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Abstract—In the last years, the widespread of Cloud com-
puting as the main paradigm to deliver a large plethora of
virtualized services significantly increased the complexity of
Datacenters management and raised new performance issues
for the intra-Datacenter network. Providing heterogeneous
services and satisfying users’ experience is really challenging
for Cloud service providers, since system (IT resources) and
network administration functions are definitely separated. As
the Software Defined Networking (SDN) approach seems to
be a promising way to address innovation in Datacenters, the
paper presents a new framework that allows to develop and
test new OpenFlow–based controllers for Cloud Datacenters.
More specifically, our framework enhances both Mininet (a
well–known SDN emulator) and POX (a network controller
written in python), with all the extensions necessary to
experiment novel control and management strategies of IT
and network resources.
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I. INTRODUCTION

A Cloud Datacenter (DC) basically consists of virtual-

ized resources that are dynamically allocated, in a seam-

less and automatic way, to a plethora of heterogeneous

applications. In Cloud DCs, services are no more tightly

bounded to physical servers, as occurred in traditional

DCs, but are provided by Virtual Machines (VMs) that can

migrate from a physical server to another increasing both

scalability and reliability. Software virtualization technolo-

gies allow a better usage of DC resources; DC manage-

ment, however, becomes much more difficult, due to the

strict separation between systems (i.e., server, VMs and

virtual switches) and network (i.e., physical switches) ad-

ministration. Moreover, new issues arise, such as isolation

and connectivity of VMs. Services performance may suffer

from the fragmentation of resources as well as the rigidity

and the constraints imposed by the intra-DC network

architecture (usually a multilayer 2-tier or 3-tier fat-tree

composed of Edge, Aggregation and Core switches[5]).

Therefore, Cloud service providers (e.g.,[3]) ask for a next

generation of intra-DC networks meeting the following

requirements: 1) efficiency, i.e., high server utilization; 2)

agility, i.e., fast network response to server/VMs provi-

sioning; 3) scalability, i.e., consolidation and migration of

VMs based on applications’ requirements; 4) simplicity,

i.e., performing all those tasks easily[13]. A recent ap-

proach to programmable networks (i.e., Software-Defined

Networking – SDN) seems to be a promising way to sat-

isfy DC network requirements[14]. SDN–based architec-

ture decouples control and data planes: the most deployed

SDN protocol is OpenFlow (OF)[16][15], which allows

to set into OF–compliant switches forwarding rules estab-

lished by a centralized intelligence called controller. Since

SDN allows to re-define and re-configure network func-

tionalities (possibly up to the physical layer), the basic idea

is to introduce an SDN cloud-DC controller that enables a

more efficient, agile, scalable and simple use of both VMs

and network resources. Nevertheless, before deploying the

novel architectural solutions, huge test campaigns must

be performed in experimental environments reproducing a

real DC. To this aim, we introduce a novel framework

that enhances both Mininet[11] and POX[19] with all

the software modules necessary to emulate an SDN-

based intra-DC network, such as DC topology discovery,

network traffic generation, etc. Specifically designed for

DC environments, our framework allows to develop and

assess novel SDN-Cloud-DC controllers, and to compare

the performance of control and management strategies

jointly considering both IT and network resources[2]. It

is worth highlighting that the developed software modules

may be ported in a real controller without changes, as

our framework inherits such basic feature from Mininet.

The rest of the paper is organized as follows: section II

provides a short survey of related works, whereas section

III details the architecture and the functionalities of our

framework. Section IV presents an use case while section

V evaluates the performance of the framework. Finally,

section VI concludes the paper with some final remarks.

II. RELATED WORK

A number of research efforts recently focused on novel

solutions for emulation/simulation of Cloud DCs. Cal-

heiros et al.[6] proposed a Java-based platform, called

Cloudsim, that allows to estimate cloud servers perfor-

mance using a workflow model to simulate applications

behaviour. Then, Garg et al.[8] extended such a system

with both a new intra–DC network topology generator and

a flow–based approach for collecting the value of network

latency. However, in such a simulator, networks are con-

sidered only to introduce delay, therefore it is not possible

to calculate other important parameters (e.g., Jitter). Other

well–known open–source cloud simulators are[12][10]

and[18], but in none of them (even in Cloudsim) SDN

features are available.

Ellithorpe et al.[7] proposed, an FPGA emulation plat-

form that allows to emulate up to 256 network nodes

on a single chip. However, the cost of a single board
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is approximately 2, 000 dollars making this solution less

attractive than one based on open–source software.

Following the new shiny SDN paradigm, Banikazemi

et al.[4] proposed Meridian, an SDN–based controller

framework for cloud services in real environments: such

a platform allows to create and manage different kind

of logical network topologies, but it works on top of

a cloud Iaas platform (i.e., Openstack[17], IBM Smart

Cloud Provisioning[9]) while our solution is a flexible,

standalone software that could even run in a virtualized

environment.

III. DATACENTER IN A BOX: OUR FRAMEWORK

Providing the user with a full package for the develop-

ment and test of DC SDN controllers is one of the main

purposes of the framework. In order to achieve such goal,

we designed and developed a new software environment

consisting of two main components that allow the emula-

tion of DC topologies and DC oriented controller, respec-

tively. As regards the first component, the starting point

was Mininet, a network emulator for SDN systems, which

provides an API to reproduce any kind of topology without

the need of hardware resources. Therefore, Mininet allows

to validate the operation of an OF controller before its

deployment in a real environment. However, despite its

flexibility, Mininet lacks of a complete set of tools that

easily allow to emulate the behaviour of a cloud DC, thus

raising the following questions:

• How to easily generate and configure typical DC

topologies?

• How to simulate VMs allocation requests?

• How to emulate the inter and in/out DC traffic?

On the other hand, concerning the second component,

the starting point was POX, a full featured python con-

troller for OF switches, with ready-to-use modules. These

modules are helpful when it comes to make a controller,

as they provide useful abstractions. However, POX API is

too low level for a user that aims to implement a new DC

controller, which prevents the rapid development of the

logic thought by the user. To fill this gap, the controller

available in the framework includes all the abstraction

levels needed for building a DC oriented controller while

still being dynamic.

A. Framework overview

Figure 1 shows an overview of our framework. All

the main modules are independent, allowing not only

to directly use the controller in a real DC, but also

to change/add modules in order to fulfil all the user’s

requirements.

Within the controller, the User Defined Logic can be

easily implemented to obtain the desired DC behaviour

through the API provided by the framework controller

modules.

Using Topology Generator the desired Mininet DC

topology can be obtained. As for the traffic generated the

user can either use one of the provided generators or create

the support module for the favourite one.

Figure 1. Our framework

The Web Server Platform has two main functionalities:

1) to be used as a monitoring tool for the whole DC; 2)

to provide the end-user with a GUI for requesting VMs.

The Virtual Machines Manager (VMM) handler allows

to interface the controller with the VMM of a real-world

Cloud DC infrastructure (i.e., physical servers, VMs). For

now this module only supports XEN hypervisor, but other

VMMs (e.g., VMware hypervisor) can be easily supported

and does not require heavy development work by the user.

All the modules are directly portable to the real environ-

ment with the obvious exception of Mininet (and all the

controller modules designed to interact with it), since it is

the one emulating the DC topology. This means that after

developing and testing the desired DC behaviour through

our framework, the user can deploy the controller in his

own DC without making any changes.

B. Discovering the DC topology

Conventional intra-DC networks are multi-layer hierar-

chical infrastructures with thousands of low cost commod-

ity switches as network nodes[5]. Understanding the actual

DC skeleton is the first task that every controller must

perform regardless of the implemented functionalities. The

standard OF protocol provides the controller with the

capability of finding out the switches that actually are in

the network, but does not give any information regarding

their actual position in the hierarchy. For this reason, we

enhanced the POX host tracker and discovery modules to

better understand the actual DC topology. Such a feature

allows the framework user to focus only on the develop-

ment of the controller functionalities (i.e., VM allocation

policies, DC routing) without taking into account all the

preliminary operations that do not add anything new to the

DC management. The automatic discovery of link capacity

is a challenge yet to be faced and it will be a matter of

future works.

C. VM requester

Cloud computing provides the end user with an ab-

straction of hardware and software resources according

to different service delivery models (IaaS, PaaS, SaaS).

For this reason, emulating a Cloud DC needs an agent

able to act as an external user that requires resources
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(i.e., VMs allocation). Such a feature is provided by

the VM requester, a software daemon able to interact

with the SDN Cloud DC controller through a network–

socket. Fully configurable and flexible, the requester asks

to the SDN Cloud DC controller the allocation of VMs

with given requirements (i.e. CPU, RAM, hard disk size

and bandwidth) and lifetime. The lifetime represents the

amount of time the VM will remain allocated. When the

lifetime expires, the framework automatically takes care of

both removing the corresponding rules in the DC switches

and stopping the traffic generation to/from such VM. We

point out that the VM allocation does not really take place,

but it is simulated in the selected Mininet–instantiated

virtual host. Choosing the VM allocation request rate

allows to study the behaviour of the system in different

scenarios. At the time of writing, we modeled such a inter–

request time interval as a Poisson random variable with a

given α parameter, but we will add the possibility to choice

other distributions.

D. Traffic generation

Emulating traffic sources is a key point. Reproducing

both VM-to-VM and VM to out-of-DC data exchange is

necessary to create an environment as close as possible

to real scenarios. Out-of-DC traffic can enter in the DC

and reach a host (i.e., a virtual host instantiated within

Mininet) and vice–versa. Some hosts represent the world

outside the DC (from now on we will call them out-
side hosts), enabling in this way the emulation of data

exchange from DC to Internet while others are actually

the DC hosts. We point out that such traffic emulation

must be fully customizable in order to allow the user’s

experiments: while traffic modeling is out of the scope

of this work, giving the user tools that allow to easily

create different traffic profiles is a main issue. For this

reason we opted for D-ITG[1], a distributed traffic gener-

ator that allows to generate a large spectrum of network

traffic profiles(e.g., Poisson distribution, DNS, VoIP, etc..).

Application-specific traffic profiles can be defined, insert-

ing their statistical parameters in a configuration file (i.e.,
traffic shape, transport protocol, transmission rate, traffic

duration, etc..). Moreover, during the configuration phase,

the user can specify how frequently these applications

run into the DC. Every time a new VM is successfully

allocated (i.e., the SDN Cloud DC controller chooses the

host to allocate the VM and sets up the rules on the

OF switches) at least a new bidirectional traffic instance

starts between one outside host and the one that hosts

the new VM. We point out that the number of instances

and the type of traffic strictly depend on the application

chosen in the configuration phase. As for the internal

DC communications, when a inter-VMs communication

request arrives, the proper rules are installed and traffic

between them is generated.

E. Mininet DC Configuration

Flexibility is one of the key features in emulation

systems. For this reason, we made our framework fully

customizable through a configuration file that is used in the

initialization phase. Such a file enables the user to define

the DC topology as well as the traffic characteristics.

Choosing the DC architecture (i.e., 2–tier fat tree, 3–

tier fat tree, etc..), the number of switches (i.e., core,

aggregation and edge) and the number of hosts per edge

switch leads the user to define the DC skeleton. Providing

a simple interface to select even the number of links

that connect each switch to the others allows to create

different topologies (i.e., simple tree, fat-tree, etc..) while

setting the number of outside hosts gives the possibility

to connect the DC to the outside world in more than

one point. Providing an interface to choose the links

bandwidth allows the user to scale such value depending

on the computational power of the physical machine where

the framework actually runs. In this way, links can be

saturated regardless of the CPU power. Choosing the hosts

physical resources (i.e., CPU, RAM and disk size) as well

as modeling both the inter–VMs allocation request time

and VM lifetime random variables give the possibility to

create very dynamic environments. Finally, using D-ITG

the user can set the per-VM behaviour. It is only required

that the user choose a pool of traffic profiles. Once a VM

is allocated, one of the them will be randomly selected

and will be used to emulate the VM data exchange.

Limitations due to the computational power will be

discussed in Performance Evaluation section (§ V).

F. User Defined Logic

The user can insert his own code inside the User Defined

Logic module. While all the other modules provide an

abstraction level for the DC itself (i.e., VM allocation

request, traffic intra DC, etc..), in this one the user can

define his own controller functionalities (i.e., VM alloca-

tion policies, smart DC routing) by just implementing the

algorithms. No limitations in terms of management func-

tionalities are present. Everything that is OF compliant

could even be used in the logic that it is able to interact

with the others framework modules through some provided

APIs.

IV. USE CASE: UNDERSTANDING VM ALLOCATION

POLICIES DYNAMICS

Understanding the impact on the intra-DC network of

well–known VM allocation policies represents the first

step for finding more and more optimized solutions. Our

main concern was to validate our framework analyzing

its behaviour under common situations, in order to com-

pare the obtained results with the theoretical ones. For

this reason in the User-Defined Logic module, we firstly

implemented Best Fit (BF) and Worst Fit (WF). The BF

algorithm chooses the server with the smallest available

resources that suits the requirements. On the other hand

WF chooses the one with the most available resources.

Therefore, we expected that, as each request comes, using

a BF policy, all the VMs were allocated in one single

host until it was able to fulfill the requirements. Then a

new host was selected, and so on until all the hosts had

101



no more free space. In the second case (i.e., WF policy),

the VMs firstly had to be equally spread through all the

hosts. We configured the DC topology with 1 outside host,

2 core switches, 4 aggregation switches, 8 edge switches,

and 16 hosts (i.e., 2 per edge). We set each host in order

to be able to allocate up to 3 VM, for sake of simplicity

(and to easily understand the results), and all the requests

had the same requirements (i.e., CPU, RAM, disk size and

bandwidth). We defined the host link ratio as the amount

of per-host traffic received against the link speed set on

the DC initialization phase. We also set the DC in order to

saturate the host link when three different VMs had been

allocated.

Figure 2. The environment

Figure 2 shows an high–level vision of the proposed

environment. Starting from our framework, we only added

few lines of code to implement the allocation policy, since

the framework provides all the necessary APIs that enable

the controller to interact with the VM Requester, Traffic

Generator and the DC switches. Every time the controller

receives a new VM allocation request (i.e., generated by

the VM requester according to the DC configuration),

it installs the proper rules in the switches (optionally it

can ask for switches statistics – even periodically). Once

this process is completed, the controller informs the VM

requester about the result of the allocation process and the

traffic generation starts.

Figure 3 shows the first host link ratio over the time.

Using the BF allocation policy, once a VM has been

allocated in a host, all the following VMs are allocated in

the same host until no more can be allocated (e.g., useful

for energy saving). Having a new VM allocation request

per second, after three seconds the first host link reaches

the saturation. Using the WF policy instead, VMs firstly

are equally spread through all the hosts. In fact, being 16
the DC hosts, and having just 1 request per second, the

first host link saturates at the 33–th second.

V. PERFORMANCE EVALUATION

We evaluated the actual performance of the proposed

framework through a variety of experiments using a PC

equipped with an Intel i5 3 GHz and 8 GB of DD3 RAM

Figure 3. WF vs BF

(i.e., from now on we will call it Host-PC). The first set

of tests has been carried out to investigate the impact of

the amount of generated traffic, the DC topology size and

the number of outside hosts on the host link ratio. Firstly,

we generated a static topology (i.e, 2 outside hosts, 2
core switches, 4 aggregation switches, 8 edge switches,

8 hosts), then we started measuring the host link ratio

increasing per-host generated traffic . As shown in figure

Figure 4. Average Host link Ratio vs per Host Generated Traffic

4, we were able to generate up to few Mbps of traffic per

host. Then the host link ratio decreases as the generated

traffic grows. We point out that such limitation does not

affect any kind of DC performance tests made with our

framework, because we can scale the link speed as much

as we want during the DC initialization phase, reaching

every time 100% of the host link ratio. In order to test

the impact of the DC topology size on the host link ratio,

we kept the amount of the generated aggregated traffic

constant, while the number of switches and hosts was

exponentially increased. We started from the previous test

topology.

In the DC initialization phase, we set the link speed in

order to fully saturate the host links.

The results in figure 5 show that regardless of the hosts
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Figure 5. Average Host Link Ratio vs number of Hosts

Figure 6. Average Host Link Ratio vs number of Hosts per Outside
Host

number, the host link ratio remains constant. This means

that as long as the total amount of per-host generated traf-

fic and the links speed can guarantee the link saturation,

the system can scale indefinitely, being the only limits the

Mininet itself, or the controller. Finally we investigated

the relationship between the number of hosts connected

to just one outside host and the average link ratio. Figure

6 shows that a maximum of 8 hosts can be managed by

Figure 7. Host-PC Memory Utilization vs per Host Traffic Generated

just one outside host (i.e., the host link speed is set in

order to have a link saturation). Such a result provides the

user with an important constraint to be used during the

DC configuration phase. We point out that this limitation

is native of the Mininet environment and it is not due to

our framework. The second set of tests was carried out

to investigate the impact of both the amount of generated

traffic and the DC topology size on the amount of memory

the Host-PC needs. Figure 7 shows that memory utilization

does not depend on the amount of generated traffic for

each host. On the other hand, as shown in figure 8, as the

topology size grows, the memory usage also grows in the

same proportion, which allows to conclude that it scales

linearly.

Figure 8. Host-PC Memory Utilization vs number of Hosts

VI. CONCLUSIONS

In this paper, we presented a novel SDN Cloud DC

framework, built on top of Mininet and POX, that allows

the user to evaluate the performance of their SDN Cloud

DC controllers. Our framework addresses several issues

in testing such controllers by providing some useful APIs

(i.e., topology discovery, traffic generation, DC configu-

ration and VM request). This work has been validated

showing one use–case where two different well–known

VMs scheduling algorithms were implemented. Frame-

work scalability and stability has been also evaluated

increasing both the number of emulated hosts and the

DC links load. Work is still ongoing. We are planning

to insert new features in order to consider VM migration

and storage.
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