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Abstract

Recent challenges to Chomsky’s poverty of the stimulus thesis for language acquisition suggest that
children’s primary data may carry “indirect evidence” about linguistic constructions despite containing
no instances of them. Indirect evidence is claimed to suffice for grammar acquisition, without need for
innate knowledge. This article reports experiments based on those of Reali and Christiansen (2005), who
demonstrated that a simple bigram language model can induce the correct form of auxiliary inversion
in certain complex questions. This article investigates the nature of the indirect evidence that supports
this learning, and assesses how reliably it is available. Results confirm the original finding for one
specific sentence type but show that the model’s success is highly circumscribed. It performs poorly
on inversion in related constructions in English and Dutch. Because other, more powerful statistical
models have so far been shown to succeed only on the same limited subset of cases as the bigram
model, it remains to be seen whether stimulus richness can be substantiated more generally.

Keywords: Poverty/richness of the stimulus; Language acquisition; Bigram model; Cross-entropy;
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1. Introduction

There has been renewed interest in poverty of stimulus (POS) arguments for language
acquisition (Ritter, 2002). Chomsky (1980, et seq) argued for the necessity of innate linguistic
knowledge (universal grammar [UG]) on grounds that children master some language facts
before being exposed to relevant exemplars. We focus here on evaluation of some recent
findings that appear to undermine this form of argument for the POS.
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A novel approach to evaluating—and rejecting—POS claims consists in showing that
the language facts in question can be acquired from a corpus of child-directed speech by
a very simple statistical learning algorithm with no access to prior knowledge of language
structure.1 Infants have been shown to be sensitive to statistical regularities in their input
(Saffran, Aslin, & Newport, 1996), so if a simple statistical learner can pick up linguistic
patterns appropriately without aid of UG, it would be implausible to maintain that children
cannot.

Reali and Christiansen (2003, 2005), building on work by Lewis and Elman (2001), de-
veloped this approach in a study of the acquisition of auxiliary fronting in complex English
sentences. They have shown that knowledge of which auxiliary to front is acquirable through
frequency statistics over pairs of adjacent words (bigrams) in training corpus sentences. Their
bigram learning model, trained on child-directed speech to 1-year-olds, was able to select
grammatical sentences such as (1) over ungrammatical versions such as (2), although the
corpus contained no sentences at all with this structure:

(1) Is the lady who is there eating?
(2) *Is the lady who there is eating?

We refer to the grammatical sentence type illustrated in (1) as a PIRC construction (a polar
interrogative with a relative clause modifying its subject). Children’s ability to discriminate
between the correct and incorrect forms of PIRCs has become the classic example of stimulus
poverty, cited often by POS adherents as a compelling illustration of knowledge in the absence
of experience. The PIRC construction is, therefore, an important and relevant target for those
like Reali and Christiansen who believe in the “richness of the stimulus.”2

2. Bigram-based learnability of PIRCs

Reali and Christiansen (2005; henceforth R&C) tested a bigram model, a trigram model,
and a neural network model. We focus here on the former because if a bigram-based model
succeeds in acquiring PIRCs, it can be expected that the more powerful trigram and network
models will do so too (but, see the discussion in section 6). In R&C’s Experiment 1, a bigram
model was trained on a corpus of 10,705 English utterances of adult speech directed to
13 through 21-month-old children, from a corpus of spontaneous adult–child conversations
recorded and transcribed by Bernstein-Ratner (1984; available in the CHILDES database—
see MacWhinney, 2000). More important, there were no instances of PIRCs in the corpus.
Therefore, any information about PIRCs obtained by the model must have been derived from
what R&C termed “indirect evidence” supplied by other sentence types.

The model’s mastery of PIRCs was assessed on 100 pairs of test sentences similar to (1)
and (2) above. Each pair consisted of a grammatical and a matched ungrammatical version,
fitting the templates in (3):

(3) Grammatical Is NP {who|that} is A B?
Ungrammatical Is NP {who|that} A is B?,
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where A and B are instantiated by VERB PHRASE, PARTICIPLE, NOUN PHRASE,
PREPOSITIONAL PHRASE, ADJECTIVE PHRASE

None of the test sentences occurred in the training corpus. Not all the bigrams in the test
sentences were in the corpus, but every unigram (word) in them was. The purpose of the
experiment was to determine whether, in a forced-choice situation, the model could predict
which sentence of a test pair was grammatical by projecting local (bigram) regularities from
the corpus.

For each test sentence, R&C computed an estimated probability for each of its bigrams,
from which they computed the cross-entropy of the sentence.3 Cross-entropy can serve as a
measure of the likelihood of the sentence occurring in the language domain from which the
corpus is drawn. In R&C’s grammaticality discrimination task, assuming that the more likely
a sentence is to occur, the more likely it is to be grammatical, the test sentence version with
the lower cross-entropy was chosen as the grammatical one.

One aspect of the method for estimating bigram probabilities is central to our discussion.
A bigram consists of two adjacent unigrams. For a bigram that occurs in the corpus, the prob-
ability is standardly estimated by dividing the number of occurrences of the word pair in the
corpus by the number of occurrences of its first word (= maximum likelihood estimate). For a
bigram not occurring in the corpus, a variety of alternatives have been proposed for estimating
probability (see Chen & Goodman, 1999). R&C employed an interpolation smoothing tech-
nique, which averages in the estimated probability of the second unigram. We will return to
the consequences of this below. In what follows, when we use the term “bigram probability,”
we will mean the smoothed bigram probability, as defined by R&C.

The percentage of test sentence pairs for which the model selected the grammatical version
is shown in Table 1. The model’s performance was close to perfect: 96% of test pairs were
correctly predicted. Based on this strong result, R&C concluded that “there is sufficiently rich
statistical information available in child-directed speech for differentiating between correct
and incorrect auxiliary (AUX) questions—even in the absence of any such constructions in
the corpus” (p. 1008). In our study, we set ourselves the task of identifying how the model
achieved this impressive level of performance. What information, precisely, was it picking
up? Gaining some insight into this is of interest to both linguistics and learning theory, in
view of the fact that there is no obvious transparent relation between word co-occurrences in
the corpus and the abstract structural properties that govern correct application of auxiliary
inversion. Indeed, even if exemplars of the correct PIRC form had been provided, it is not
entirely clear how a bigram-based learner would extract relevant information from them. As
Chomsky (1971) emphasized, auxiliary inversion is structure-dependent; it is sensitive to the
hierarchical arrangement of phrases, not to linear sequences of words.

Table 1
Reali and Christiansen’s (2005) Experiment 1: Number of sentences classified by the bigram
model correctly or incorrectly as grammatical, or undecided

% Correct % Incorrect % Undecided

96 4 0
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Table 2
Percentage of sentences classified by the bigram model correctly or incorrectly as grammatical or undecided
in our six experiments

Experiments Sentences Tested % Correct % Incorrect % Undecided

1. Replication of Reali and 100 87 13 0
Christiansen (2005)

2. Disambiguated rel- pronouns 100 18 36 46
3. Homography with determiner 100 18 37 45
4. Object-gap relative clause 100 35 15 50
5. Do-support 100 49 51 0
6. Verb inversion in Dutch 40 32.5 55 12.5

3. Understanding the bigram model’s success

Before conducting new experiments, we replicated R&C’s experiment to be sure that our
training corpus, test sentences, and procedures were in accord with theirs. We then examined
the specific bigrams that constituted each test sentence, to establish exactly what statistical
information the model had access to and how it made use of it.

3.1. Experiment 1: Replication of R&C’s result

We extracted 9,643 child-directed utterances by adults from the Bernstein-Ratner (1984)
corpus. We manually constructed 100 pairs of test sentences conforming to R&C’s templates
in (3).4 Employing R&C’s formulae (refer to Footnote 3 above), we computed smoothed
bigram probabilities and cross-entropies for all test sentences. The results, presented in the
first row of Table 2, corroborate the success of the bigram model. (The “undecided” category
in the last column of the table reflects cases where the two versions of a sentence were equal
in cross-entropy. Rows 2 through 6 of the table refer to other experiments discussed below.)
Clearly, the training corpus did provide sufficient information, expressible in the form of
bigram counts, to permit the model to perform the sentence discrimination task to a high level
of accuracy.

3.2. Which bigrams favor the grammatical sentences?

As a means of assessing the type of information the model had extracted from the corpus
and put to work in judging the PIRCs, we looked at which bigrams in the test sentences
contributed to the model’s successful selection of the grammatical version.

In these materials, discrimination between the grammatical and ungrammatical sentences
necessarily relies on just six distinguishing bigrams. All other bigrams appear in both sentences
of the pair, so they cannot be a determining factor in choosing between versions. Consider the
pair (4) and (5):

(4) Is the little boy who is crying hurt?
(5) *Is the little boy who crying is hurt?
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Table 3
Distinguishing bigrams for the test sentence pair (4) and (5)

Test Sentences Bigram1 Bigram2 Bigram3

(4) Grammatical 〈who is〉 〈is crying〉 〈crying hurt〉
(5) Ungrammatical 〈who crying〉 〈crying is〉 〈is hurt〉

The non-distinguishing bigrams in (4) and (5) are as follows: 〈is the〉, 〈the little〉, 〈little
boy〉, and 〈boy who〉. The six distinguishing bigrams are shown in Table 3, where we have
numbered them for ease of reference. Note that as a direct consequence of R&C’s template
in (3), bigram1-grammatical was 〈who is〉 or 〈that is〉 in every test pair. As we explain below,
this gave the 〈who is〉 or 〈that is〉 bigram (hereafter 〈who|that is〉) the major influence in
determining the model’s performance on the discrimination task.

Table 4 shows the smoothed bigram probabilities for the sentence pair (4) and (5). In
each cell, following R&C’s formula, the first term of the sum is 0.5 of the unsmoothed
bigram probability, and the second term is 0.5 of the probability of the second unigram. For
bigrams not occurring in the corpus, the first term is zero, so the smoothing formula estimates
probabilities based solely on the probability of the second unigram.

The relationships among these six bigrams are crucial to the model’s choice. The templates
in (3) entail that bigram2-grammatical and bigram1-ungrammatical always share the same
second unigram (here, “crying”). For the pair (4) and (5), neither of these bigrams was in the
corpus5, so their smoothed probabilities are based solely on their second unigrams, which are
identical. Hence, when the probabilities of the bigrams in each sentence version are multiplied
together to give the sentence probability6, these two bigrams cancel each other out and play no
role in the model’s choice. (The shading in this and other tables indicates bigrams that cancel
out across the two sentence versions.) This is not an isolated case, but is typical of many of the
test sentence pairs because only a low proportion (32%) of the bigrams in the test sentences
occur in this (relatively small) corpus.

A comparable relationship holds between bigram3-grammatical and bigram3-ungram-
matical. Their smoothing function is the same, so when neither bigram is attested in the
corpus, they cancel and contribute nothing to the discrimination task. In (4) and (5), this

Table 4
Smoothed probabilities (× 100,000 for better visualization) for the six distinguishing bigrams in sentences
(4) and (5)a

Test Sentences Bigram1 Bigram2 Bigram3

(4) Grammatical 〈who is〉 〈is crying〉 〈crying hurt〉
127.66 + 7.18 = 134.84 0 + .04 = .04 0 + .03 = .03

(5) Ungrammatical 〈who crying〉 〈crying is〉 〈is hurt〉
0 + .04 = .04 0 + 7.18 = 7.18 0 + .03 = .03

aSee text for explanation of shading.
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leaves just the remaining two bigrams, bigram1-grammatical and bigram2-ungrammatical,
to determine the model’s decision. It is these bigrams that create its strong bias toward the
grammatical sentence. In all test pairs, these bigrams share their second unigram, so they too
would annul each other if neither bigram were attested. However, in this case, the bigram in
the grammatical version is always attested. Template (3) entails that bigram1-grammatical is
either 〈who is〉 or 〈that is〉 in every case. The training corpus contained 12 occurrences of
〈who is〉 and 23 occurrences of 〈that is〉.7 Therefore, bigram1-grammatical is guaranteed to
have a higher smoothed probability than bigram2-ungrammatical whenever the latter is not
in the corpus, thus pushing the model toward correctly selecting the grammatical sentence.
Only when bigram2-ungrammatical occurs in the corpus and its probability exceeds that of
the 〈who|that is〉 bigram, could the model choose the ungrammatical test sentence.

These details concerning how the six distinguishing bigrams are likely to trade off against
each other are important because they drive the outcomes of R&C’s experiment, as well as
our own. Out of the six distinguishing bigrams, only one (the 〈who|that is〉 bigram) features
in every test pair; and in every case, this bigram is in the grammatical sentence. It thus serves
as a “marker” for the grammatical version; and because the probability of 〈who|that is〉 is
greater than that of many other bigrams, it often dominates the calculation. Of the 87 positive
outcomes in our experiment, 80 (92%) can be traced specifically to the bigram 〈who|that is〉.
The exact success rate varies slightly, of course, with the particular sentence pairs employed
and the details of the corpus.8 But in the training corpus in this experiment, which may well
be typical in this respect, the various distributions of the other bigrams rarely outweighed the
bias created by the constant presence of 〈who|that is〉 in every grammatical test sentence.

3.3. The source of the winning bigram

In addition to logging the incidence of correct sentence choices, our analysis thus established
the nature of the corpus data on which those choices were based. A clear conclusion was that
the 〈who|that is〉 bigram does the lion’s share of the work in predicting the correct PIRC
version. Despite the dependence of auxiliary inversion on abstract syntactic structure, it turns
out that a simple cue consisting of two linearly adjacent words is all it takes to identify the
correct form. In fact, this falls under a general recipe for success in bigram-based learning.
A bigram model will have a good chance of performing well in any sentence discrimination
task if there is a marker bigram (or more than 1) that (a) appears fairly systematically in the
grammatical test sentences and not in the ungrammatical ones, and (b) has a high estimated
probability relative to that of other bigrams. When these conditions are met, discrimination
will probably succeed; when they are not, success is possible but cannot be counted on.
To further evaluate bigram-based learning of PIRCs, therefore, attention must focus on the
support provided by the corpus for the crucial 〈who|that is〉 bigram.

Because of the young age of the children to whom the adult sentences were uttered, it seemed
surprising that the corpus would contain enough relative clauses to supply a substantial number
of 〈who|that is〉 bigrams. A manual search for relative clauses revealed only 19 that contained
an overt relative pronoun. None of these contained either 〈who is〉 or 〈that is〉. Instead, all
12 〈who is〉 bigrams appeared in questions (e.g., “Who is in there?”), and all 23 〈that is〉
bigrams had “that” as a deictic pronoun (e.g., “That is a rose.”). Thus, the “who” or “that” of
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a 〈who|that is〉 bigram was in every case merely a homograph of a relative pronoun.9 In short,
the ability of the model to select grammatical relative clause constructions in the experiment
was due to a 〈who|that is〉 bigram that had nothing to do with relative clauses. The prevalence
of the crucial bigram for discrimination of PIRCs was due instead to two “accidental” facts
of English: that it has words that are homographs of relative pronouns, and that these words
commonly occur immediately preceding “is.” This raises a real possibility that bigram-based
PIRC discrimination would be less successful for varieties of the PIRC construction that lack
support from these or similar idiosyncrasies in the language. We conducted two experiments
to confirm this, which we report in section 4 before moving on to examine, in section 5, the
generality of what the bigram model is able to learn.

4. Without the “wrong” bigrams

In Experiment 2, we investigated the bigram model’s performance on a language exactly
like English, except that it lacked any homographs for relative pronouns. Although this is not
a language in use by any language community, there is no reason to doubt that it is a normal
learnable human language. There are many natural languages (e.g., Finnish, Hebrew, Yoruba)
in which the relative pronoun does not look or sound like any other word.10 The procedure
was exactly as in Experiment 1, but all relative pronouns in the corpus and test sentences were
labeled as either “who-rel” or “that-rel” in order to distinguish them from other occurrences
of “who” and “that.” The distinguishing bigrams in the test sentences, and their estimated
probabilities, were exactly as for Experiment 1, except that “who-rel” or “that-rel” appeared
in place of “who” and “that,” respectively, as bigram1 in both sentence versions; and the first
term of the estimated probability of bigram1-grammatical was now zero in all cases. The
results, as expected, were not in favor of the bigram model (see the second row of Table 2).
When it had to rely on genuine relative pronouns, the bigram model selected the grammatical
version of the PIRC only 18% of the time. This is because, unlike English, this language
lacked a simple bigram cue for making the correct choice. Although the 〈who-rel|that-rel is〉
bigram was present in all the grammatical test sentences, it never occurred in the corpus, so
bigram1-grammatical no longer delivered a systematic boost to the grammatical version.

In Experiment 3, we examined a language in which relative pronouns were homographic
with another item in the language but not helpfully so. We substituted the English determiner
“the” for all the relative pronouns in the original corpus and test sentences, in order to check
that not just any homography would facilitate selection of the grammatical version. Overlap
between determiners and relative pronouns is not uncommon in natural languages; it occurs,
for example, in German. But a determiner is not normally followed by an auxiliary verb, so this
homography would not raise the estimated probability of the marker bigram that distinguishes
grammatical from ungrammatical PIRCs.

The results are shown in the third row of Table 2. They are just as poor as for Experiment
2. This is not surprising. In both of these experiments, the model had no choice but to acquire
its knowledge of relative clauses from actual relative clauses in the corpus, and the knowledge
obtainable in that fashion was clearly insufficient. These two experiments thus confirm our
diagnosis that the successful bigram-based performance on PIRCs in the previous studies
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was in a sense a lucky fluke because it rested on information in the corpus that was actually
irrelevant to the linguistic construction to be learned.11 However, the results from Experiments
2 and 3 do not disconfirm the more important hypothesis of interest: that, contrary to the POS
thesis, children may be able to acquire complex syntactic constructions on the basis of bigram
evidence from other, simpler constructions. So far, these experiments merely present a reason
for doubting that young children’s linguistic input can, in the general case, provide bigram
cues for complex constructions. When and whether those cues exist seems to depend on ad
hoc facts of the target language, so that learnability is not guaranteed, unlike the more or less
universal reliability of child language acquisition. Conceivably, however, a larger or “older”
corpus (adult speech to older children) would offer a more adequate supply of genuine relative
pronouns in 〈who|that is〉 bigrams, so that PIRC discrimination could succeed even without
the crutch of homography. We return to issues about the richness of the corpus in section 6, but
see Kam (2007) for data showing only modest improvements in discrimination performance
with larger–older corpora, for PIRC varieties with object-gap relative clauses and do-support
(which we show below can be difficult for bigram-based learning).

However, there is a deeper challenge for bigram-based PIRC learning, which is that there
are many other varieties of PIRC (auxiliary inversion in relative clause constructions) that do
not contain 〈who|that is〉 or any convenient marker bigram at all. So far, we have followed
R&C in limiting the view to PIRCs defined by template (3), with a subject gap in the relative
clause and is as the auxiliary (or copula) in both clauses. Despite receiving, by far, the most
attention in the POS literature, this is merely an arbitrarily chosen instance of a much broader
phenomenon. Auxiliary inversion in interrogatives can involve other auxiliaries such as “was,”
“must,” or the “do” of do-support. The main clause and a relative clause may differ in their
auxiliaries (e.g., “Must the boy who was crying go home?”), or one or both may have no
auxiliary (e.g., “Must the boy who cried go home?”). There are also PIRCs in which the
relative pronoun is followed not by an auxiliary but by the subject of the relative clause, as
in “Is the boy who the girl is talking to going home?” where the object of the relative clause
has been relativized. The relative clause subject can be any well-formed noun phrase, with
considerable freedom as to its first word, so the relative pronoun would appear in different
bigrams in different examples (e.g., 〈who the〉, 〈who Jim〉), diluting the likelihood that the
relative pronoun is in a well-attested bigram in the corpus. In sum, in a more representative
collection of PIRC test sentences, the bigrams in the grammatical version will be quite varied
and might not offer a dependable basis for choosing correct sentences.

The claim that a bigram model can acquire valid linguistic knowledge of auxiliary inversion
would be warranted only if its competence extends to this broader range of instances because
they differ from template (3) only in details that do not bear on the basic linguistic pattern.12

In the ideal case, a learning model would identify the broad generalization (i.e., invert the
auxiliary in the main clause), which covers all the various instances. It is standardly assumed
that human learners attain this generalization (although data on when they do so are sadly
lacking in the language development literature). As a lesser achievement, a statistical model
could be claimed to have acquired some significant linguistic knowledge of auxiliary inversion
if it had identified distinguishing bigram(s) to cue the correct choice for each of the various
subvarieties of PIRC, as the 〈who|that is〉 bigram does for is-is PIRCs. But the next three
experiments that we report indicate that this is not so, at least for corpora comparable to
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R&C’s. The is-is PIRCs defined by (3) are tailor-made for a bigram language model, but it
appears that they are exceptional. Results show that other PIRCs do not lend themselves so
readily to bigram-based learning.

5. Extending the investigation to a wider range of PIRCs

As noted, question formation by auxiliary inversion occurs in many more contexts than fit
the narrow specifications for test sentences in previous experiments. Our results so far indicate
a dependence of bigram-based learning on one very specific bigram that is not present in the
broader range of examples. Our next experiments investigate whether other bigram information
is available to ground successful learning in all cases.

5.1. English PIRCs without a marker bigram

In Experiments 4 and 5, we examined PIRCs with object-gap relative clauses and PIRCs
with lexical verbs needing do-support. We anticipated weaker performance on these than for
the is-is PIRCs with subject-gap relatives tested in the previous experiments because in neither
case is there a single characteristic distinguishing bigram in the grammatical sentence. But
that is not decisive. It also needs to be established whether for these cases the input affords
some confluence of minor cues, each one only a weak predictor but reinforcing each other
in favor of the grammatical version. Not knowing in advance what these cues might be, our
research strategy was to ascertain whether the learning model would succeed. If it did, an
effort could be initiated to identify the cues responsible. If it did not, it could be concluded
that such cues are not available.

For both experiments, 100 pairs of test sentences were constructed, and the method was
as before. In the object-gap PIRC items, both clauses contained the auxiliary “is,” but the
relativized noun phrase was the object of the relative clause, as in the pair (6) and (7). For
clarity, we have inserted brackets around the relative clause, and have indicated the trace (the
underlying position) of the fronted auxiliary as well as the trace of wh-movement (the “gap”)
in the relative clause:

(6) Isi the wagonj [Øj your sister is pushing tj] ti red?
(7) *Isi the wagonj [Øj your sister ti pushing tj] is red?

The relative pronoun was phonologically null (Ø) in all test sentences. An overt relative
pronoun (“who” or “that”) could have been used, but it would not have been part of any
distinguishing bigram, so the outcome would have been identical. As illustrated in (6) and
(7), the relative pronoun in an object-gap relative clause is sandwiched between the modified
noun and the subject of the relative clause, and these are identical across grammatical and
ungrammatical versions. The distinguishing bigrams for (6) and (7) are shown in Table 5 with
their estimated probabilities.

The patterning of the six bigrams in Table 5 is similar to the previous experiments with
respect to the sameness of smoothing factors across versions, indicated by the shading. But
here there is no distinguishing bigram that systematically appears in every pair. As a result,
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Table 5
Smoothed probabilities (× 100,000) for the distinguishing bigrams in sentences (6) and (7)

Test Sentences Bigram1 Bigram2 Bigram3

(6) Grammatical 〈sister is〉 〈is pushing〉 〈pushing red〉
0 + 718.41 = 718.41 0 + 1.12 = 1.12 0 + 16.84 = 16.84

(7) Ungrammatical 〈sister pushing〉 〈pushing is〉 〈is red〉
0 + 1.12 = 1.12 0 + 718.41 = 718.41 0 + 16.84 = 16.84

discrimination was not strongly biased toward either sentence version. The results, in the fifth
line of Table 2, showed a mix of correct and incorrect choices, as well as some failures to
choose either version for pairs in which all bigrams were absent from the corpus. Only 35% of
test pairs were correctly distinguished. It appears, then, that there is not even any combination
of cues in these object-gap PIRCs that tips the scales toward the grammatical version.

In the experiment on do-support PIRCs, we reverted to subject-gap relative clauses begin-
ning with “who” or “that,” but we used lexical main verbs instead of “is,” as illustrated by the
test pair (8) and (9). The main verb remainedin situ, but a form of “do” appeared sentence-
initially, and the corresponding main verb took an uninflected non-finite form (“want” and
“play” in (8) and (9), respectively)13:

(8) Doesi the boy [who plays the drum] ti want a cookie?
(9) *Doesi the boy [who ti play the drum] wants a cookie?

These test pairs all have eight distinguishing bigrams, as Table 6 illustrates.
Because of the variation in verb finiteness, only two of the four cross-version bigram

comparisons exhibit comparable smoothing factors. Therefore, the versions could never com-
pletely cancel out (except by coincidence), so it is predicted that undecided cases will not
occur. Corresponding to the 〈who|that is〉 of the earlier experiments, the grammatical sentence
in this case contains “who” or “that” followed by the lexical verb of the relative clause (e.g.,
〈who plays〉 in (8)). Such bigrams are not likely to be very common in the corpus (even
permitting homography, as we did in this experiment). In fact, none of the bigrams in (8) and
(9) is particularly likely to have strong corpus support, so neither the grammatical nor the
ungrammatical sentence version is expected to prevail. The results, shown in the fifth row of

Table 6
Smoothed probabilities (× 100,000) for the distinguishing bigrams in sentences (8) and (9)

Test Sentences Bigram1 Bigram2 Bigram3 Bigram4

(8) Grammatical 〈who plays〉 〈plays the〉 〈drum want〉 〈want a〉
0 + 1.12 = 1.12 0 + 1452.53 = 1,452.53 0 + 315.42 = 315.42 355.87 + 1037.2

= 1,393.07
(9) Ungrammatical 〈who play〉 〈play the〉 〈drum wants〉 〈wants a〉

0 + 55 = 55 0 + 1452.53 = 1,452.53 0 + 25.82 = 25.82 0 + 1037.2
= 1,037.2



X.-N. C. Kam et al./Cognitive Science 32 (2008) 781

Table 2, comport with these predictions: roughly one half (49%) of the pairs were correctly
discriminated. The bigram model was evidently not picking up any combination of cues as
potent as the 〈who|that is〉 cue in the subtype of PIRC examples tested by R&C. This supports
our conjecture that the positive results in the original experiments do not reflect a general
grasp of the linguistic constraints on subject-auxiliary inversion.

5.2. Dutch PIRCs with main verb inversion

For our final experiment, we turned to another language in order to examine a subvariety of
PIRC that does not occur in English. In some languages, the inversion process that forms ques-
tions applies more generally to all finite verbs, not just auxiliaries. This is the case in Germanic
languages, including Dutch, as illustrated in example (10), which follows. The Dutch equiva-
lent of English sentences like (8) thus does not need do-support.14 Our goal is to determine the
extent to which a bigram model is capable of extracting general patterns of sentence formation
from a corpus. Testing it on Dutch, with its general pattern of verb inversion, can be informative
in this regard. If it is to establish that bigrams provide a general basis for a statistical learnability
argument against POS, a bigram model must be able to learn how to form complex questions
in any language, even if the specific bigrams in those questions differ radically from one
language to another. Testing this therefore demands the use of a real corpus of Dutch such as
a Dutch-learning child would be exposed to. Thus, in Experiment 6 we did not merely change
one controlled property of the English corpus as we did in Experiment 3, but started afresh with
a Dutch corpus and Dutch sentences in order to allow any and all properties of the language
input to contribute to the model’s ability to discriminate grammatical from ungrammatical
PIRCs.

The training corpus used in this experiment is known as the Groningen corpus (Bol, 1996),
available in the CHILDES database. The children’s ages ranged from 1 year, 5 months to 3
years, 7 months; and we chose adult utterances from among the earliest files in the corpus,
covering a 4-month period for each child. This yielded 21,557 utterances of child-directed
speech. The resulting corpus was thus both larger and somewhat older than our corpus of
English child-directed speech, but this would tend to increase the chances of successful
learning by the bigram model. Forty pairs of Dutch PIRC sentences, constructed with the
assistance of a native speaker, were tested. In all items, both clauses contained a lexical verb
only (no auxiliary).15 Sentences (10) and (11) are typical of the test pairs:

(10) Wili de baby [die op de nieuwe stoel zit] ti een koekje?
Wants the baby that on the new chair sits a cookie?
“Does the baby that is sitting on the new chair want a cookie?”

(11) *Ziti de baby [die op de nieuwe stoel ti] wil een koekje?
Sits the baby that on the new chair wants a cookie?
“Is the baby that sitting on the new chair wants a cookie?”

The eight distinguishing bigrams for (10) and (11) are shown in Table 7. (The unigram “-sent”
in bigram1 is the sentence-initial marker, which is relevant in this experiment because the
initial word differs across versions.)
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Table 7
Smoothed probabilities (× 100,000) for the distinguishing bigrams in sentences (10) and (11)

Test Sentences Bigram1 Bigram2 Bigram3 Bigram4

(10) Grammatical 〈-sent- wil〉 〈wil de〉 〈stoel zit〉 〈zit een〉
368.82 + 177.54 135.14 + 896.31 675.68 + 134.35 1,964.29 + 998.99

= 546.36 = 1,031.45 = 810.03 = 2,963.28
(11) Ungrammatical 〈-sent- zit〉 〈zit de〉 〈stoel wil〉 〈wil een〉

173.97 + 134.35 892.86 + 896.31 0 + 177.54 270.27 + 998.99
= 308.32 = 1,789.17 = 177.54 = 1,269.26

Smoothing factor similarities across the versions have the potential for cancellation of all
the bigrams, and hence for some cannot-decide outcomes. In the example in Table 7 there
happen to be no cancellations. The grammatical version was selected; but, in other cases, the
ungrammatical version was chosen (e.g., the ungrammatical *“Lijkt de kok die moe maakt
een cake?” was favored over the grammatical “Maakt de kok die moe lijkt een cake?” [“Is
the cook who seems tired making a cake?”]). Overall, the model did not do well on these
Dutch PIRCs; see row 6 of Table 2. Only 32.5% of the test pairs were correctly discriminated.
Clearly, the Dutch training corpus did not offer any reliable indicators of grammaticality that
could be encompassed in bigrams.

6. General discussion

R&C demonstrated that children’s primary linguistic data affords information determining
the correct form of one complex syntactic construction. As we have seen, this does not
imply that the same will be true for every complex syntactic construction; so it does not by
itself falsify the POS thesis in general. On the other side, our demonstration that for some
syntactic constructions a bigram model does not find definitive information in a corpus of
child-directed speech does not entail that other statistical models will equally fail to do so.
Thus, the substantive issue of whether the input for syntax acquisition is rich or poor is not
settled by the data presented here. Nevertheless, some general conclusions can be drawn
from this exercise: conclusions about methodology, about future research needed, and about
a possible role of UG.

Our methodological conclusion is that, at least when the goal is to shed light on human
language acquisition, it should be standard practice for data-driven learning claims to be
accompanied by an elucidation of the source of the knowledge acquired. The POS thesis is
a thesis about first language acquisition by children. Its central importance to linguistics and
psycholinguistics, and the reason it is still vigorously debated, is that it has strong implications
for the mechanisms of human language acquisition. For this purpose, a learnability result is
more telling if it is clear what precisely has been learned on the basis of what input evidence.
This point is especially acute in the case of learning from “indirect” evidence, where the
knowledge does not derive from explicit exemplars of the construction in question. In the
case of PIRCs, once it was established which bigrams in the original is-is test sentences were
responsible for the model’s bias toward the correct version, it was easy to see that they were
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the product of the criteria by which these sentences had been carved out as the particular
subclass of PIRCs to be studied. In consequence, the finding of input richness for that class of
items provides only the weakest encouragement for the belief that every other construction,
when studied, will prove to have a comparably reliable statistical hallmark. Our Experiments
4 through 6 then showed that this is not so, at least under conditions comparable to those in
R&C’s experiment.

This leads us to our second conclusion, which is that these issues can be settled only
by further studies that systematically vary the size and richness of the training corpus, in
order to see whether there indeed exists some level of input information that a child might
reasonably have access to and which does suffice for acquisition of general linguistic patterns
without actually exemplifying them. A richer corpus might provide more varied examples of
other related constructions, or it might include part-of-speech information, or even syntactic
bracketing, which could be accessible to a learner via prosody or a previous round of learning.
Kam (2007) represented a beginning on this large-scale, but essential, project. But what is
also needed is an upgrading of the statistical power of the learning model—an escalation from
bigrams to trigrams and other richer sources of co-occurrence information. R&C did test a
trigram model, and also a much more powerful simple recurrent network with part-of-speech
tags as input. However, the only results to date, even for these stronger learners, are for the
original is-is subject-gap variety of PIRC, which we have seen is trivially acquirable by the
simplest n-gram learner and is not a bellwether for human language acquisition at large. It
remains to be seen whether the ability of, for example, a neural network will extend to a fuller
range of PIRCs in English and other languages, and even perhaps to other constructions cited
in the stimulus poverty versus richness debate.

Our third general conclusion is necessarily more speculative. It concerns the possible role
of innate linguistic knowledge (UG), which has been the hostage to fortune in this debate since
its inception. The need for UG to assist language acquisition is more or less complementary
to the power of UG-free, data-driven learning; and as just observed, the latter will not be
known until much more research has been done. But it is instructive to consider what the
implications would be if future research, even with more sophisticated statistical mechanisms,
were to confirm the mixed pattern of success observed in the experiments reported here, where
one variety of a construction succumbed readily to a statistical learning algorithm, whereas
others were resistant to it. If this were to emerge as a typical outcome, it could be concluded
that the information provided by such data-driven computations might contribute to grammar
acquisition by serving as a bootstrapping strategy for learners, but could not substitute for a
grammar. If a child were to gather statistical data from a collection of utterances and then
continue to rely on it indefinitely to guide his or her use of the language, without formulating
a grammar rule, he or she would make egregious errors on the constructions for which the
statistics do not point toward the grammatical version. Thus, even learning systems that are
well-equipped to track corpus statistics may need to derive rules if the statistics predict the
correct form of only some but not all sentence types. On these assumptions, then, learners
may start by referencing probabilistic dependencies between words, but they would at some
point make the transition to general grammatical rules; and it is possible that some sort of
innate guidance, very like what linguists mean by UG, may prove essential in effecting that
transition.
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Notes

1. For a discussion of how this novel form of argument relates to earlier debates about
stimulus poverty, see Kam, Stoyneshka, Tornyova, Fodor, and Sakas, 2007.

2. In addition to the work of Reali and Christiansen (2003, 2005), and Lewis and Elman
(2001), computational studies of PIRCs that defend the richness of the stimulus include
Clark and Eyraud (2006) and Perfors, Tenenbaum, and Regier (2006). For an extensive
discussion of PIRCs in relation to stimulus poverty, see articles in Ritter (2002).

3. The formulae employed by Reali and Christiansen (1005), and also in our experiments,
are as follows: where c(x) is the count of x in the training corpus, Ns is the number of
words (tokens) in the training corpus, NT is the number of words in a test sentence,
and λ is fixed at 0.5:
Maximum likelihood probability of unigram wi : PML (wi) = c (wi) /Ns

Maximum likelihood probability of bigram wi−1wi : PML (wi |wi−1 ) =
c (wi−1wi) /c (wi−1)

Interpolated (smoothed) probability of bigram wi−1wi : Pinterp (wi |wi−1 ) =
λPML (wi |wi−1 ) + (1 − λ) PML (wi)

Cross-entropy of a test sentence sT : H (sT ) = − 1
NT

log2

∏NT

i=2 Pinterp(wi |wi−1)
4. Test sentences for all of our experiments are available at http://www.colag.cs.hunter.

cuny.edu/pub/Bigrams Richness Experiments.zip
5. All statements in this article about which items appeared in the training corpus refer

to our own corpus, modeled on Reali and Christiansen’s (R&C; 2005) as noted earlier.
Although there are minor discrepancies between the two, we believe they are sufficiently
slight that our observations hold equally for R&C’s experiment. Some corpus facts cited
here may seem surprising (e.g., that the unigram “crying” was in the corpus, but the
bigram 〈is crying〉 was not). On checking, we found that “crying” occurred following
“you,” “she’s,” and “he’s” only. Following R&C’s practice (possibly intended to mirror
the inability of children of this age to recognize reduced forms), a form with a reduced
auxiliary such as “she’s” was treated as a single unigram.

6. We evaluated the bigram model on the basis of the cross-entropies of sentences, just as
Reali and Christiansen (2005) did. However, our discussion of how individual bigram
probabilities contributed to the comparison between grammatical and ungrammatical
sentences is easier to follow in terms of the estimated probabilities of the sentences.
This is taken to be the product of the probabilities of all the bigrams that compose
the sentence. Cross-entropies and probabilities are intertranslatable (they are inversely
proportional), so this expository decision has no effect on the facts reported.

7. These counts may seem modest, but comparatively speaking, the estimated probabilities
of 〈who is〉 and 〈that is〉 were high. Their estimated probabilities were the second highest
and seventh highest, respectively, of all 391 distinct distinguishing bigrams in the 100
test pairs.

8. In a subsequent run of this experiment with an arbitrarily different set of test sentences,
the correct and incorrect outcomes were 84% and 16%, respectively, with no undecided
situations. For runs in which the test sentences were deliberately constructed to favor
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either bigram2-grammatical or bigram3-ungrammatical, the success rate rose to 93%
and fell to 83%, respectively.

9. For children, who have access to the spoken but not the written forms, it is obviously
homophony rather than homography that would be relevant; but to avoid switching
back and forth between terms, we refer to homography throughout, even where it is
strictly inappropriate as in discussion of child language acquisition. However, this may
be more than a terminological issue. Possibly, “who” and “that” as interrogatives or
deictics would have been prosodically distinguishable from “who” and “that” as relative
pronouns in the original conversations, although not in the transcriptions employed in
the experiments.

10. We chose to edit the English corpus in this way rather than shifting to a completely
different language to isolate this one factor of homography from all the other syntactic
differences (e.g., different word order) between English and another language that
could influence the model’s performance on PIRCs in uncontrolled ways.

11. An alternative conclusion might be that homography (homophony) is a good thing,
which permits learners to bootstrap from a word form (superficially defined) in one
context to its occurrence in another context, and which the learning model was deprived
of in Experiments 2 and 3. This is an interesting possibility, but in the absence of child
data relating to this topic, only speculation is possible. Experiment 1 suggests that a
learner who conflated relative pronouns with superficially similar words in English
would do well on PIRCs even without any experience of relative pronouns. However,
the bootstrapping strategy has its drawbacks. It would result in a striking pattern of
errors on other constructions until such time as the child attains an adult-like ability
to distinguish the homographic forms one from another. For example, a “conflating”
child might accept ungrammatical sentences with “this” misused as a relative pronoun
in place of “that” (e.g., *Hug the boy this is crying) or with the relative pronoun
“who” triggering inversion (e.g., *Hug the boy who is the dog barking at) because
interrogative “who” does so. These are good testable predictions, but they do not
resonate with currently familiar data on child language; and we know of no evidence
that languages without homography for relative pronouns are difficult to learn.

12. However, some allowance might need to be made for unequal acquisition rates for dif-
ferent PIRC subtypes due to varying degrees of corpus support for their auxiliary verbs,
for instance. Ambridge, Rowland, and Pine (2008) made a similar point concerning
child acquisition.

13. Linguistic analyses of do-support constructions differ with respect to whether “do” is
originally present and then moved, or is derivationally inserted to support a moved tense
morpheme. We believe that nothing relevant to bigram-based learning hangs on this.
Here we have adopted the do-movement analysis, as reflected in the traces indicated in
(8) and (9).

14. Dutch does have do-support, but it applies primarily in the context of verb-phrase
preposing. See van Kampen (1997) for linguistic references and a discussion of do-
support in the acquisition of Dutch.

15. We would also have tested the Dutch equivalent of is-is PIRCs, but it was not feasible
to do so because in their written form (without disambiguating prosodic phrasing), they
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are structurally ambiguous in such a way that no learning algorithm could distinguish
the grammatical and ungrammatical versions. The lexical verb PIRCs used in our
experiment were disambiguated by the different argument structures of the verbs in the
two clauses.
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