
Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

ON A CLASS OF INTEGRO-DIFFERENTIAL PROBLEMS

Michel Chipot and Senoussi Guesmia

University of Zürich
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Abstract. The paper is concerned with the existence of solutions to an integro-
differential problem arising in the neutron transport theory. By an anisotropic

singular perturbations method we show that solutions of such a problem exist

and are close to those of some nonlocal elliptic problem. The existence of the
solutions of the nonlocal elliptic problem with bounded data is ensured by the

Schauder fixed point theorem. Then an asymptotic method is applied in the

general case. The limits of the solutions of the nonlocal elliptic problems are
solutions of our integro-differential problem.

1. Introduction and motivation. The Boltzmann transport equation, governing
the neutron distribution in a nuclear reactor leads, by using the Vladimirov method
given in [12], to the even-parity second order transport equation. So, let us consider

the within-group transport equation for the neutron angular flux ψ
(
r, Ω̂

)
with the

simplifying restriction that scattering be isotropic

Ω̂ · ∇ψ
(
r, Ω̂

)
+ σ (r)ψ

(
r, Ω̂

)
− σs (r)φ (r) = s

(
r, Ω̂

)
(1)

coupled with some boundary conditions. The unit vector Ω̂ represents the traveling
direction of a neutron, the gradient operator ∇ acts on the spatial variable r only,
σ (r) is the total macroscopic cross section, σs (r) is the macroscopic scattering cross

section and s
(
r, Ω̂

)
is the source term. The scalar flux φ (r) is given by

φ (r) =

∫
Ω̂

ψ
(
r, Ω̂

)
dΩ̂.

We used the physical notation where
∫

Ω̂
denotes the integration on the set repre-

senting the traveling directions. To derive the even-parity transport equation let us

decompose ψ
(
r, Ω̂

)
into the sum of even and odd angular-parity components

ψ+
(
r, Ω̂

)
=

1

2

(
ψ
(
r, Ω̂

)
+ ψ

(
r,−Ω̂

))
ψ−
(
r, Ω̂

)
=

1

2

(
ψ
(
r, Ω̂

)
− ψ

(
r,−Ω̂

))
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i.e.

ψ
(
r, Ω̂

)
= ψ+

(
r, Ω̂

)
+ ψ−

(
r, Ω̂

)
.

Then the scalar flux is only written in terms of ψ+ by

φ (r) =

∫
Ω̂

ψ
(
r, Ω̂

)
dΩ̂ =

∫
Ω̂

ψ+
(
r, Ω̂

)
dΩ̂.

On the other hand, rewriting the transport equation (1) for −Ω̂

− Ω̂ · ∇ψ
(
r,−Ω̂

)
+ σ (r)ψ

(
r,−Ω̂

)
− σs (r)φ (r) = s

(
r,−Ω̂

)
(2)

and summing (1) and (2) term by term, we get

Ω̂ · ∇ψ−
(
r, Ω̂

)
+ σ (r)ψ+

(
r, Ω̂

)
− σs (r)φ (r) = s+

(
r, Ω̂

)
, (3)

then subtracting them leads to

Ω̂ · ∇ψ+
(
r, Ω̂

)
+ σ (r)ψ−

(
r, Ω̂

)
= s−

(
r, Ω̂

)
, (4)

whence

ψ−
(
r, Ω̂

)
=

1

σ (r)

[
s−
(
r, Ω̂

)
− Ω̂ · ∇ψ+

(
r, Ω̂

)]
,

where σ (r) is assumed different from 0. Replacing the term ψ−
(
r, Ω̂

)
in (3) using

the above identity yields the second order form of the transport equation

−Ω̂·∇
(

1

σ (r)
Ω̂ · ∇ψ+

(
r, Ω̂

))
+ σ (r)ψ+

(
r, Ω̂

)
= σs (r)

∫
Ω̂

ψ+
(
r, Ω̂

)
dΩ̂ + s+

(
r, Ω̂

)
− Ω̂ · ∇

s−
(
r, Ω̂

)
σ (r)

.

This is a second order partial differential equation in r with a nonlocal term given
by a partial integral on the angular domain. For more details we refer the reader
to [10, 12].

Motivated by the above model we consider in the following some integro-differential
problems.

First let ω1 (resp. ω2) be a bounded open subset of Rm (resp. Rn) where m and
n are positive integers. We split the components of a point in x ∈ Rm+n into the
m first components and the n last ones i.e.

X1 = (x1, . . . , xm) and X2 = (x′1, . . . , x
′
n) .

With this notation we set

∇u =

(
∇X1u
∇X2u

)
=

(
(∂x1

u, . . . , ∂xm
u)T

(∂x′
1
u, . . . , ∂x′

n
u)T

)
.

We set

Ω = ω1 × ω2.

Let us denote by A = (aij(x)) a n× n matrix such that

aij ∈ L∞(Ω) ∀ i, j = 1, . . . , n, (5)

and for some λ > 0 we have the ellipticity hypothesis

Aξ · ξ ≥ λ|ξ|2 ∀ ξ ∈ Rn, a.e. x ∈ Ω. (6)
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Let a ∈ C (R) be a continuous function satisfying

a(r) = O (r) when |r| → ∞ (7)

and l be the nonlocal term defined as

l (u) =

∫
ω1

h (X1, X
′
1, X2)u (X ′1, X2) dX ′1, ∀u ∈ L2(Ω), (8)

where h is a measurable function satisfying

h ∈ L∞(ω1 × Ω). (9)

Let us consider the integro-differential problem to find u such that{
−∇X2

(A∇X2
u) + χu = a(l (u)) in Ω,

u(X1, ·) = 0 on ∂ω2 a.e. X1 ∈ ω1.
(10)

where χ is nonnegative constant. We say that a function u0 ∈ L2 (Ω) such that
u0(X1, ·) ∈ H1

0 (ω2) for a.e. X1 ∈ ω1, is a weak solution of the problem (10) if the
integral identity ∫

ω2

A∇X2
u0 · ∇X2

v dx =

∫
ω2

a(l (u0))vdx, (11)

holds for a.e. X1 ∈ ω1 and ∀v ∈ H1
0 (ω2) . In order to show the existence of such

a solution, we perturb the first equation in (10). This is done by introducing the
following anisotropic singular perturbations problem{

−ε2∆X1uε −∇X2 (A∇X2uε) + χuε = a(l (uε)) in Ω,

uε = 0 on ∂Ω,
(12)

where ε > 0 will go to 0, ∆X1 =
∑m
i=1 ∂

2
xi

is the usual Laplace operator in X1. It
is clear that the problem (12) is a nonlocal semilinear elliptic problem, subject to
homogeneous Dirichlet boundary conditions. The theory of the anisotropic singular
perturbations is developed in [1]-[5], [8, 9, 11] where different convergence results
are shown for linear boundary value problems. In these references we can see that
the limit problem (when ε = 0) is a partial differential equation only in X2 possibly
parameterized by X1. This is what inspired us to use this asymptotic technique, to
show the existence of a solution of the problem (10) as a limit of uε when ε→ 0.

The existence of solutions of the nonlocal elliptic problem (12) is shown in two
steps in the following section. In the first one we assume that a is bounded which
allows the application of the Schauder fixed point theorem, then when a satisfies
the initial hypothesis (7) we establish the existence of a solution uε by using an
asymptotic method. In the last section we deal with the asymptotic behaviour of
uε solution to (12) when ε → 0 in order to show that the only possible limits are
the solutions of problem (10).

2. Nonlocal elliptic problems. Through all this section we assume that ε is
fixed.
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2.1. Bounded data. In this subsection we suppose that a is bounded i.e.

|a (s)| ≤ α ∀s ∈ R, (13)

where α is a positive constant. Under this assumption we can take χ = 0 (instead
of χ ≥ 0) since it does not play any role. Our aim here is to study the existence
of the solution of the nonlocal elliptic problem (12), using a fixed point argument.
This is the subject of the following theorem.

Theorem 2.1. Under the assumptions (5), (6), (9) and (13), there exists at least
one weak solution to problem (12).

Proof. We use the Schauder fixed point theorem. For w ∈ L2(Ω), let u ∈ H1
0 (Ω)

be the solution to the following linear elliptic problem{
−ε2∆X1u−∇X2 (A∇X2u) = a(l (w)) in Ω,

u = 0 on ∂Ω.
(14)

Define the mapping T from L2(Ω) into itself by

w 7→ u = T (w) . (15)

Thus, the pair (w, u) ∈ L2(Ω)×H1
0 (Ω) satisfies∫

Ω

ε2∇X1
u · ∇X1

v +A∇X2
u · ∇X2

v dx =

∫
Ω

a(l (w))vdx, ∀v ∈ H1
0 (Ω) . (16)

Taking v = u we get∫
Ω

ε2 |∇X1
u|2 +A∇X2

u · ∇X2
u dx =

∫
Ω

a(l (w))udx.

The coerciveness assumption (6), (13) and the Cauchy-Schwarz inequality lead to∫
Ω

ε2 |∇X1
u|2 + λ |∇X2

u|2 dx ≤
(∫

Ω

[a(l (w))]
2
dx

)1/2(∫
Ω

u2dx

)1/2

≤ α|Ω|1/2
(∫

Ω

u2dx

)1/2

.

where |Ω| denotes the measure of Ω. Applying the Poincaré inequality in the X2

directions and the Young inequality we derive∫
Ω

ε2 |∇X1
u|2 + λ |∇X2

u|2 dx ≤ α|Ω|1/2Cω2

(∫
Ω

|∇X2
u|2 dx

)1/2

≤ 1

2λ
α2C2

ω2
|Ω|+ λ

2

∫
Ω

|∇X2u|
2
dx,

whence ∫
Ω

ε2 |∇X1
u|2 +

λ

2
|∇X2

u|2 dx ≤ 1

2λ
α2C2

ω2
|Ω|,

where Cω2
is the Poincaré constant in ω2. This means that

u is bounded in H1 (Ω) , (17)

this of course independently of w. In particular one has

|u|L2(Ω) ≤ C,

where C is a constant independent of w. Let B be the closed ball in L2 (Ω) centered
at the origin with radius C. To apply the Schauder fixed point theorem it only
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remains to show that T is continuous on B for the L2 (Ω) topology. Let wn ∈ B be
a converging sequence such that

wn → w in L2 (Ω) . (18)

We set un = T (wn) ∈ B. Then there exist a subsequence n′ and u ∈ H1
0 (Ω) such

that

un′ ⇀ u in H1 (Ω) , (19)

un′ → u in L2 (Ω) , (20)

wn′ → w a.e. in Ω. (21)

The pair (wn′ , un′) satisfies (16) i.e.∫
Ω

ε2∇X1
un′ · ∇X1

v +A∇X2
un′ · ∇X2

v dx =

∫
Ω

a(l (wn′))vdx.

Passing to the limit in n′ we derive∫
Ω

ε2∇X1
u · ∇X1

v +A∇X2
u · ∇X2

v dxdt = lim
n′→∞

∫
Ω

a(l (wn′))vdx.

Let us compute the last limit. Thanks to the Lebesgue theorem with (18), (21) we
deduce

l (wn′)→ l (w) a.e. in Ω.

Applying again Lebesgue’s theorem, taking into account the above limit with the
continuity of a, leads to

lim
n′→∞

∫
Ω

a(l (wn′))vdx =

∫
Ω

a(l (w))vdx, ∀v ∈ H1
0 (Ω) .

Thus

−ε2∆X1u−∇X2 (A∇X2u) = a(l (w)) in D′ (Ω) .

Since u ∈ H1
0 (Ω) we deduce that

u = T (w) .

We can easily infer that the convergences (19) and (20) hold for the whole sequence
n since problem (16) has a unique solution. Then T is continuous and by the
Schauder fixed point theorem we get the existence of a solution to (12).

In the following we drop the hypothesis (13) and we show the existence theorem
in more general case.

2.2. More general assumptions. In this section we keep the assumption (7) of
the introduction for a and we assume that χ is large enough. For instance we
suppose

χ > |ω1| |h|L∞(ω1×Ω) lim
|r|→∞

sup

∣∣∣∣a(r)

r

∣∣∣∣ . (22)

Let us introduce a sequence of piecewise linear functions θn : R→ R defined as

θn (r) =

{
r if |r| ≤ n

sign(r)n if |r| ≥ n,
and construct continuous functions an defined as

an = a ◦ θn.
Then we have
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Theorem 2.2. Under the assumptions (5)-(7), (9) and (22), there exists at least
one weak solution to problem (12).

Proof. According to the previous subsection and since an is a bounded function
there exists un ∈ H1

0 (Ω) solution to{
−ε2∆X1

un −∇X2
(A∇X2

un) + χun = an(l (un)) in Ω,

un = 0 on ∂Ω,

in the weak sense i.e.∫
Ω

ε2∇X1u
n · ∇X1v +A∇X2u

n · ∇X2v + χunv dx

=

∫
Ω

an(l (un))vdx ∀v ∈ H1
0 (Ω) . (23)

By testing with un and using the ellipticity assumption we derive∫
Ω

ε2 |∇X1
un|2 + λ |∇X2

un|2 + χ (un)
2
dx ≤

∫
Ω

|an(l (un))un| dx. (24)

Let us first estimate the last term in the above identity. Since a satisfies (7) and χ
is large enough (it satisfies (22)) there exists r0 such that ∀r, |r| ≥ r0 we have

|a(r)| ≤ χ

|ω1| |h|L∞(ω1×Ω)

|r| . (25)

Thus we set

Ωr0 = {x ∈ Ω| |θn(l (un))| ≥ r0}

and rewrite the last term in (24) as∫
Ω

|an(l (un))un| dx =

∫
Ω/Ωr0

|an(l (un))un| dx+

∫
Ωr0

|an(l (un))un| dx. (26)

Then by (25) we get∫
Ω

|an(l (un))un| dx ≤|Ω|1/2 max
|r|≤r0

|a (r)| |un|L2(Ω/Ωr0)

+
χ

|ω1| |h|L∞(ω1×Ω)

∫
Ωr0

|un| |l (un)| dx, (27)

since |θn (r)| ≤ |r| , ∀r ∈ R and ∀n ∈ N. The last integral in the above inequality
can be estimated as follows∫

Ωr0

|un| |l (un)| dx

≤
∫

Ωr0

|un|
∫
ω1

|h(X1, X
′
1, X2)| |un(X ′1, X2)| dX ′1dx

≤ |h|L∞(ω1×Ω)

(∫
Ωr0

|un|2 dx

)1/2(∫
Ωr0

(∫
ω1

|un(X ′1, X2)| dX ′1
)2

dx

)1/2

.
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Applying the Young inequality we derive∫
Ωr0

|un| |l (un)| dx

≤ |h|L∞(ω1×Ω)

(∫
Ωr0

|un|2 dx

)1/2(∫
Ω

|ω1|
∫
ω1

|un(X ′1, X2)|2 dX ′1dx
)1/2

≤ |ω1| |h|L∞(ω1×Ω)

(∫
Ωr0

|un|2 dx

)1/2(∫
Ω

|un|2 dx
)1/2

.

Then using this and Young’s inequality in (27) we deduce that∫
Ω

|an(l (un))un| dx

≤ |Ω|1/2 max
|r|≤r0

|a (r)| |un|L2(Ω/Ωr0) + χ |un|L2(Ω) |u
n|L2(Ωr0)

≤ 1

2χ
|Ω|
(

max
|r|≤r0

|a (r)|
)2

+
χ

2
|un|2L2(Ω/Ωr0) +

χ

2
|un|2L2(Ωr0) +

χ

2
|un|2L2(Ω)

= C + χ |un|2L2(Ω) ,

where C = 1
2χ |Ω|

(
max|r|≤r0 |a (r)|

)2
. Going back to (24) and using the last estimate

we obtain

ε2 |∇X1
un|2L2(Ω) + λ |∇X2

un|2L2(Ω) ≤ C, ∀n ∈ N,

which means that

|∇un|2L2(Ω) is bounded,

this of course independently of n. Then there exist a subsequence n′, g ∈ L2 (Ω)
and u ∈ H1

0 (Ω) such that

un
′
⇀ u in H1 (Ω) , (28)

un
′ → u in L2 (Ω) , (29)

un
′ → u a.e. in Ω, (30)∣∣∣un′
∣∣∣ ≤ g a.e. in Ω. (31)

Passing to the limit in (23) we get∫
Ω

ε2∇X1
u · ∇X1

v +A∇X2
u · ∇X2

v + χuv dx = lim
n′→∞

∫
Ω

an′

(
l
(
un

′
))

vdx. (32)

We can compute the last limit using Lebesgue’s theorem. Indeed, by (29), (30),
(31) we get ∣∣∣l(un′

)(x)
∣∣∣ ≤ ∫

ω1

|h(X1, X
′
1, X2)| g(X ′1, X2)dX ′1 a.e. in Ω, (33)

l
(
un

′
)
→ l (u) a.e. in Ω. (34)

Then

θn′

(
l
(
un

′
))
→ l (u) a.e. in Ω.
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Moreover the right hand side of (33) is a function in L2(Ω) which we will denote by
H. Then it is easy to remark (cf. (25)) that for some constant C one has∣∣∣an′ l(un

′
)
∣∣∣ ≤ max

|r|≤r0
|a (r)|+ CH.

Thanks to the continuity of a we deduce also

an′

(
l
(
un

′
))
→ a (l (u)) a.e. in Ω.

Thus by the Lebesgue theorem it follows that∫
Ω

ε2∇X1
u · ∇X1

v +A∇X2
u · ∇X2

v + χuv dx =

∫
Ω

a (l (u)) vdx. (35)

This completes the proof since we already have u ∈ H1
0 (Ω).

Note that this technique of bounded and a.e. converging subsequence as in (30),
(31) will be used subsequently in this paper.

3. Anisotropic singular perturbations method. Before stating our asymp-
totic behaviour result, let us introduce the functional space V defined as

V :=
{
v ∈ L2 (Ω) |∂x′

i
v ∈ L2 (Ω) , i = 1, · · · , n and v(X1, ·) ∈ H1

0 (ω2) a.e. X1 ∈ ω1

}
,

equipped with the norm

|u|2V = |∇X2
u|2L2(Ω) + |u|2L2(Ω) . (36)

It is clear that V is a Hilbert space since if un is a Cauchy sequence in V , there
exist u ∈ L2 (Ω) with ∂x′

i
u ∈ L2 (Ω) , i = 1, · · · , n such that un → u with respect

to the norm (36), and for a.e. X1 ∈ ω1 -up to a subsequence-

un(X1, ·)→ u(X1, ·) in H1(ω2).

In this section we also assume that

∇h ∈ L∞(ω2;L2(ω1 × ω1)). (37)

Then let us show the following lemma that plays a principal role in this study.

Lemma 3.1. Let wn ∈ V be a sequence converging weakly toward w in V. Then we
have

l (wn) ⇀ l (w) in H1 (Ω)

and

l (wn)→ l (w) in L2 (Ω) .
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Proof. Using (37) we have∫
Ω

|∇X1
l (wn)|2 dx

=

∫
Ω

∣∣∣∣∫
ω1

∇X1h (X1, X
′
1, X2)wn (X ′1, X2) dX ′1

∣∣∣∣2 dx
≤
∫
ω1×ω2

(∫
ω1

|∇X1
h (X1, X

′
1, X2)| |wn (X ′1, X2)| dX ′1

)2

dx

≤
∫
ω2

∫
ω1

∫
ω1

(
|∇X1

h (X1, X
′
1, X2)|2 dX ′1

)(∫
ω1

(wn (X ′1, X2))
2
dX ′1

)
dx

=

∫
ω2

(∫
ω1

(wn (X ′1, X2))
2
dX ′1

)(∫
ω1×ω1

|∇X1
h (X1, X

′
1, X2)|2 dX ′1dX1

)
dX2

≤
(
ess sup

ω2

∫
ω1×ω1

|∇X1h (X1, X
′
1, X2)|2 dX ′1dX1

)∫
Ω

w2
n(x)dx.

Similarly ∫
Ω

|∇X2
l (wn)|2 dx

=

∫
Ω

∣∣∣∣∫
ω1

∇X2
h (X1, X

′
1, X2)wn (X ′1, X2) + h∇X2

wn (X ′1, X2) dX ′1

∣∣∣∣2 dx
≤

∫
ω1×ω2

(∫
ω1

|∇X2h| |wn (X ′1, X2)|+ |h| |∇X2wn (X ′1, X2)| dX ′1
)2

dx

≤ 2

∫
ω1×ω2

(∫
ω1

|∇X2h (X1, X
′
1, X2)| |wn (X ′1, X2)| dX ′1

)2

dx

+2

∫
ω1×ω2

(∫
ω1

|h (X1, X
′
1, X2)| |∇X2

wn (X ′1, X2)| dX ′1
)2

dx

≤ 2

(
ess sup

ω2

∫
ω1×ω1

|∇X2h (X1, X
′
1, X2)|2 dX ′1dX1

)∫
Ω

(wn)
2
dx

+2

(
ess sup

ω2

∫
ω1×ω1

|h (X1, X
′
1, X2)|2 dX ′1dX1

)∫
Ω

|∇X2
wn|2 dx.

Then since
wn ⇀ w in V,

it follows that wn is bounded in V and by the above estimates we deduce that
the sequence l (wn) is bounded in H1 (Ω) . Thus, there exist a subsequence n′ and
W ∈ H1 (Ω) , such that

l (wn′) ⇀ W in H1 (Ω) , (38)

l (wn′) → W in L2 (Ω) . (39)

On the other hand we have for every v ∈ D (Ω)∫
Ω

l (wn′) vdx =

∫
Ω

v (X1, X2)

(∫
ω1

h (X1, X
′
1, X2)wn′ (X ′1, X2) dX ′1

)
dx

=

∫
ω1

(∫
Ω

h (X1, X
′
1, X2) v (X1, X2)wn′ (X ′1, X2) dX ′1dX2

)
dX1.
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Since wn ⇀ w in V it follows that for a.e. X1 ∈ ω1∫
Ω

h (X1, X
′
1, X2) v (X1, X2)wn′ (X ′1, X2) dX ′1dX2

→
∫

Ω

h (X1, X
′
1, X2) v (X1, X2)w (X ′1, X2) dX ′1dX2.

Using Lebesgue’s theorem we derive∫
ω1

(∫
Ω

h (X1, X
′
1, X2) v (X1, X2)wn′ (X ′1, X2) dX ′1dX2

)
dX1

→
∫
ω1

(∫
Ω

h (X1, X
′
1, X2) v (X1, X2)w (X ′1, X2) dX ′1dX2

)
dX1,

i.e. ∫
Ω

l (wn′) vdx→
∫

Ω

l (w) vdx ∀v ∈ D (Ω) .

Thus we have

l (wn′)→ l (w) in D′ (Ω) .

Combining this with (38) and (39) we deduce

W = l (w) .

Since w is the unique limit of wn, the whole sequence l (wn) converges to l (w) i.e.

l (wn) ⇀ l (w) in H1 (Ω) ,

l (wn) → l (w) in L2 (Ω) .

This completes the proof of the lemma.

Next, let us recall the definition of ε − nets in metric spaces. This definition is
useful when the problem (10) has more than one solution.

Definition 3.2 (ε− nets). Given a metric space (X; d), a subset Y of X is said to
be an ε−net of another subset Y ′, if for all x ∈ Y ′, there exists an a ∈ Y such that

d(x, a) < ε.

Now, we are ready to state the main result.

Theorem 3.3. Under the assumptions of Theorem 2.2 and if (37) holds, then the
problem (11) is equivalent to finding u0 ∈ V such that∫

Ω

A∇X2u0 · ∇X2v + χu0vdx =

∫
Ω

a(l (u0))vdx, ∀v ∈ V,

and the set of solutions of (10) is not empty. Moreover if we consider the metric
structure of V corresponding to the norm (36), then for every r > 0, there exists
ε0 > 0 such that the set of the solutions of (10) consists a r − net of the set

Aε0 = {uε solution to (12) for ε < ε0} ,

and we also have

ε∇X1uε −→ 0 in L2(Ω).

This theorem has the following immediate corollary that gives the convergence
of uε.
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Corollary 1. Under the assumptions of Theorem 3.3 and if problem (10) has only
one solution u0 then we have

uε −→ u0, ∇X2uε −→ ∇X2u0 and ε∇X1uε −→ 0 in L2(Ω).

Remark 1. We will also see in the proof below that from every subsequence of
(uε)ε there exists another converging subsequence to a solution of (10) in the sense
of Corollary 1.

Proof of Theorem 3.3. Let us take v = uε in the weak formulation∫
Ω

ε2∇X1
uε · ∇X1

v +A∇X2
uε · ∇X2

v + χuεv dx =

∫
Ω

a (l (uε)) vdx. (40)

By the ellipticity assumption we derive∫
Ω

ε2 |∇X1uε|
2

+ λ |∇X2uε|
2

+ χ (uε)
2
dx ≤

∫
Ω

|a(l (uε))uε| dx. (41)

As similarly done before we set

Ωr0 = {x ∈ Ω| |l (uε)| ≥ r0}.

Then the right hand side of (41) can be written as∫
Ω

|a(l (uε))uε| dx =

∫
Ω/Ωr0

|a(l (uε))uε| dxds+

∫
Ωr0

|a(l (uε))uε| dx. (42)

By (25) we get∫
Ω

|a(l (uε))uε| dx ≤ |Ω|1/2 max
|r|≤r0

|a (r)| |uε|L2(Ω/Ωr0)

+
χ

|ω1| |h|L∞(ω1×Ω)

∫
Ωr0

|uε| |l (uε)| dx.

Then using the same argument as in the proof of Theorem 2.2 we deduce that∫
Ω

|a(l (uε))uε| dx

≤ |Ω|1/2 max
|r|≤r0

|a (r)| |uε|L2(Ω/Ωr0) + χ

{∫
Ωr0

(uε)
2
dxds

}1/2

|uε|L2(Ω)

≤ 1

2χ
|Ω|
(

max
|r|≤r0

|a (r)|
)2

+
χ

2
|uε|2L2(Ω/Ωr0) +

χ

2
|uε|2L2(Ωr0) +

χ

2
|uε|2L2(Ω)

≤ C + χ |uε|2L2(Ω) ,

where C = 1
2χ |Ω|

(
max|r|≤r0 |a (r)|

)2
. Going back to (41) and using the last estimate

we obtain

ε2 |∇X1uε|
2
L2(Ω) + λ |∇X2uε|

2
L2(Ω) ≤ C,

i.e.

uε, |ε∇X1
uε|, |∇X2

uε| are bounded in L2(Ω), (43)

this of course independently of ε. It follows that there exist u0 ∈ L2(Ω), u1 ∈
(L2(Ω))n such that – up to a subsequence

uε ⇀ u0, ∇X2uε ⇀ u1 in L2(Ω).
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(The convergence is meant component by component). Of course the convergence
in L2(Ω) –weak – implies the convergence in D′(Ω) and by the continuity of the
derivation in D′(Ω) we deduce that

uε ⇀ u0, ∇X2uε ⇀ ∇X2u0 in L2(Ω). (44)

Also, since uε is bounded in L2(Ω) we have∫
Ω

ε∇X1
uε · v dx = −

∫
Ω

εuεdivX1
v dx→ 0, ∀v ∈ [D(Ω)]

m
.

It follows since |ε∇X1
uε| is bounded in L2(Ω) that

ε∇X1uε ⇀ 0 in L2(Ω).

We then go back to the equation satisfied by uε and compute the limit of the right
hand side, using Lemma 3.1, we obtain - up to a subsequence -

l (uε)→ l (u0) a.e. in Ω.

The continuity of a gives

a (l (uε))→ a (l (u0)) a.e. in Ω. (45)

Together with Lebesgue’s theorem and (25) we obtain∫
Ω

a (l (uε)) vdx→
∫

Ω

a (l (u0)) vdx. (46)

(Of course since l (uε) is a converging sequence in L2(Ω) (by Lemma 3.1), there
exists g ∈ L2(Ω) such that -up to a subsequence-

|l (uε)| ≤ g a.e. in Ω.

We used this with (7), (45) to get (46).) Then passing to the limit in (35) we derive∫
Ω

A∇X2
u0 · ∇X2

v + χu0v dx =

∫
Ω

a (l (u0)) vdx. (47)

Taking v = uε in (47) and passing to the limit we get∫
Ω

A∇X2
u0 · ∇X2

u0 + χu0v dx =

∫
Ω

a (l (u0))u0dx. (48)

Next we expend

Iε :=

∫
Ω

ε2∇X1uε ·∇X1uε dx+

∫
Ω

A∇X2(uε−u0)·∇X2(uε−u0)dx+χ

∫
Ω

(uε−u0)2dx,

to get

Iε =

∫
Ω

ε2∇X1uε · ∇X1uε + A∇X2uε · ∇X2uεdx+ χ

∫
Ω

uε
2dx

−
∫

Ω

A∇X2
u0 · ∇X2

uε dx−
∫

Ω

A∇X2
uε · ∇X2

u0 dx

+

∫
Ω

A∇X2
u0 · ∇X2

u0dx− 2χ

∫
Ω

uεu0dx+ χ

∫
Ω

u2
0dx.
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Using (40) we derive

Iε =

∫
Ω

a (l (uε))uεdx

−
∫

Ω

A∇X2
u0 · ∇X2

uε dx−
∫

Ω

A∇X2
uε · ∇X2

u0 dx

+

∫
Ω

A∇X2
u0 · ∇X2

u0dx− 2χ

∫
Ω

uεu0dx+ χ

∫
Ω

u2
0dx.

Thanks to Lemma 3.1, (45) and applying the Lebesgue theorem we deduce that

a (l (uε))→ a (l (u0)) in L2 (Ω) .

This with the weak convergence of uε leads to∫
Ω

a (l (uε))uεdx→
∫

Ω

a (l (u0))u0dx.

Using this to pass to the limit in Iε we get

lim
ε→0

Iε =

∫
Ω

a (l (u0))u0dx−
∫

Ω

A∇X2u0 · ∇X2u0 dx− χ
∫

Ω

u2
0dx = 0,

since we have (48). Using the ellipticity assumption we derive∫
Ω

ε2|∇X1
uε|2 + λ|∇X2

(uε − u0)|2 dx+ χ

∫
Ω

(uε − u0)2dx ≤ Iε.

It follows that

ε∇X1uε −→ 0, ∇X2uε −→ ∇X2u0, uε −→ u0 in L2(Ω).

Now we also have ∫
ω1

∫
ω2

|∇X2
(uε − u0)|2 dX2 dX1 −→ 0. (49)

From this it follows that for a.e. X1∫
ω2

|∇X2(uε − u0)|2 dX2 −→ 0.

Since {∫
ω2

|∇X2
v|2 dX2

} 1
2

is a norm on H1
0 (ω2) and we can easily show that uε(X1, ·) ∈ H1

0 (ω2) (see [2]) we
have

u0(X1, ·) ∈ H1
0 (ω2)

for a.e. X1. As a consequence we have

u0 ∈ V.

Using the same argument as in [4] and taking into account (47) we show that u0

satisfies (11).
Now we have to show that the only possible limits are solutions of (10). For that

we suppose that there exist a subsequence of uε- still labeled by uε− and a constant
c > 0 such that

|uε − u0|V > c, (50)
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for any solution u0 to (10). Of course, from the above proof we can extract again
a subsequence that converges to a solution of (10), which contradicts (50). By the
same argument we deduce that

ε∇X1
uε −→ 0 in L2(Ω).

This completes the proof.

Remark 2. Thanks to the hypothesis (22), we can also consider the Neumann or
the mixed boundary conditions.
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mal,” Lecture Notes in Mathematics # 323, Springer-Verlag, 1973.

[12] V. S. Vladimirov, Mathematical problems in one-speed particle transport theory, Trudy Mat.
Inst. Akad. Nauk SSSR, 61 (1961).

E-mail address: m.m.chipot@math.uzh.ch

E-mail address: senoussi.guesmia@math.uzh.ch

http://www.ams.org/mathscinet-getitem?mr=2409210&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2494977&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2374249&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2449105&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0737190&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2411054&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0600331&return=pdf

	1. Introduction and motivation
	2. Nonlocal elliptic problems
	2.1. Bounded data
	2.2. More general assumptions

	3. Anisotropic singular perturbations method
	Acknowledgements

	REFERENCES

