,X2,X3}}            (1) 

In evidence theory, the probability is assigned not only to a single matter but also to 
any subset of possible propositions. m: 2Θ → [0, 1], called as the BPAF (basic 
probability assignment function) of Θ, defines the elementary belief of each 
proposition, which should satisfy the following three theorems 

Theorem 1: 0)( ≥Am  for any A∈2Θ 

Theorem 2:  m(Ø) = 0 
Theorem 3: ∑

Θ⊂

=
A

Am 1)(  
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where m(A) represents the corresponding BPAs of A. And every set A satisfying 
m(A) ≧0 can be defined as a focal element.  

It is hard to construct a precise PDF (probability density function) for proposition A 
because of the insufficient information or knowledge. Thus, it seems more reasonable 
to provide a confidence interval instead of a deterministic value to depict the total 
degree of belief in a proposition. In general, evidence theory uses the belief and 
plausibility to quantify the lower and upper bounds of an interval [Bel(A), Pl(A)], 
which is defined as 

                    )()()( Θ⊂∀= ∑
⊆

ABmABel
AB

                            (2) 

                    ∑
≠

=
φBA

BmAPl


)()(                                        (3) 

where Bel: 2Θ → [0, 1] is called as belief which is obtained by adding the evidence of 
propositions in A. Meanwhile, Pl: 2Θ → [0, 1] is the summation of BPAs that belong 
to the propositions of A totally or partially, which is defined as the Plausibility 
function of Θ. 

1.2. Characteristic function with interval variables based on DS theory  

Considering a general function with q-dimensional independent variables 

                  qiXXXfY i ...,,2,1,)( =∈=                       (4) 

Similar to the probability theory, the uncertain parameters are generally seen as 
relatively independent and the joint frame of discernment S is defined as 

         },...,2,1,],,...,,[{... 2121 qjXxxxxsXXXS jjqkq =∈==×××=      (5)  

where sk and xj represent the focal element of joint FD and the focal element of the jth 
evidence variable, respectively. The joint BPAs can be expressed as 

                     















= ∏

=

otherwise

xm
sm

q

j
j

ks

,0

)(
)( 1                          (6)                                           

In probability theory, the mean value E(X) and the evidence variable l
iX  are 

relatively independent. However, the evidence variable l
iX  is an interval rather than 

a deterministic value. Thus, E(X) and l
iX  are related rather than independent. Based 

on the concepts mentioned above, considering the overestimation phenomenon in 
interval analysis, the characteristic function of evidence variables are provided below 
[31]. 
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1.2.1. The relevant expectance E(X) 

Through the analysis above, the relevant expectance )( iXE is expressed as  

                     ∑
≠
=

=
n

ij
j

l
ji nXXE

1
/)(                                (7) 

where n is the amount of evidence variables. l
jX is the others except l

iX . 

1.2.2. The relevant variance )(, XD  

Similar to the expectance E(X), the overestimation characteristics is also exited in the 
variance D(X) calculation. To eliminate the phenomenon above, expanding the E(X), 
the variance formula is defined as 

    
)()))(...)(

)()(...)()((()(

2
11

1
112211

l
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l
n

l
n

l
i
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i

n

i

l
i
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lllll
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XmXmXXmX

XmXXmXXmXXmXXXD

+++

++++−=

++

=
−−∑      (8) 

where l
iX is the ith evidence variable and )( l

iXm is the corresponding BPAs. 

Obviously, D(X) changes with the change of Xi in the interval [Bel(A), Pl(A)]. Thus, 

the relevant variance )(' XD can be defined as 

           )())/(
)(
)1(()(' 2

11

2
l
i

n

ij
j

l
j

n

i

l
i XmnXX

nn
nnXD ∑∑

≠
==

−
−
+−

=
β
β               (9) 

where β is the interval correction coefficient and its range is from 0.01 to 0.30. The 
coefficient factor ∂  is introduced to the relevant variance, which is expressed as   

                       
)(
)1(2

β
β

−
+−

=∂
nn

nn                             (10) 

So, the relevant variance formula is rewritten as 

               )())(()(' 2

1

l
ii

n

i

l
i XmXEXXD −∂=∑

=

                      (11) 

1.2.3. The relevant covariance ),( 21
' XXCov  

Similarly, the co-relevant expectance )(' iXE  is introduced for covariance Cov(X1, 

X2), which is defined as 
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≠
=

=
n
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l
ji XmXXE
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' )()(                          (12) 

By introducing the coefficient factor δ to covariance, the relevant covariance 

),( 21
' XXCov  can be expressed as 

     )())(())((),( 212
'

221
'

1 1
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l
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where )( 1
1

1
l
iXm

n
n

−
−

=
ε

δ , )( 2
2

2
l

jXm
m

m
−

−
=

ε
δ , ɛ1 and ɛ2 are the interval 

combined coefficients whose range is from 0.01 to 0.25.  

2. FEM/RPIM for structural-acoustic coupling system 

In this paper, the coupled FEM/RPIM method is proposed to solve the 
structural-acoustic field problem, in which the FEM/RPIM model is used to simulate 

the plate structure and the acoustic medium. Due to the 0c  continuity characteristic 

of fluid element, the Reissner-Mindlin plate is elected to the plate structure, in which 
the normals to the mid-plane of the plate remain straight during the deformation[32]. 
And the acoustic medium satisfies the linear constitutive equations which is assumed 
to be inviscid and incompressible. On the interface of the plate and the acoustic 
medium, only the acoustic medium exerts the normal loads on the plate and the 
normal displacement of the plate is just coupled with the acoustic medium[33]. 

2.1. FEM/RPIM model of the plate structure 

In the frequency domain, without considering structural damping, the steady-state 
dynamic equation Galerkin weak form of the plate structure can be defined as 

             
∫∫

∫∫ ∫

ΩΩ∂

ΩΩ Ω

=Ω−+

Ω+Ω+Ω

0

..
2

dbdSt

dtdDdD

s
T

s
T

T
s

T
b

T

dµdµ

µωρdµγdγκdκ
                (14) 

where μ is the displacement, 
..
µ is the acceleration, ρ is the material density, t is the 

thickness of plate element, ts is the surface loading plate structure and bs is volume 
force, respectively.  

γ  and κ  are the plate shear strain and bending strain, respectively, which can be 

expressed as: 
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                       T
yx y

w
x
w ][ θθγ −

∂
∂

−
∂
∂

=                        (15) 

                 Tyxyx

xyyx
)]([

∂

∂
=

∂
∂

−
∂

∂
−

∂
∂

−=
θθθθκ                    (16) 

Ds and Db are the transverse shear stiffness constitutive matrix and the bending plate 
stiffness constitutive matrix, respectively, which are written as: 

                        







+

=
10
01

)1(2 ν
νEtDs                          (17) 

                    












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





−
−

=

2
100

01
01

)1(12 2

3

ν
ν

ν

ν
EtDb                      (18) 

where E is the Young’s modulus, v is the Poisson’s ratio and v=5/6 is the shear 
correction factor, respectively. 

From Eqs.(15-18), we can get that µ
ν
κ









=









s

b

B
B

, the steady-state dynamic equation 

of the plate structure is defined as 

                         bf FFuMKu +=−
..

                        (19) 

where K denotes the plate stiffness matrix which is given as  

             ( ) ( )T T
s s s sb b b bd d

Ω Ω
= + = Ω+ Ω∫ ∫K K K B D B B D B             (20) 

Kb denotes the the bending stiffness matrix, Ks denotes the shear stiffness matrix, M 
denotes the plate element mass matrix, M is defined as  

                    ∫Ω Ω= QdtttdiagQM T ]
1212

[
33

ρ                     (21) 

Ff  and Fb are the surface load matrix and a volume force array, which are expressed 
as 

                         dStQF s
T

f ∫ Ω∂=                            (22) 
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                         ∫Ω Ω= dbQF s
T

b                            (23) 

2.2. FEM/RPIM model for the acoustic medium 

In the engineering application, the fluid is generally regarded as compressible and 
inviscid which is seen to undergo small translational movement[34]. Considering an 

acoustic field problem with domain fΩ  and boundary bΓ , the speed of sound c  

and the field acoustic pressure p are provided, the acoustic wave equation is defined 
as 

                   
2

2 2

1 0,pp
c t

∂
∆ − =

∂
 in fΩ                          (24) 

where ∆  is the Laplace operator, p is the field acoustic pressure, c and t are the 
speed of sound traveling in the fluid medium and its time, respectively.  

The boundary condition of acoustic field is written as                                                      

                          0. =∇ np , on Fb                                         

(25) 

where n denotes the boundary surface normal to the acoustic fluid domain. 

On the interface between the plate structure and the acoustic medium, the momentum 
balance requires that 

                      funp
..

. ρ−=∇  on fΩ                          (26) 

where ρ is the density of acoustic medium, fu
.. is the normal acceleration component 

of acoustic fluid on the interface and fΩ  is the interface between the plate structure 

and acoustic fluid. 

If the acoustic pressure p is regarded as a time harmonic variable, the Eq.(24) can be 
re-written as  

                           2 2 0p k p∇ + =                           (27) 

where /k cω=  represents the wavenumber, ω is the angular frequency, c denotes the 
sound speed. 

The smoothed Galerkin weak form for acoustic problems can be expressed as 
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∫∫∫∫ ΩΩ∂ΩΩ

=Ω
∂

∂
ΨΨ−ΓΨ−ΩΨΨ+ΩΨ∇Ψ∇− 0....1.

..

2 d
t

q
PduPPd

c
Pd f

f
sf

ρ
   (28) 

where fq is the additional load of unit volume andψ expresses the shape function 

matrix of FE-RPIM. 

For numerical computation, the acoustic wave equation should be discretized by 
using the Radial Point Interpolation method[35]. This leads to the discreted equation 
of node sound pressure p which is re-written as  

                         
PNpNp f

m

i
ifi
==∑

=1

                       
(29) 

where p is the vector of nodal pressure, m expresses the number of nodal variables 

per element, and fN denotes the FE-RPIM shape function of fluid domain. 

By substituting Eq.(29) into Eq.(28), the matrix form equation of acoustic domain can 
be obtained as  

                       f f f+ =K p M p F                              (30) 

where fK  is the acoustic stiffness matrix and it can be expressed as  

                           T df f fΩ
= Ω∫K B B                         (31) 

fB  denotes the smoothed gradient matrix that is defined as 

                      
1, 2, ,

1, 2, ,

1, 2, ,

...

...

...

 
 =  
  

x x M x

f y y M y

z z M z

Ψ Ψ Ψ
B Ψ Ψ Ψ

Ψ Ψ Ψ

                       
(32) 

fM is the acoustic mass matrix and it is written as 

                         T
2

1
f d

c Ω
= Ω∫M Ψ Ψ                           (33) 

p denotes the nodal pressure of the acoustic domain, which can be expressed as 

                        T
1 2{ , , , }np p p= p                            (34) 
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sF  and fF  are the vectors of nodal acoustic forces that are given as 

                       ∫
Ω∂

ΓΨΨ=
sf

dF T
s .ρ                             (35) 

                      
∫Ω Ω

∂

∂
Ψ= d

t
q

F fT
f

                            
(36)

 

2.3. Coupled FEM/RPIM for structural-acoustic problem 
Considering that the structural domain sΩ coupled with fluid domain fΩ on the 
interface sfΩ , the boundary conditions of structural-acoustic coupling system are  
denoted by bΓ , uΓ and tΓ which are illustrated in Fig.1. In this section, the coupled 
FEM/RPIM equation is proposed for structural-acoustic problem. 

 

Figure 1. Schematic illustrating of the structural-acoustic system 

The fluid particle and the structure move in the normal direction of the interface are  
written as 

 

                            
s s f fu u=n n                            (37) 

where n is the normal vector, us is the displacement of structure on the interface and 
uf is the displacement of fluid contacting the structure. 

On the interface, based on the continuity and equilibrium conditions, we obtain that 

n=nf=-ns[36]. The fluid force loading on the structure Fs can be expressed as   

                 
( )

sf sf

sf

T T
s f f

T
f f f

s s s s f

s

d d

d

n ps
Ω Ω

Ω

= Γ = Γ

= Γ

∫ ∫

∫

F N N

N n N

n

p���������������������������������������������������������������
                  

(38)
 

The structural force loading on the fluid Ff is also expressed as  
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..

....

)( ssf
T
f

s
T
ff

T
ff

udNnN

duNduNF

sf

sfsf

∫
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Ω

ΩΩ

Γ−=

Γ−=Γ−=

ρ

ρρ
                     (39)  

The spatial coupling matrix H can be defined as  

                          sf
s f f dS

Ω
= ∫H N n N

                        
(40)

  

By substituting the Eq.(40) into Eq.(38) and Eq.(39), the equations are rewritten as 

                     s f s
Tρ= = − F Hp F H u������������������������������������������������������������������ �                    

(41) 

Thus, the governing equation for coupled structure-acoustic system is expressed as  

                  

0
0

ss
T

f f f

s

ρ
−        

+ =        
        





M K H Fu u
H M K Fp p                 

(42)
  

Assuming that the displacement and pressure are all time-harmonic[37], Eq.(42) can 
be rewritten as    

                   

2

2 2T
f f

ss

f

ω
ρω ω

 − −     =    −      

FK M H u
FH K M p                    

(43) 

To simplify the process of analyzing the FE/RPI equation of the structural-acoustic 
system[38,39], we rewrite Eq. (43) into the following form 

                            FZU =                               (44)  

where Z is the structural-acoustic dynamic stiffness matrix, U is the response vector 
and F is the external excitation vector which can be expressed as 

           ][,][,22

2

fs
T

s
ff

T FFFpuU
MKH

HMK
Z ==






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
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

−

−−
=

ωρω

ω
        (45)                     

                                

3. DS-FE/RPIM for epistemic uncertainty structural-acoustic problem 

Discretizing the structural-acoustic coupling system, the discretization form of the 
structural-acoustic dynamic stiffness matrix Z and the external excitation vector F can 
be rewritten as  
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where N denotes the number of plate elements and NA denotes the number of 
acoustic field elements, respectively. 

According to D-S evidence theory, the FPD of the dynamic stiffness matrix and the 
external excitation vector in evidence focal element are expressed as 
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where m
ikX  is the interval variable which denotes the kth focal element of the ith 

evidence variable. 

Combined with the interval perturbation theory, ignoring the higher order 
perturbation[40], the approximate formula of node pressure response is defined as 
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where m
ikp  is the node pressure and ΔeI=[-1, 1]. 

According to Eq.(51), the estimated value of I
ikp∆  interval radius is expressed as 
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Based on the value range of evidence vector, under the effects of the evidence 

variable Xik, the upper and lower bounds of the node pressure response value m
ikp  

can be write as
  

                          ik
m
ik

U
ik ppp ∆+=                            (53) 

                         ik
m
ik

L
ik ppp ∆−=                             (54) 

By substituting Eq.(53) and Eq.(54) to Eq.(7), the expectance interval of the 
steady-state sound pressure response can be expressed as 
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where I is the number of the evidence variables and n denotes the number of focal 
elements, respectively. 

By substituting Eqs.(53-56) to Eq.(9), the deviation interval of the sound pressure 
response is expressed as 
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4. Numerical example       

 
In this section, a 3D structural-acoustic problem is provided to verify the approach 
mentioned above. A square flexible plate model coupled with the acoustic field of 
dimensions 500×500×500mm is depicted in Fig.2. The plate structure is discretized 
by 144 four-node quadrilateral elements and the acoustic field is discretized by 1152 
eight-node hexahedron elements. The acoustic field is surrounded by five rigid walls 
and a flexible plate. The plate is excited by a unit normal harmonic point force at the 
middle point and the boundary conditions for it are: w = 0, and θx and θy are free at 
the edges.  
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Figure 2. A cubic structural-acoustic coupling model
 The density ρs and the Poisson’s ratio v of the plate are 2.5×103 kg/m3 and 0.37, 

respectively. The sound speed of the air in the acoustic field c is 346m/s. The Young’s 
modulus and the thickness of the plate, the density of the air in the acoustic field are 
considered to be the independent uncertain parameters which are treated as evidence 
variables. To compare with the probability method, assumed that the evidence 
variables are the truncated normal distribution: μ(E)=21×104Mpa, σ(E)=0.84×104 

Mpa, μ(ρf)=1.30 kg/m3, σ(ρf)=0.03kg/m3 and μ(t)=1.25mm, σ(t)=0.05mm. The BPA 
of uncertain parameters with 4, 8 and 16 focal elements are given in Table 1. 
Simulations of the cubic structural-acoustic coupling model are carried out by 
MATLAB R2009a on a 3.30 GHz Xeon(R) CPU E3 1230 v3.  

Table 1. The BPA for uncertain parameters with 4, 8 and 16 focal elements 

focal 
elements 

E (104 MPa) fρ  (kg/m3) t (mm) 

focal element BPA focal element BPA focal element BPA 

4 

[18.50, 19.75] 6.69 [1.21, 1.26] 6.55 [1.10, 1.18] 6.55 
[19.75, 21.00] 43.16 [1.26, 1.30] 43.30 [1.18, 1.25] 43.30 
[21.00, 22.25] 43.16 [1.30, 1.34] 43.30 [1.25, 1.33] 43.30 
[22.25, 23.50] 6.69 [1.34, 1.39] 6.55 [1.33, 1.40] 6.55 

8 

[18.50, 19.13] 1.13 [1.21, 1.23] 1.08 [1.10, 1.14] 1.09 
[19.13, 19.75] 5.56 [1.23, 1.26] 5.45 [1.14, 1.18] 5.46 
[19.75, 20.38] 16.00 [1.26, 1.28] 15.98 [1.18, 1.21] 15.97 
[20.38, 21.00] 27.16 [1.28, 1.30] 27.34 [1.21, 1.25] 27.33 
[21.00, 21.63] 27.16 [1.30, 1.32] 27.34 [1.25, 1.29] 27.33 
[21.63, 22.25] 16.00 [1.32, 1.35] 15.98 [1.29, 1.33] 15.97 
[22.25, 22.88] 5.56 [1.35, 1.37] 5.45 [1.33, 1.36] 5.46 
[22.88, 23.50] 1.13 [1.37, 1.39] 1.08 [1.36, 1.40] 1.09 

16 

[18.50, 18.81] 0.31 [1.21, 1.22] 0.30 [1.10, 1.12] 0.29 
[18.81, 19.13] 0.82 [1.22, 1.23] 0.79 [1.12, 1.14] 0.78 
[19.13, 19.44] 1.86 [1.23, 1.24] 1.82 [1.14, 1.16] 1.82 
[19.44, 19.75] 3.69 [1.24, 1.26] 3.64 [1.16, 1.18] 3.64 
[19.75, 20.06] 6.38 [1.26, 1.27] 6.35 [1.18, 1.19] 6.35 
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[20.06, 20.38] 9.62 [1.27, 1.28] 9.63 [1.19, 1.21] 9.63 
[20.38, 20.69] 12.65 [1.28, 1.29] 12.71 [1.21, 1.23] 12.72 
[20.69, 21.00] 14.52 [1.29, 1.30] 14.61 [1.23, 1.25] 14.62 
[21.00, 21.31] 14.52 [1.30, 1.31] 14.61 [1.25, 1.27] 14.62 
[21.31, 21.63] 12.65 [1.31, 1.32] 12.71 [1.27, 1.29] 12.72 
[21.63, 21.94] 9.62 [1.32, 1.33] 9.63 [1.29, 1.31] 9.63 
[21.94, 22.25] 6.38 [1.33, 1.35] 6.35 [1.31, 1.33] 6.35 
[22.25, 22.56] 3.69 [1.35, 1.36] 3.64 [1.33, 1.34] 3.64 
[22.56, 22.88] 1.86 [1.36, 1.37] 1.82 [1.34, 1.36] 1.82 
[22.88, 23.19] 0.82 [1.37, 1.38] 0.79 [1.36, 1.38] 0.78 
[23.19, 23.50] 0.31 [1.38, 1.39] 0.30 [1.38, 1.40] 0.29 

The relevant expectance and standard deviation of the sound pressure response at the 
points with the distances of 50mm, 100mm, 150mm, 200mm, 250mm, 300mm, 
350mm, 400mm, 450mm and 500mm are calculated. In Fig. 3, the results of 
frequency 100 Hz are depicted. The lower and upper bounds of the relevant 
expectance and standard deviation of the sound pressure response at the Point 1 with 
the distance of 400mm in the frequency range of 20 to 200 Hz are plotted in Fig. 4. 
The results obtained by the Monte Carlo method with 100000 samples are used as the 
reference. From Fig. 3 and Fig. 4, when the uncertain parameters are treated as 
evidence variables, the relevant expectance and standard deviation of the sound 
pressure response are intervals. Besides, the lower and upper bounds of the relevant 
expectance and standard deviation contain the reference. With the number of focal 
elements increasing, the width of the expectance and standard deviation will be 
decreased. Because of each evidence variable follows the truncated normal 
distribution in which the BPA of focal element is the cumulative probability 
distribution in the corresponding interval. With the amount of information increasing, 
the evidence uncertainty could be reducible. Thus, the analysis results will more 
approach to the probability computational results with more BPAs in a certain interval 
range. In the numerical example, the precision and effectiveness of the proposed 
approach for structural-acoustic fields with epistemic uncertainty is validated by 
comparing the analysis results with evidence variables to the probability 
computational results.  

Figure 3. Bounds of the relevant 
expectance and standard deviation of the sound  

pressure response with 4, 8 and 16 focal elements (100Hz) 
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Figure 4. Bounds of the relevant expectance and standard deviation of the sound 
pressure response at the Point 1 under 4, 8 and 16 focal elements (20 - 200 Hz) 

Assuming that x is an evidence variable and X denotes the sound pressure response, 
the belief Bel (X ≤ x) and the plausibility Pl (X ≤ x) of the sound pressure response at 
the Point 2 for the frequency 100 Hz are depicted in Fig. 5. The probability density 
function (PDF) of probability computational results obtained by the Monte Carlo 
method with 100000 samples are also regarded as the reference. From Fig.5, the 
PDFs are surrounded by the Bels and the Pls. Furthermore, with the number of focal 
elements increasing, the width between Bel and Pl will be decreased which further 
indicates the precision and effectiveness of the proposed method. 

 

Figure 5. Cumulative probability distribution of the sound pressure response 
at the Point 2 (100Hz) 

Conclusions 

In this paper, an evidence-theory-based approach is proposed for structural-acoustic 
problem with epistemic uncertainty. The evidence theory is used to handle the 
epistemic uncertainty in which there is no enough information or sufficient 
knowledge to construct the precise probability distribution for uncertain parameters. 
The numerical example of a plate structure-acoustic coupling system is investigated. 
The conclusions are as follows:  
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(1) The overestimation phenomenon, which derives from the correlation between 
parameters, is widely existent in the analysis of complex systems. The proposed 
method is suggested to overcome the characteristic of overestimation. The results of 
the numerical example shows that the proposed approach is much more efficient than 
the original method as the focal elements increases. Therefore, we can control the 
form, size and quantity of focal element to improve the analytical accuracy in 
practical applications.  

(2)  The relevant expectance, standard deviation and probability density distribution 
of sound pressure response are intervals not deterministic values. As the amount of 
information and knowledge increasing, the epistemic uncertainty could be eliminated. 
In other words, the bandwidths of the relevant expectance, standard deviation and 
probability density distribution of sound pressure response will be narrower which 
means the analysis results will more approach to the probability computational 
results.  

It should be noted that this paper is focused on the epistemic uncertainty. In practical 
engineering problems, epistemic uncertainty and aleatory uncertainty may exist 
simultaneously. Thus, in further research, on the one hand, the hybrid evidence 
variables and random variables involved in structural-acoustic field will be 
investigated. On the other hand, the proposal method could be widely applied in  
engineering fields, such as dynamic thermal field analysis, thermal-coupling field 
analysis, heat-pressure field analysis and so on.   
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