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The integral-differential equation for the current of an electrically small antenna, inside a resonator, which is induced by given
sources, is approximately solved by the so-called “Method of Small Antenna,” both for dipole and loop antennas. The current
induced in the antenna is evaluated using the scattering characteristics of small antennas in free space and regularized Green’s
function of resonator. As example of application of the theory, a transfer function (“external field→ induced voltage”) for the
coupling through aperture is calculated.

1. Introduction

Investigation of the coupling of high-frequency electromag-
netic fields caused by intentional electromagnetic interfer-
ences to linear structures becomes an actual topic. Usually
the corresponding test experiments and simulation models
are applied to devices in free space [1]. However, in
reality, electronic equipment is enclosed in different kinds
of resonator-like shells: cabinets of computers, airframes,
frames of cars, and so forth. These enclosures change the
interaction of electromagnetic fields with the scatterers
remarkably due to rereflections of electromagnetic fields
inside the resonator [2].

It was shown in many experiments that the main
mechanism of such interaction in free space is electromag-
netic coupling to interconnections of different scales. Often
these interconnections are electrically small (printed circuit
boards, chips, etc.) but can have own resonances. Currents
and voltages induced in such objects in free space can be
evaluated by a method, which includes two simple models:
a model of a small near-resonance linear antenna to describe
the common mode and a model of a small loop to describe
the differential mode [3].

In our papers, [4, 5], we proposed a method to analyze
the coupling to an electrically short dipole (or monopole)
antenna in a resonator (Method of Small Antenna, MSA) by

consequently using the scattering theory. The MSA is based
on the analysis of the integro-differential equation describing
the induced current in the neighborhood of the antenna.
This approach gives the possibility to analytically express the
solution for the scattered current in the small antenna inside
the resonator from the free space solution and the regularized
cavity Green’s function. One can also investigate the input
impedance of the small antenna, the current transfer ratio
for two small antennas, and so forth.

In the present, work we expand our method for the case
of electromagnetic coupling to an electrically small loop in
the resonator. Again, using an approximate solution for the
induced current in free space and a regularized cavity Green’s
function, we derive an equation for the induced current in
an electrically small loop in a resonator. The solution looks
like the one for free space but contains a so-called “resonator
impedance,” instead the radiation resistance of free space.
This “resonator impedance” depends on the parameters of
the antenna, the parameters of the resonator, and also the
coordinates of the loop.

The developed theory was applied to investigate an
important practical problem: the calculation of the transfer
function (external electromagnetic field → scattered cur-
rent) for electrically small wiring objects (printed circuit,
chip, etc.) inside a rectangular resonator. It is assumed that
electromagnetic waves penetrate into the cavity through
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Figure 1: Electrical and magnetic dipoles in a resonator.
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Figure 2: Model of a small near-resonance electrical dipole
antenna.

a small aperture and excite the scattering objects. We show
that the analytical evaluations are in good agreement with
results of numerical simulation.

The paper is organized as follows: in the Section 2, we
shortly repeat main results of MSA for the small electrical
dipole antenna in a resonator. In the Section 3, we present
new results of MSA for the small loop inside the resonator.
In the Section 4, we calculate transfer functions for both
type of scatterers and compare our results with numerical
calculations. In the short conclusion, we outline directions
of future investigations.

2. Small Electrical Dipole Antenna in
a Rectangular Resonator

We consider a thin-wire (electrical) dipole antenna inside a
rectangular cavity with well-conducting walls, see Figure 1,

which is excited by an electric field �E0(�r).
For simplicity, we assume that the antenna is parallel to

the z-axis. The current induced in the antenna satisfies the
electric field integral equation (EFIE), which contains the
tensor (dyad) Green’s function of the cavity [4, 5]. The same
EFIE equation for the current induced in the excited antenna,
can be written in free space. Of course, in this case it contains
the Green’s function for free space. For an electrically small
antenna the EFIE equation in free space can be solved by the

approximation of a small near-resonance (electrical) dipole
antenna [3], see Figure 2
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For a thin symmetric dipole antenna [3],
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Here the quantities L, d are the antenna length and
diameter, respectively, ωa is the first resonance frequency
of the antenna, Ca and La are the antenna capacitance and
inductance, respectively, and Ra is the antennaload.

The effective electromotive force εE,eff and the current
distribution function f (l) for a passive antenna with a
distributed uniform excitation Ez (Ra � √

La/Ca), see
Figure 2(a) are given by (3) and (4), respectively [3–5],
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By the analysis of the EFIE for the small antenna in a
resonator, it can be shown that the induced current is
described by a simple equation like (1), which, however,
contains together with the load resistance Ra also the
“impedance of the resonator” ZRES. This value is calculated
using the resonator Green’s function, regularized for coin-

ciding arguments,
˜
GE

RES, and it depends on both the antenna
and resonator parameters. For the passive dipole (distributed
excitation), one obtains (detailed derivation and explanation
of expression (5) the reader can find in [3, 4])
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An analogous simple equation for the induced current can be
derived for the lumped excitation [5].

The input impedance of a small dipole antenna in a
rectangular resonator was also calculated in [6] to investigate
statistical properties. In this work, a different split of the
resonator’s Green’s function was used, taking advantage of
the Coulomb gauge for the vector and scalar potential.
This was combined with the assumption of a fixed linear
free-space current distribution in the antenna for lumped
excitation.

3. Small Magnetic Dipole (Loop) Antenna in
Rectangular Resonator

Consider an electrically small loop inside a rectangular cavity
(see Figure 1) with well-conducting walls. For simplicity
we assume that the plane of the loop is normal to the z-
axis. The loop interacts with the magnetic field which is
excited in the resonator by one or another way (an additional
internal radiating antenna, penetration of a field into the
cavity through apertures, etc.). This field induces a current
J in the loop, which, in turn, serves as a source of the
scattered electromagnetic field. This small loop is equivalent
to a magnetic dipole with dipole moment M = J · S, where S
is the equivalent area of the loop.

For a more simple description of the electromagnetic
field of a small loop using the mathematical apparatus of
Green’s functions, it is convenient to formally introduce a
magnetic charge JM and a magnetic current ρM (see, for
example, [7]). The dipole moment of the small loop is
connected with the integral of magnetic current by

∫
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(
�r′
)
dV = jω �M. (6)

Then the electrical and magnetic field in the resonator can be
written as
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is the vector potential caused by the magnetic current;

G
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(�r,�r′) is the tensor Green’s function for the vector
potential. This Green’s function has a simple diagonal form
in free space
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In the resonator, this Green’s function can be calculated by
a different way. Here, as in our early research of the small
electrical dipole [4], it is convenient to use the resonator
Green’s function in double sum representation (expansion
into transverse waveguide modes of the cavity [7]). It
is a diagonal tensor, whose zz-component is (the other
components can be obtained by cyclic rearrangement) given
by
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The magnetic and electrical field can be obtained in an
analogous way after integration with the Green’s function for
the magnetic and electrical fields, respectively, using (8) or
(9) and applying (7a) and (7b).

Let us now investigate properties of the Green’s functions
in the neighborhood of the small scatterer. To make our
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method clearer, we begin from the case in free space. The
zz-component of the Green’s function for the magnetic field
from (8) and (9) is approximated by
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As one can see, the Green’s function is decomposed into two
parts. The first, singular part (first and second term in the
brackets) represents the near field and contains electrostatic
and magnetostatic energy. The second, regular part (third
term in the bracket) is constant in the neighborhood of the
scatterer and is responsible for the far field (radiation for the
case of free space, see below).

In order to extract the divergence of the Green’s function
inside the resonator in explicit form, we divide the summa-
tion domain of (9) into two parts [4] (see Figure 4): one cor-
responding to the values of wave number γv (less than some
value γmax) and the other part contains those values, which
exceed γmax. Then the summation may be approximated by
integration (practical numerical calculation has shown that
a good choice for γmax is ∼ 2.5 k). As a result, we obtain

the following expression for (G
A,M

RES )zz in the vicinity of the
scatterer:
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Now, substituting (12) into (7b), going to the limit k|z −
z′| → 0 and keeping main terms, including constant ones,
we obtain the desired decomposition of the resonator Green’s
function for the magnetic field:
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Again, as for the case of free space, we can extract from (13)
the singular near field part (the first and the second terms in
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Figure 3: Model of a small loop.
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the square brackets), which look like that one in free space
and the regular far field part (the sum and the third and
fourth terms in the square brackets, which take into account
rereflection of the signal from the cavity walls and contain all
information about system resonances).

The solution of the interaction problem with the singular
part of the Green’s function can be obtained by the model of
a small loop [3] (see Figures 3(a) and 3(b))
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(
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) ≈ εH ,effYH

(
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(
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)
Hz, (14a)

εH ,eff = − jωHzμ0S, (14b)
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Here the quantities S, La are the antenna area and induc-
tance, and Ra is the antenna load. For a thin circular loop
antenna with radius R and diameter of the wire d [3],

La = μ0R
(

ln
(

16R
d

)
− 2

)
. (15)

Let now the loop be under the action of an external magnetic
field Hz. If we take into account only the singular part of the
Green’s function (11) or (13), the induced current is defined
by (14a), (14b) and (14c). But, if we would like to take into
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account the regular part of the Green’s function, we have to
add to the magnetic field in (14a) an additional part H̃z
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Here we take into account (11), (6) and the connection of
the magnetic moment with the electrical current. Then, from
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J̃H =
(

Hz +

(
˜
G
H ,M

)

zz

jωSJ̃H

)

· KH
(
jω
)
. (17)

This is a linear algebraic equation for the induced current J̃H
whose solution yields
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By this way, taking into account the regular part of the
Green’s function yields the additional impedance Z̃a( jω) to
the antenna resistance Ra in (14b)
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For free space, with (G̃H ,M
. )zz from (11), (19) yields

a well-known equation for the radiation resistance of the
electrically small loop [3]:

Z̃
free space
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This agreement shows the correctness of our method for a
small loop.

For the loop inside the resonator, (19) gives an impe-
dance value for the antenna (“impedance of loop-resonator
system”) Z̃RES

a , similar to the case of a small near-resonance
dipole in Section 2. This value depends on both, the
loop antenna and resonator parameters, and describes all
resonances of the following system:
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Figure 5: Excitation of the internal dipole antenna through small
aperture.

Note, that the (18)–(21) in the present section describe,
namely, the differential current mode in the loop. This
mode prevails for small frequencies, much smaller than the
frequency of the first resonance (for the circular loop ω1 ≈
c/R). For the higher frequencies to evaluate the total current,
one has to take into account the common current mode,
which can be obtained using the approach of small electrical
dipole antenna described in previous section. Combination
of these two modes (depending from the orientation of the
loop) gives a total current, which can be compared, for
example, with numerical calculations. Such comparison will
be a subject of nearest investigations.

4. Application of the Developed
Theory: Transfer Function “External
Field-Induced Current”

Now it is assumed that an exterior field penetrates through a
rectangular aperture into the cavity and excites a small dipole
(see Figure 5). The dimensions of the resonator are a = h =
0.79 m, b = 0.534 m. The center of the z-directed unloaded
dipole antenna with length L = 0.25 m and radius r = 1 mm
is placed in the point with coordinates x = 0.395 m, y =
0.3 m, and z = 0.295 m. The cavity is excited through the
rectangular slit by the normally incident plane wave with
amplitude E0 = 100 V/m. The position of the center of the
slit is x1 = 0.395 m, z1 = 5 mm; the dimensions of the slit are
dx = 100 mm, dz = 5 mm.

The aperture is modeled by two equivalent electric and
magnetic dipoles placed in the center of the aperture [7]. For
the considered case, only the xx component of the magnetic
dipole moment Mx = −βxxH sc

x of the aperture is important,
which can be calculated using the magnetic polarisability
βxx = π/24d3

x(ln(4dx/dz)− 1)−1. Here H sc
x is a short-circuit

magnetic field because the plane of the aperture is assumed
to be perfectly conducting when solving the external problem
of diffraction. Now using the numerical data for the Hsc

x , we
can calculate the magnetic moment of the aperture. Then
we calculate the internal electrical field using (7a) and (7c),
and (9) and, after that, calculate the current amplitude in the
dipole antenna using the results of Section 2. Comparison
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of the MSA results with those of the well-known numerical
code “CONCEPT” is presented in Figure 6. One can see
a satisfactory agreement of the numerical and analytical
results, especially in the frequency region up to the first
resonance of the small antenna. The observed differences
(especially the additional peaks near the main resonance) are
due to the fact that in this example, taken from a practical
HPM coupling problem, the conditions of applicability of the
method of small antennas are not well satisfied: the size of the
antenna is comparable with the wavelength and the cavity
dimensions. Moreover, there may be additional resonances
in the penetration of radiation through the slit.

Note, that the calculation of MSA requires about one
minute of calculation by the PC notebook (Processor T7250
2 GHz); at the same time direct CONCEPT calculation
requires approximately one week of calculations by the PC
cluster (6 PCs).

5. Conclusion

Interactions of high-frequency electromagnetic fields with
small scatterers inside rectangular (resonators taking into
account both common and differential modes) were inves-
tigated using the Method of Small Antenna. The results
are important for the study of natural and intentional
electromagnetic interferences with printed circuits, chips,
and so forth inside racks and housings. Comparison of the
results with numerical ones has shown a good agreement.
In future, we intend to investigate effective damping of the
interferences inside cavities using the generalization of the
developed model for the multiscatterer case.
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