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A Hybrid Sensitivity Analysis for
Use in Early Design
Sensitivity analyses are frequently used during the design of engineering systems to
qualify and quantify the effect of parametric variation in the performance of a system.
Two primary types of sensitivity analyses are generally used: local and global. Local
analyses, generally involving derivative-based measures, have a significantly lower com-
putational burden than global analyses but only provide measures of sensitivity around a
nominal point. Global analyses, generally performed with a Monte Carlo sampling ap-
proach, and variation-based measures provide a complete description of sensitivity but
incur a large computational burden and require information regarding the distributions
of the design parameters in a concept. Local analyses are generally suited to the early
stages of design when parametric information is limited, and a large number of concepts
must be evaluated (necessitating a light computational burden). Global analyses are
more suited to the later stages of design when more information about parametric dis-
tributions is available and fewer concepts are under consideration. Current derivative-
based local approaches provide a different and incompatible set of measures than a
global variation-based analysis. This makes a direct comparison of local to global mea-
sures ill posed. To reconcile local and global sensitivity analyses, a hybrid local
variation-based sensitivity (HyVar) approach is presented. This approach has a similar
computational burden to a local approach but produces measures or percentage contri-
butions. The HyVar approach is directly comparable to global variation-based ap-
proaches. In this paper, the HyVar sensitivity analysis method is developed in the context
of a functional based behavioral modeling framework. An example application of the
method is presented along with a summary of results produced from a more comprehen-

sive example. �DOI: 10.1115/1.4001408�
Introduction
Investigating the sensitivity of concept performance with re-

pect to variation is an important task during the design of sys-
ems. High sensitivity to parameters that are noisy can lead to
oor or unexpected performance. However, parameters with high
ensitivities can also be used as tuning variables as changing them
esult in significant performance changes. As a result, knowledge
f the relative sensitivity of design parameters can be as important
s performance predictions when evaluating and selecting con-
epts during the early stages of the design process. Having sensi-
ivity information during the conceptual design stage enables the
esigners to make better concept identification and selection de-
isions.

To quantify and mitigate �for noise� or utilize �for tuning� sen-
itivity during the design process, resources should be allocated to
ccurately identify and model the impact of sensitivity. Identify-
ng sensitivity effects as early as conceptual design allows better
esource allocation throughout the entire process. However, dur-
ng the conceptual design of a system, little is known about the
otential physical forms of the solution. Without comprehensive
orm and parameter information, it is difficult to define perfor-
ance models and the probability distributions for the relevant

esign parameters.
Another challenge encountered in performing sensitivity analy-

es on models of complex systems is the computational burden. In
eneral, local sensitivity analyses require at least two model
valuations per design variable in the model. In contrast, global
nalyses using Monte Carlo methods typically require large num-
ers of evaluations ��1000� per design variable.

In this work, it is proposed that the task of performing a sensi-
ivity analysis during the design of a system be decomposed into
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two phases: a local sensitivity analysis for screening a large num-
ber of concepts during conceptual design and a global sensitivity
analysis performed during the later stages of design. The approach
is recommended due to the inherent differences in the information
required to make decisions in early design versus the later stages
of design. To facilitate the transition from a local analysis to a
global analysis, it is recommended that a sensitivity analysis
method that produces comparable results be used in each design
stage.

Typically, a local sensitivity analysis involves the use of
derivative-based methods. For global analyses, variation-based
methods are generally suggested �1–3�. In this work, a simplified
local method similar to a variation-based approach is developed
that allows a transition from a local analysis of several concepts to
a global analysis of a few. Since the problem of efficiently per-
forming global variation-based sensitivity analyses has been well
researched, most of the work presented here focuses on using a
variation like local method during the analysis of multiple con-
ceptual solutions of a design problem.

A key contribution of this work includes the formal develop-
ment of a sensitivity analysis method that integrates with a
function-based design and modeling approach. Thus, the method
can be used during conceptual design and other initial design
tasks. The method developed here allows designers to explore
system sensitivity as it relates to specific design parameters as
well as system subfunctions via new quantitative sensitivity mea-
sures. Additionally, the method developed combines the positive
features of global and local sensitivity analysis methods.

Results are presented in six sections. Section 2 outlines modern
theories on the design process of systems and the role of behav-
ioral modeling in these design processes. Section 3 details current
methods for performing sensitivity analyses in design. Section 4
proposes a new hybrid local sensitivity analysis derived from glo-
bal variation-based methods. In Sec. 5, an example is presented
that demonstrates how to apply the hybrid method to a function-
ally decomposed behavioral model. Section 6 briefly summarizes

a more complete example of the proposed sensitivity analysis as
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erformed on a hybrid racecar powertrain. Finally, conclusions
nd extensions of the work are presented in Sec. 7.

The Design of Systems
Two broad schools of formal design practice for systems exist:

he “European,” or traditional school of design, and the “systems
ngineering” approach. The European, or traditional approach to
esign is well summarized by the works of Pahl et al. �4�. They
efined the design process for a system in four basic phases: �1�
roduct planning, �2� conceptual design, �3� embodiment design,
nd �4� detailed design. Other researches into design methodolo-
ies within this traditional design approach involve more or less
he same four steps �5–7�. Some of these methodologies move the
oundaries of the steps around and regroup the basic activities
ifferently but in total represent the same basic sequence of
vents. �1� The first phase of design is to gather information about
he system’s user and their needs, and to map this information to
he highest level functionality of the system. �2� The required
unctionality is explored in detail, and potential solutions for this
unctionality are created and evaluated. �3� After selecting a con-
ept for production, the physical requirements for the concept are
efined along with solutions for the product’s auxiliary function-
lity. The overall performance of the concept relative to the user’s
eeds is then assessed. �4� A complete description of the system is
ade to allow the product to be manufactured.
A full account of the systems engineering method of design can

e found in Ref. �8�. Systems engineering focuses more on man-
gement and information control during the design process for
arge systems. It highly emphasizes the understanding and devel-
pment of requirements. The classifications used in systems engi-
eering, i.e., formulation, analysis, and interpretation, can be
apped to the first two phases in the traditional method of engi-

eering design �8�. Formulation, which includes problem defini-
ion, value system design, and system synthesis, straddles the
roduct planning and conceptual design phases of the traditional
esign method. The problem definition and value system design
ctivities in systems engineering map to activities in the product
lanning and system synthesis phases of the conceptual design.
he analysis classification includes system analysis and modeling
long with refinement of alternatives. These activities are fol-
owed by an interpretation that includes decision making and
lanning for action. The activities that occur during the analysis
nd interpretation classification stages in systems engineering map
o activities that occur during conceptual design in the traditional
ngineering design method.

In summary, both schools of engineering design promote the
ame basic order of operations during the initial stages of system
esign: determine what needs to be done at a functional level, find
olutions that can potentially accomplish this functionality, com-
are the solutions through the use of models, and make a decision
bout which solutions to investigate further.

2.1 Functional Modeling During Design. The functional de-
omposition of a complex design problem is promoted in both
raditional engineering design �4� and systems engineering �8�. A
unctional model is a graphical depiction of a detailed product
unctionality. Functional models include functions, generally rep-
esented as verbs, which describe the desired transformations of
ows, which are generally described using nouns. The process for
reating a functional model generally involves the following basic
teps:

1. Create a black-box model that includes the overall function-
ality of the product along with external flows.

2. For each input flow in the black-box model, identify the
sequence of functional transformations that are required to
produce one or more of the output flows.

3. Aggregate these function sequences into a complete func-

tional model for the product.

11007-2 / Vol. 132, NOVEMBER 2010
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4. Assess the model’s coverage of customer needs and system
requirements, add functions/flows or decompose as required.

A range of reasons for creating a functional model during prod-
uct design are detailed by Otto and Wood �9�. In general, the
primary reason is to create a solution-neutral method of represent-
ing what a product needs to do without assuming how it is going
to do it. This mapping of what to how represents the remainder of
the conceptual design process. Several methods exist for perform-
ing this decomposition such as formal methods �5� and the
function-flow block diagram �FFBD� approach as used in systems
engineering �8,10�.

The functional analysis approach used in this work evolved
within the traditional engineering design approach beginning in
the early 1960s �11�. The functional analysis approach employed
here focuses on the use of verb-noun pairs along with an explicit
breakdown of flows into energies, materials, and signals �12�. This
flow-based approach has been extensively and significantly for-
malized in the works of Hirtz et al. �13�. The benefits of this
approach include the use of a standard modeling language �the
functional basis �13�� and an emphasis on the energy-, material-,
and flow-based identifications of functions. A complete survey of
this functional analysis approach appears in the works of Nagel et
al. �14�. For the remainder of this work, a functional model will
refer to a functional decomposition of a system using the flow-
based methodology and the functional basis lexicon approach
�15�.

The functional decomposition of a system allows a complex
design problem to be broken down into smaller elements based on
those elements’ intended functionality. These elements can then be
analyzed in detail individually. In most formal system design
methods, the functional decomposition is also recommended as
the starting point for identifying potential solutions to the design
problem. The functional decomposition decouples the task of rep-
resenting what a system needs to do from how it is going to do it
�3,4,6,16�. Thus, the desired functionality of a system can be de-
scribed before actual solutions are identified. From morphological
charts �5� to current knowledge driven concept generation algo-
rithms �17�, significant research has been conducted into expand-
ing the ability to explore the solution space for a problem by using
a function-based solution identification method.

Functional modeling provides the basic framework for the sen-
sitivity analysis method developed in this article. The use of func-
tional modeling has several positive contributions. One, functional
modeling is used early in design. Thus, using a functional model
as a framework for sensitivity analysis allows a straightforward
transition from early conceptual design to concept selection and
refinement. Additionally, using functional modeling as a frame-
work allows a sensitivity exploration to be performed on a
function-by-function basis. This is important as designers explore
potential sources of noise or design control. In general, functional
modeling has proven as a useful framework for approaching vari-
ous design challenges including the creation of formal methods
applicable during conceptual design �18–21�

2.2 Behavioral Modeling During Design. A behavioral
model is a quantitative representation of a system, or a specific
aspect of that system. Such models can be used to prescribe per-
formance targets early in the design process and can predict the
performance of systems relative to these targets later in the design
process. Two general approaches for creating such models are the
abstraction and component-based approaches.

In the abstraction approach, a behavior of interest is identified,
and a model is created based on an abstraction of the system that
exhibits the behavior of interest �22–24�. For example, if the per-
formance of an internal combustion engine needs to be modeled,
an abstracted model of the engine may be created by using an
approximation of the combustion processes or results from dyna-
mometer testing. Such a model represents a parameterized ab-

straction of the behavior of the system. The component-based ap-
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roach for modeling the same system would be to model the
onstitutive elements of the engine separately and then combine
hem �generally through an automated or semi-automated process�
o produce a complete system model.

Both approaches have strengths and weaknesses. Abstract mod-
ls are generally more focused on the behavior of interest while
omponent-based models are generally more closely associated
ith the system itself. As a result, an abstract model may provide
good description of the behavior of interest but may be of little

se if the system changes or if the assumptions made about the
ystem during the abstraction process are faulty. Conversely, a
omponent-based model can provide a variety of information
bout a system but may not able to predict a specific aspect of its
ehavior as well as a model abstracted solely for that purpose.
ssentially, these models answer two separate questions. Abstract
odels answer the question of what a system does, and

omponent-based models answer the questions of how a system
unctions through the action of its constitutive elements.

The abstraction method of modeling systems is generally the
ethod taught in engineering educations. Traditional engineering

lasses �physics, thermodynamics, etc.� focus on modeling sys-
ems by creating a set of equations or relationships that represent
n abstracted behavior of a complete system. In general, the result
f this type of modeling process is a set of algebraic or differential
quations, which are then used to investigate some aspects of the
ystem’s performance. This method of modeling provides good
nsight into what a system does by providing elegant analytical
quations but is generally limited to small systems that exhibit
ather simple behavior �when compared with larger, more com-
lex systems�.

In contrast, generic component-based system modeling plat-
orms such as SIMULINK �25�, DYMOLA �26�, and bond graph based
pplications �27� have been developed as a means to model com-
lex systems across multiple domains. The DYMOLA or MODELICA

pproaches have roots in the object-oriented modeling approach
eveloped by Elmqvist �16�, while bond graphs originated from
aynter �28�. In these approaches, the behavior of a component of

he system is modeled independently from the other components
f system, and then these model elements are automatically as-
embled to produce a complete system model. Such an approach
s useful for large complex systems and does a good job in mod-
ling how system behavior results from the behavior of its consti-
utive elements.

Sensitivity Analyses in Engineering Design
Sensitivity analysis is the study of how system input variation

reates system output variation. Frequently, sensitivity analysis is
ocused only on the model of a real system �2�. Such analyses can
e qualitative or quantitative. A qualitative analysis identifies the
elative importance of various design parameters to the overall
ensitivity of the model. A quantitative analysis provides numeri-
al measures of how sensitive a model is to variation in the design
arameters.

Sensitivity analyses are used in a variety of fields in addition to
ngineering including the economic �29�, environmental �30�, and

Table 1 Characterization o

Characteristic LD

Computationally efficient X
Works directly on model X
Does not require additional information X
Dimensionless
Contributive measure
Local/global L
cientific �2� industries. As applied in engineering design, sensi-

ournal of Mechanical Design
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tivity analysis is often used to determine configuration robustness
with respect to noise, determine parameters that provide design
control, or perform system or component level tolerance analysis,
allocation, and design.

System sensitivity is important for various reasons during con-
ceptual design, particularly concept selection and performance
prediction. In cases in which concept robustness �with respect to
noise� is an important criterion, sensitivity analysis is needed to
compare the potential concepts. In addition, sensitivity analysis is
used to determine elements within the system that provide for
significant design control. When evaluating elements of a system,
sensitivity analysis is used to determine the relative contribution
of each variable to the system’s sensitivity, or, in the case of a
functional decomposition of the system, the contribution of each
function to overall system sensitivity.

There are multiple methods available for sensitivity analysis. A
list of methods currently used follows along with a characteriza-
tion of these methods in Table 1.

Local derivative (LD) is a sensitivity analysis approach charac-
terized by the use of the local partial derivative of an output vari-
able in response to an input variable of choice. The resulting mea-
sure carries units of the output variable divided by the input
variable and does not require knowledge of the input distribution
or estimation of the output distribution. Such approaches typically
use two evaluations of the model for each parameter �at perturbed
high/low values� to produce a second-order estimate of the local
derivative �1�.

Normalized derivative (ND) is a nondimensional normalization
of a local derivative measure to the standard deviation of the input
and output variables �other normalizations are sometimes used�.
This normalization requires knowledge of the input variable’s dis-
tribution and an estimation of the output variable deviation �1�.

Monte Carlo regression (MCR) is a linear model fit to the re-
sults of a Monte Carlo simulation of the system. This approach
requires comprehensive knowledge of the input variable distribu-
tions. MCR analysis is more computationally complex than a local
derivative approach as it requires numerous evaluations of the
model ��1000� for each parameterization. The resulting measures
provide a global breakdown of the sensitivity contribution �1�.

Variance-based (VB) is a sensitivity analysis performed using
estimates of model variance and parametric contributions to vari-
ance. VB sensitivity analysis is analogous to MCR under certain
conditions and has similar characteristics �1�.

Simplified model fit (SMF) is a computationally efficient model
�such as a Kriging model �31�� is fit to the system performance
model. A sensitivity analysis is then performed on the resulting
model. This approach shares characteristics of the variation-based
analysis approach used but with a decrease in the computational
burden at the expense of an increase in the model uncertainty
�from the model fitting process�. In certain cases, analytical solu-
tions are possible �3�.

During the design of engineering systems, several consider-
ations must be made when selecting a sensitivity analysis, as fol-
lows:

nsitivity analysis methods

Method

ND MCR VB SMF

X X
X X X

X X X X
X X X

L G G G
f se
• local information versus global information �29,32,33�

NOVEMBER 2010, Vol. 132 / 111007-3

f Use: http://www.asme.org/about-asme/terms-of-use



a
t
n
s
e
R
p
o
b
s
e
p
t
t
a
t
a
v

a
�
s
t
e
a
b
v
a
r
a
b
r
q
T
c

m
w
t
p
m
p
t
o
w
a
v
d

p
t
t
a
i
h
t

4

i
t
c

1

Downloaded From:
• computational burden �31,32,34�
• knowledge of design parameter distribution and distribution

parameters
• usefulness of resulting knowledge
• modeling requirements

During conceptual design, limited information is available
bout potential concepts. Information limitations may prevent de-
ailed knowledge of parametric distributions. As a result, it may
ot be possible to perform a full variation-based sensitivity analy-
is for concepts. Additionally, such analyses are computationally
xpensive �even with the more efficient approaches discussed in
efs. �3,32��. Local measures of sensitivity �derivative-based ap-
roaches� provide quantitative measures of each variable’s effect
n the system’s performance at a single nominal operating point
ut cannot be used in a contributive manner or provide an overall
ensitivity magnitude such as a variation-based approach. How-
ver, local measures do not require specific information about
arametric distributions. Local measures are generally much faster
o evaluate computationally �typically, two performance evalua-
ions are required for each variable considered in the sensitivity
nalysis�. Since the results of a typical local analysis are deriva-
ives �normalized or not�, and the result of a variation-based
nalysis is a set of effect contribution percentages and an overall
ariance, the results of the two analyses are not comparable.

To reconcile the various approaches to performing a sensitivity
nalysis in conceptual design, a new hybrid local variation-based
HyVar� method is developed here. The HyVar approach uses
imilar mechanics and provides the same output information as a
raditional sample-based variation-method combined with the
valuation cost of a local derivative method. The HyVar approach
ugments the derivative-based local approach with a variation-
ased measure. In the HyVar approach, derivative information,
ariance like sensitivity magnitude, and main effect contributions
re calculated for a given parameterization of each concept. The
esulting measures provide the same results of a local derivative
pproach along with measures similar to that of a full variation-
ased analysis. The analysis is still a local analysis and does not
eplace full variation-based global sensitivity analysis, but re-
uires significantly less knowledge about parameter distributions.
hus, it is suitable for screening a large number of parameterized
oncepts during the early stages of design.

The benefit of using the HyVar approach over local derivative
ethods are the compatibility of the results of the HyVar analysis
ith a full variation-based method while retaining a computa-

ional burden similar to a local method. Due to this reduced com-
utational burden, it is feasible to perform the analysis on a full
odel without using a fitting process. Additionally, since the out-

ut parameters from the hybrid analysis have the same format as
he output parameters of a full variation-based approach, the result
f the two analyses can be directly compared. An example of
here such a comparison would be useful is between a HyVar

nalysis performed during conceptual design versus a full
ariation-based approach performed on the same model during
etailed design once the parametric distributions are known.

The sensitivity measures provided by the proposed HyVar ap-
roach allow grouping of sensitivity contributions by direct addi-
ion of percentages. This is a primary reason for implementing
hem over a traditional derivative-based approach and allows the
pproach to be used in a functionality decomposed system behav-
or model. A derivation of these measures with an illustration of
ow the measures are combined to represent the sensitivity con-
ribution of functions is presented in Sec. 4.

Hybrid Variation-Based Local Sensitivity Measures
In this section, the equations used to perform a HyVar sensitiv-

ty analysis are developed. These equations are consistent with
hose used for existing sensitivity analysis methods. However, be-

ause the method is based on a formal functional decomposition

11007-4 / Vol. 132, NOVEMBER 2010
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of the system, the equations are developed to index over both the
input parameters and functions. Additionally, new measures are
developed to determine the system sensitivity to each function and
compensate for the total number of functions in the system. These
new formalisms allow the designer to explore sensitivity on a
function-by-function basis.

By applying the same type of calculations used in a traditional
variation-based global sensitivity analysis to a local analysis, it is
possible to get contribution measures of a system with the same
computational burden as a traditional derivative-based measure.
The HyVar approach provides contribution measures that are not
found with a derivative-based analysis. The format of the HyVar
measures is compatible with those of a full variation-based ap-
proach �the output of both approaches is a set of sensitivity per-
centages that correspond to the contribution to total variation for
each parameter�.

The variance in a finite population can be calculated using the
formula shown in Eq. �1�. In the context of the results of a system
performance model, Yi would be the model output for a particular

parameterization of the model, and Ȳ would be the mean value of
the outputs of N parameterizations

�2 =
1

N�
i=1

N

�Yi − Ȳ�2 �1�

For a complex system behavioral model decomposed based on
functionality, the input parameters will be grouped according to
function. In the case with multiple performance outputs, the out-
put is a vector rather than a scalar, and the inputs to the model are
a series of vectors �one for each function in the model�. A math-
ematical representation of such a model appears in Eq. �2�, where
Yi is a specific row in the performance vector and
f i�x1 ,x2 , . . . ,xi , . . . ,xF� represents an evaluation of that perfor-
mance by the set of input vectors xi associated with each function
up to a number of F total functions:

Yi = f i�x1,x2, . . . ,xi, . . . ,xF� �2�

In the context of a design problem, a concept can be thought of as
a unique parameterization of a model. For each parameter in the
parameter vectors for each function in a concept, a slightly higher
or lower value of the parameter can be substituted for the nominal
value �as is done in partial differencing in a derivative-based local
sensitivity analysis�. For each high and low case, the output can
be compared with the nominal value of performance. This com-
parison can be made using the same basic calculation as the vari-
ance of a population, where the population mean is replaced with
the nominally predicted performance of the concept. This com-
parison can be performed for each parameter in each function for
each performance output. The mathematical representation of this
comparison appears in Eq. �3�

Vi,j,k =
�Yi,xj,k+

− Yi�2 + �Yi,xj,k−
− Yi�2

2
�3�

In this equation, the index i represents the performance output, the
index j represents the function, and the index k represents the
local parameter in the function j. Since two comparisons are made
for each of the high and low values, the squared deviation from
the nominal performance is divided by 2. The result Vijk is a
measure of the average squared deviation from nominal perfor-
mance found from perturbing the parameter of interest. For each
function, these deviations can be summed as shown in Eq. �4�. In
this equation, P is a vector that contains the number of local

parameters for each function
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Vi,j = �
k=1

Pj

Vi,j,k �4�

he result is a measure of the deviation in the performance pro-
uced by a single functional element of the model. These func-
ional deviations can then be summed as well �Eq. �5�� to produce
total measure of deviation in the model, where F is the number

f product functions in the model

Vi = �
j=1

F

Vi,j �5�

s in a variation-based sensitivity analysis, the deviations of each
arameter and each function can be divided by the total model
ariation to produce a percentage measure of contribution to the
otal deviation �Eqs. �6� and �7��. The resulting measures Sij and
ijk represent the relative contribution to the total deviation of the
erformance �i� for a specific function �j� and a parameter within
function �k� represented as a percentage. The measure Sijk cor-

esponds to the main effect sensitivity contribution as calculated
n a full-variance based approach. The Sij measure is a newly
roposed measure that represents the impact of variations con-
ained within a single function to system variation. The approach
an be applied to a system without a functional decomposition by
ssuming a single functional element �F=1� with all model pa-
ameters in that functional element

Si,j =
Vi,j

Vi
� 100 �6�

Si,j,k =
Vi,j,k

Vi
� 100 �7�

f all functions in a system have a relatively equal contribution to
he overall variation in the system, the S measure �taken as a ratio,
ot a percentage� for each function should be approximately 1 /F,
here F is the number of functions in the system. As a result, a
irect comparison between the sensitivity contribution of a func-
ion that appears in both large and small systems �large and small
alues of F, respectively� is ill posed. To normalize the sensitivity
ontribution measures to allow such comparisons, the S measure
here, taken as a ratio, not as a percentage� should be multiplied
y F, which is the number of functions in the system, to produce
normalized, dimensionless ratio of sensitivity �Eq. �8��. A value

f SRij equal to 1 indicates a sensitivity contribution of 1 /F for
unction j with respect to performance variable i. This indicates
hat the function has a sensitivity contribution equal to its func-
ional contribution. Values greater than 1 indicate a relatively
igher contribution to sensitivity than the contribution to function-
lity. The opposite is true for values less than 1. This measure
llows a particular function’s tendency to be over- or undersensi-
ive to be characterized outside of the context of the particular

odel or concept being studied. For systems with more than one
erformance variable, the sensitivity ratio can be averaged per Eq.
9�, where Z is the number of performance variables considered in
he analysis:

SRi,j = Si,j · F �8�

SRj =
1

Z�
i=1

Z

SRi,j �9�

he use of these measures on a functionally decomposed behav-
oral model along with a discussion of the results appears in the
xample presented in Sec. 5.

Example
To illustrate the application of the hybrid variation-based local
HyVar� sensitivity analysis, an example is presented based on a

ournal of Mechanical Design
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simple three-function system. The system represents a simple
combination of an electrical power source, an electrical-to-
rotational energy conversion, and a rotational load. This system is
represented with a formal functional model in Fig. 1. In this
model, the three functional elements of the system are provision
electrical energy, convert electrical energy to rotational energy,
and export rotational energy. The provision function includes a
charge status signal output, and the convert function includes a
throttle control signal.

The behavioral models for the first two functions are based on
hybrid powertrain models appearing in Ref. �35�. The final func-
tion �export rotational energy� was created specifically for this
example with a compatible interface to the energy conversion
function. A description of the flow variables used in this example
appears in Table 2 along with the mathematical relationships used
in the behavioral model elements for each function in Table 3.

For each function in the model, a form solution was selected
and used to create a behavioral model for that function. The pro-
vision electrical energy function was provided by a simple chemi-
cal battery. The energy conversion function was provided by an ac
induction motor. The export function was provided by a simple
rotational load with inertia and friction. The motor and battery
parameterizations and modeling are based on the model elements
used in the analysis of a hybrid Formula SAE racecar. The load
model was derived and parameterized to interact with these com-
ponents.

A function-based behavioral model assembly and solution pro-
cess demonstrated in Ref. �35� was then used to create a well-
posed model of the system that was capable of predicting the time
required for the rotational load to reach a prescribed target speed
from a standing start. Essentially, the model represented a battery
connected to a motor, which is connected to a flywheel with a
linear velocity-dependent friction force. Although this is a rela-
tively simple system, it provides a useful illustration of how to
apply the HyVar analysis. Each functional element in the model
has a set of parameters associated with it. These parameters are
tied to the mathematical relationship selected to represent the
function, and are used to establish and distinguish various concep-
tual solutions to the system. A nominal set of parameters is used to
represent a single concept and is shown in Table 4.

Based on this parameterization, a nominal performance vector
can be calculated from the assembled system behavioral model. In
this example, one performance variable is considered �time for the
flywheel to accelerate to 200 rad/s�.

Using this model, a variety of sensitivity analyses can be per-
formed. In this example, a derivative-based local analysis is per-
formed along with the HyVar method presented in Sec. 3. Addi-

Fig. 1 Example functional model

Table 2 Model flow variables

Flow Variable Units Description

Electrical energy Voltage V Effort
Current A Flow

Rotational energy Moment N m Effort
Ang. vel. rad/s Flow

Control signal Analog Varies A single analog control signal
Status signal Analog Varies A single analog status signal
NOVEMBER 2010, Vol. 132 / 111007-5
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ionally, a full variation-based Monte Carlo sensitivity analysis is
erformed as well with an assumed set of parametric distributions
or the variables in each function.

The results of these analyses appear in Tables 5–7. Table 5
ontains the results of three different applications of the HyVar
ethod at three different variable perturbations �0.10%, 1.0%, and

0%�. Using a constant perturbation percentage for each variable
epresents a constant coefficient of variation in a full variation-
ased approach. The HyVar sensitivity analysis uses three system
imulations per parameter as compared with tens of thousands or
ore for a full Monte Carlo sensitivity. Thus, a variety of pertur-

ation steps can be used. Smaller steps capture local effects better
han larger steps but may not capture behavior that occurs further
rom the nominal performance. Performing three evaluations with
hree steps sizes varying by an order of magnitude provides a
arge range of coverage around each design variable. If significant
ariation in the results occurs between the three step sizes, it is
ecommended to perform a full Monte Carlo sensitivity analysis.

Table 3 Mod

Function Model des

Provision electrical energy Linear batte
with internal

Convert electrical energy
to rotational energy

Constant torque to
transitional electrica

with linear propo

Export rotational energy Simple inertial an

Table 4 Mo

Function Sym

Provision electrical energy VB,n

R
QB,

Convert electrical energy to rotational energy Vra

Pm

Irat
Export rotational energy Blo

Jlo

able 5 HyVar results. The three columns under the different o
erivative, and the normalized derivative response, respectivel

ariables 0.10%
ominal voltage 44.3% �0.0239 �0.0034 44
ated power 16.9% −3.11�10−5 �0.0021 16
ated torque 8.42% �0.0053 �0.0015 8
oad friction 3.31% 0.235 0.0009 3
oad inertia 27.0% 0.224 0.0027 26
nalysis time �s� 0.0327
ominal performance �s� 1.3338
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At each percentage, the sensitivity contribution, derivatives, and
normalized derivatives �normalized to the magnitude of the input
variable perturbation� are tabulated along with the time required
to perform the analysis and the nominal performance. As shown in
this table, the most significant contribution to overall sensitivity in
performance of the system is the nominal voltage of the battery.
This is followed by the inertia of the load then the rated power of
the motor, rated torque of the motor, and finally the friction of the
load. The results of this analysis are charted in Fig. 2.

Table 6 shows the tabulated results of the HyVar sensitivity
analysis at a 1% perturbation using the nomenclature and group-
ing established in Sec. 3. As shown in this table, the provision
electrical energy function contributes 44.4% to the overall sensi-
tivity of the system, followed by the export rotational energy func-
tion at 30.3%, and then the convert electrical energy to rotational
energy function at 25.3%. Once normalized to the number of
functions in the system, the sensitivity ratios for these functions
become 1.33, 0.76, and 0.91, respectively. Thus, the provision

elationships

tion Relationship

odel
istance VB,nom − VB − IB · RB = 0

ĊA =
− IB

QB,max

stant power
achine model
nal control

�T =
Pmax · VS

Mmax · Vrated

if ��M ��T�: MM −Mmax·CM =0
else:

MM −
Pmax · VM · CM

�M · Vrated
= 0

IS− Irated ·CM =0
ictional load ML−JL · �̇L−BL ·�L=0

parameters

Value Units Description

72.0 V Nominal voltage
0.1 W Internal resistance

60000.0 A s Battery capacity
48.0 V Rated voltage
13.41 kW Maximum power

350.0 A Rated current
2.0 N m s / rad Load friction constant
6.0 kg m2 Load inertia

et percentages represent the sensitivity contribution, the local

rameter offset percentages

1% 10%
% �0.0239 �0.0344 49.77% �0.026 �0.379
% −3.11�10−5 �0.0213 16.15% −3.20�10−5 �0.219
% �0.0053 �0.0150 7.92% �0.005 �0.154
% 0.2352 0.0094 2.88% 0.236 0.095
% 0.2240 0.0269 23.27% 0.224 0.269

0.0338 0.0329
1.3338 1.3338
el r

crip

ry m
res

con
l m
rtio

d fr
del

bol

om

B

max

ted

ax

ed

ad

ad
ffs
y.

Pa

.36

.93

.41

.31

.99
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lectrical energy function provides a larger contribution to the
verall sensitivity than it does to functionality. The opposite is
rue with respect to the convert electrical energy to rotational en-
rgy and export rotational energy functions. A sensitivity contri-
ution greater than 1 indicates that the parameters in the model of
he functional element affect the performance of the system to a
reater degree than the parameters in other functional elements in
he system. Depending on the design problem, this information

ay be used for a variety of purposes. If the overall contribution
f each functional element is desired to be equal, then the sensi-
ivity ratios of each function should be driven to values around
.0. If certain functions are desired to contribute more to the over-
ll performance of a system, the sensitivity ratio of these elements
hould be driven to values greater than 1.0. If the opposite is true,
nd certain elements are desired to contribute less to the overall

Table 6 Sensitivity parameters

ontributor Type Label Value

ominal voltage Parameter S1,1,1 44.36%
ated power Parameter S1,2,1 16.93%
ated torque Parameter S1,2,2 8.41%
oad friction Parameter S1,3,1 3.31%
oad inertia Parameter S1,3,2 26.99%
rovision electrical energy Function S1,1 44.36%
onvert EE to RE Function S1,2 25.34%
xport rotational energy Function S1,3 30.30%
rovision electical energy Function ratio SR1,1 1.33
onvert EE to RE Function ratio SR1,2 0.76
xport rotational energy Function ratio SR1,3 0.91

Table 7 Global variation-based results

Monte Carlo samples

ariables 10 100 1000 10000
ominal voltage �%� 87.18 61.69 62.02 63.63
ated power �%� �6.58 �3.73 1.04 0.58
ated torque �%� 33.76 4.41 7.69 8.20
oad friction �%� �7.83 0.40 8.63 7.02
oad inertia �%� �28.66 17.46 25.34 22.48
nalysis time �s� 0.1886 1.8039 18.20 184.2
ean performance �s� 1.3498 1.3482 1.3467 1.3457
Fig. 2 HyVar re
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performance, the sensitivity ratios of these elements should be
driven to values less than 1.0. If a specific sensitivity ratio profile
is desired, a formal optimization problem can be used to create
one. This allows not only the optimization of performance and
overall sensitivity but also the sensitivity profile of the functional
elements.

For reference, a full variation-based Monte Carlo sensitivity
analysis was performed at a variety of sample sizes. The simulated
annealing �SA� method presented in Ref. �2� was used to complete
this analysis. In order to perform the analysis, parametric distri-
butions for the variables in the model were required. As men-
tioned before, these distributions are not commonly available or
applicable in early designs but are necessary to apply a full global
variation-based approach. As seen in Table 7, for small numbers
of samples ��1000� the results are unreliable �variations should
not have negative values�. At a sample size of 1000, the results
begin to stabilize. After 10,000 samples, the precision of the
analysis improves. However, this increased precision requires a
significant computational burden as seen by the increase in the
analysis time. The resulting sensitivity contribution measures are
charted in Fig. 3. The relative contribution of each parameter dif-
fers from that of the HyVar analysis but that is to be expected as
the two analyses are working on separate sources of input �the full
analysis considers the actual distribution of each parameter versus
the HyVar analysis that considers a perturbation of each param-
eter�. The primary result of this analysis is the relative magnitude
of the analysis time required for each method. The HyVar method
required 0.0338 s versus 184.2 s for a reliable full Monte Carlo
analysis. It should be noted that the HyVar method is not intended
as a replacement for a global analysis but rather a complement for
the early stages of design where such a large computational bur-
den �even with efficiency improvements demonstrated by Ullman
�7� and Chen et al. �3�� and additionally required information are
not practical. As mentioned before, the HyVar analysis provides
the same type of information as a global analysis �relative contri-
bution� but uses a method that is feasible for use in early design
when considering multiple concepts.

6 Hybrid Racecar Example
A more comprehensive example application of the HyVar sen-

sitivity analysis is shown in Ref. �35�. In this work, a complete
early design process and behavioral analysis was performed for a
hybrid racecar powertrain. The results of this work are briefly
summarized here.
sults charted

NOVEMBER 2010, Vol. 132 / 111007-7
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For the hybrid powertrain, a functional decomposition was per-
ormed just as with the three-function system shown in Sec. 4.
he resulting functional model appears in Fig. 4. In this model,

he provision electrical energy function represents the storage and
upply of electrical energy from the racecar’s electrical power
ccumulator �mandated by the rules of the competition being en-
ered�. The convert electrical energy to rotational energy function
epresents the electrical machine that converts stored electrical
nergy to propulsive energy �and vice-versa for regenerative brak-
ng�. The distribute rotational energy function represents the dis-
ribution of propulsive energy through the system. The convert
hemical energy to rotational energy function represents the con-
ersion of stored fuel energy to propulsive forces. The conversion
rocesses are controlled by the process control function. The dis-
ribute mechanical energy function represents the distribution of
nergies through the chassis of the racecar. Finally, the two trans-
er mechanical energy functions represent the transmission of en-
rgies through the suspension and wheels of the racecar. A behav-
oral model was created based on this functional decomposition.
he complete details of this model are shown in Ref. �35� and are
mitted from this work for brevity.

The behavioral model created for this system was used to in-
estigate the performance of a large number of powertrain con-
epts using both ac and dc electrical machines. For each concept,
HyVar sensitivity analysis was performed to assist the concept

election process. Example results for both ac and dc concepts are
hown in Fig. 5. The ac concepts are labeled as 1 and 2, while the
c concepts are labeled as 3 and 4.

By using a functional grouping of the parametric sensitivities, it
s possible to directly compare the impact of each powertrain

Fig. 3 Global variatio
Fig. 4 Hybrid racecar pow
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function on the overall performance of the system among various
configurations. As shown in Fig. 5, the significance of each func-
tion can vary greatly between different physical solutions. The
sensitivity with respect to the convert electrical energy to rota-
tional energy function was roughly equal for the ac and dc con-
cepts as was the sensitivity with respect to the convert chemical
energy to rotational energy function. However, the DC concepts
proved to be much more sensitive to the variation in the functions
performed by the rear suspension/wheels/tire �transfer mechanical
energy-R�. This result at first seems counterintuitive, but origi-
nates from the sensitivity of the system to the overall mechanical
advantage between the motor and tire/ground interface. Ac mo-
tors, which operate primarily in a constant power regime, are
much less sensitive than the dc motors used, which operate in a
constant torque/current limited regime as implemented �with fixed
ratio gearing�. As a result, the dc motor is rarely at its peak power
level. Performing a HyVar analysis during this design process
allowed this behavior to be identified and considered for the re-
mainder of the design process. For a more detailed discussion of
this example, see Ref. �35�.

7 Conclusions
The HyVar sensitivity analysis approach presented in this work

is a local sensitivity analysis method that uses an approach similar
to a full variation-based analysis. The method provides the same
qualitative measures as a full approach with the computational
burden of a derivative-based local approach. This approach pro-
vides a bridge between the local analysis of many concepts during
early design and a global analysis of a smaller set of concepts later

ased results charted
n-b
ertrain functional model
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n the design process. The approach does not require detailed in-
ormation regarding the distributions of the various parameters
sed in the model of a concept, and thus is appropriate for early
oncept analysis when this information is not be available. The
yVar method has a computational burden similar to a derivative-
ased approach and can be completed at the same time as such an
pproach with little overhead. As a result, it is recommended to
ugment current local derivative-based sensitivity approaches
ith the HyVar analysis in order to obtain the contribution mea-

ures along with the information typically provided by the
erivative-based approach. The resulting contribution measures
an then be used in the same manner as the contribution measures
roduced by a full variation-based analysis.

If a full variation-based analysis is required, it should be per-
ormed once a relatively small set of feasible concepts have been
eveloped and there is sufficient knowledge to establish paramet-
ic distributions. In this case, the measures from the full analysis
an be directly superseded by the measures generated by the Hy-
ar analysis.
The HyVar approach also allows the direct addition of single

arameter measures that provide the means of assessing the sen-
itivity contribution of a function in a functionally decomposed
ystem behavioral model. The normalization of the measures to
he functional size of system allows the measure to be used out-
ide of the context of a particular system design and is conducive
o design repository storage �see Ref. �36� for a discussion of a
unction-based design repository�.

The method as developed here is posed to perform sensitivity
nalysis at the system level. As such, it is generally applicable to
roblems characterized as complex in the sense that the systems
onsist of multiple elements with energy flows in multiple do-
ains and are conveniently modeled using a functional approach.
he sensitivity example summarized in Sec. 5 represents a system
odel with over 45 design parameters, two energy domains, and

ight functions. Formal methods were not used to compare the
eduction in the computational time required between the HyVar
ethod and the full Monte Carlo approach. A casual comparison

howed the HyVar computation time on the order of a few min-
tes with full Monte Carlo simulations on the order of days or
reater �a full Monte Carlo simulation was not run as it was not
easible in the time constraints of the analysis�.1

Nevertheless, there are notions of system complexity for which

1Simulations were run on an Apple Mac Pro with two 3 GHz dual-core Xeon

Fig. 5 Autocross sens
rocessors and 8 Gbyte of 667 MHz RAM.
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we have not explored the applicability of the approach. For ex-
ample, the systems modeled here are not chaotic. Neither the Hy-
Var method nor the function-based behavior modeling approach
on which it is based contain explicit compensation for complexity
that is reflected in chaotic dynamic behavior. Also, we have not
explored the systems that exhibit self-adaptation—another type of
system complexity of the design interest.

The framework used here is based on a functional representa-
tion, a representation that is commonly used to simplify and ab-
stract complex engineered systems. Nevertheless, based on the
work presented here, we cannot claim that the approach scales
linearly, or accurately, to systems of specific or arbitrary complex-
ity or size. Useful design models of such systems will still likely
require abstraction and modeling insight from the modeler. Devel-
oping and testing the framework used here to model the different
types of complex systems and systems of an arbitrary number of
elements remain as a future work.
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