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Abstract. We discuss the nonvanishing of the family of central values L( 1
2
, f ⊗ χ), where f is

a fixed automorphic form on GL(2) and χ varies through class group characters of an imaginary

quadratic field K = Q(
√
−D), as D varies; we prove results of the nature that at least D1/5000

such twists are nonvanishing. We also discuss the related question of the rank of a fixed elliptic
curve E/Q over the Hilbert class field of Q(

√
−D), as D varies. The tools used are results about

the distribution of Heegner points, as well as subconvexity bounds for L-functions.
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1. Introduction

The problem of studying the non-vanishing of central values of automorphic L-function arise
naturally in several contexts ranging from analytic number theory, quantum chaos and arithmetic
geometry and can be approached by a great variety of methods (ie. via analytic, geometric spectral
and ergodic techniques or even a blend of them).

Amongst the many interesting families that may occur, arguably one of the most attractive is
the family of (the central values of) twists by class group characters: Let f be a modular form on
PGL(2) over Q and K a quadratic field of discriminant D. If χ is a ring class character associated to
K, we may form the L-function L(s, f ⊗ χ): the Rankin-Selberg convolution of f with the θ-series
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gχ(z) =
∑

{0}6=a⊂OK
χ(a)e(N(a)z). Here gχ is an holomorphic Hecke-eigenform of weight 1 on Γ0(D)

with nebentypus χK and a cusp form iff χ is not a quadratic character1.
We will always assume that the conductor of f is coprime to the discriminant of K. In that case

the sign of the functional equation equals ±
(−D
N

)
, where one takes the + sign in the case when f is

Maass, and the − sign if f is weight 2 holomorphic (these are the only cases that we shall consider).
Many lovely results have been proved in this context: we refer the reader to §1.3 for a review

of some of these results. A common theme is the use, implicit or explicit, of the equidistribution
properties of special points. The purpose of this paper is to give an informal exposition (see §1.1)
as well as some new applications of this idea. Since our goal is merely to illustrate what can be
obtained along these lines we have not tried to reach the most general results that can be obtained
and, in particular, we limit ourselves to the non-vanishing problem for the family of unramified ring
class characters of an imaginary quadratic field K = Q(

√
−D) of large discriminant D.

We prove

Theorem 1. Let f(z) be a weight 0, even, Maass (Hecke-eigen) cuspform on the modular surface
X0(1), then, for any 0 < δ < 1/2700, one has the lower bound∣∣{χ ∈ ĈlK , L(f ⊗ χ, 1/2) 6= 0}

∣∣�δ,f D
δ

Theorem 2. Let q be a prime and f(z) be an holomorphic Hecke-eigen cuspform of weight 2 on
Γ0(q) such that q remains inert in K, then, for any 0 < δ < 1/2700, one has the lower bound∣∣{χ ∈ ĈlK , L(f ⊗ χ, 1/2) 6= 0}

∣∣�δ,f D
δ

for any δ < 1/2700.

The restriction to either trivial or prime level in the theorems above is merely for simplification
(to avoid the occurence of oldforms in our analysis) and extending these results to more general levels
is just a technical matter. Another arguably more interesting generalization consist in considering
levels q and quadratic fields K such that the sign of the functional equation is −1: then one expects
that the number of χ such that the first derivative L′(f ⊗ χ, 1/2) 6= 0 is � Dδ for some positive
absolute δ. This can be proven along the above lines at least when f is an holomorphic of weight
2 by using the Gross/Zagier formulas; the proof however is significantly more difficult and will
be dealt with elsewhere; interestingly the proof combines the two types of equidistribution results
encountered in the proof of Theorems 1 and 2 above. In the present paper, we present, for the
sake of diversity, an entirely different, purely geometric, argument of such a generalization when
f corresponds to an elliptic curve. For technical reasons we need to assume a certain hypothesis
“Sβ,θ” that guarantees there are enough small split primes in K. This is a fairly common feature of
such problems (cf. [DFIDMJ], [EY]) and we regard it as almost orthogonal to the main issues we
are considering. Given θ > 0 and α ∈]0, 1] we consider

Hypothesis Sβ,θ. The number of primitive2 integral ideals n in OK with Norm(n) 6 Dθ is � Dβθ.

Actually, in a sense it is remarkable that the theorems 1 and 2 above do not require such a hypoth-
esis. It should be noted that Sβ,θ is always true under GLH and can be established unconditionally
with any α ∈]0, 1/3[ for those Ds whose largest prime factor is a sufficiently small power of D by
the work of Graham/Ringrose [GR]( see [DFIDMJ] for more details).

Theorem 3. Assume Sβ,θ. Let E be an elliptic curve over Q of squarefree conductor N , and
suppose D is odd, coprime to N , and so that all primes dividing N split in the quadratic extension
Q(
√
−D). Then the Mordell-Weil rank of E over the Hilbert class field of Q(

√
−D) is �ε D

δ−ε,
where δ = min(βθ, 1/2− 4θ).

1Equivalently, one can define L(s, f ⊗ χ) as L(s, Πf ⊗ χ), where Πf is the base-change to K of the automorphic

representation underlying f , and χ is regarded as a character of A×K/K×.
2That is, not divisible by any nontrivial ideal of the form (m), with m ∈ Z.
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Neither the statement or the proof of Theorem 3 make any use of automorphic forms; but (in
view of the Gross/Zagier formula) the proof actually demonstrates that the number of nonvanishing
central derivatives L′(fE ⊗ χ, 1/2) is � Dα, where fE is the newform associated to E. Moreover,
we use the ideas of the proof to give another proof (conditional on Sβ,θ) of Thm. 1.

We conclude the introduction by describing the main geometric issues that intervene in the proof
of these Theorems. Let us consider just Theorem 1 for clarity. In that case, one has a collection of
Heegner points in SL2(Z)\H with discriminant −D, parameterized by ClK . The collection of values
L( 1

2 , f ⊗χ) reflects – for a fixed Maass form f , varying χ through ĈlK – the distribution of Heegner
points. More precisely, it reflects the way in which the distribution of these Heegner points interacts
with the subgroup structure of ClK . For example, if there existed a subgroup H ⊂ ClK such that
points in the same H-coset also tend to cluster together on SL2(Z)\H, this would cause the L-values
to be distributed unusually. Thus, in a sense, whatever results we are able to prove about these
values are (geometrically speaking) assertions that the group structure on ClK does not interact at
all with the “proximity structure” that arises from its embedding into SL2(Z)\H.

Remark 1.1. Denote by ClK = Pic(OK) the class group of OK and by ĈlK its dual group. We
write hK = |ClK | = |ĈlK | for the class number of OK . By Siegel’s theorem one has

(1.1) hK �ε D
1/2−ε

(where the constant implied is not effective) so the lower bounds of Theorems 1and 2 are far from
giving a constant proportion of nonvanishing values. (In the case where f is Eisenstein, Blomer
has obtained much better results: see Sec. 1.3.) Moreover, both proofs make use of (1.1) so the
constants implied are ineffective.

1.1. Nonvanishing of a single twist. Let us introduce some of the main ideas of the present paper
in the most direct way, by sketching two very short proofs that at least one twist is nonvanishing in the
context of Theorem 1. We denote by H the upper-half plane. To the quadratic field K = Q(

√
−D)

– where we always assume that −D is a fundamental discriminant – and each ideal class x of the
maximal order OK of Q(

√
−D) there is associated a Heegner point [x] ∈ SL2(Z)\H. 3

One can describe the collectionHeK := {[x] : x ∈ ClK} using the moduli description of SL2(Z)\H:
if one identifies z ∈ SL2(Z)\H with the isomorphism class of elliptic curves over C, via z ∈ H →
C/(Z + zZ), then HeK is identified with the set of elliptic curves with CM by OK .

If f is a Maass form and χ a character of ClK , one has associated a twisted L- function L(s, f×χ),
and it is known, from the work of Waldspurger and Zhang [Z2,Z3] that

(1.2) L(f ⊗ χ, 1/2) =
2√
D

∣∣ ∑
x∈ClK

χ(x)f([x])
∣∣2.

In other words: the values L( 1
2 , f ⊗χ) are the squares of the “Fourier coefficients” of the function

x 7→ f([x]) on the finite abelian group ClK . The Fourier transform being an isomorphism, in order
to show that there exists at least one χ ∈ ĈlK such that L(1/2, f ⊗χ) is nonvanishing, it will suffice
to show that f([x]) 6= 0 for at least one x ∈ ClK . There are two natural ways to approach this (for
D large enough):

(1) Probabilistically: show this is true for a random x. It is known, by a theorem of Duke,
that the points {[x] : x ∈ ClK} become equidistributed (as D →∞) w.r.t. the Riemannian
measure on Y ; thus f([x]) is nonvanishing for a random x ∈ ClK .

(2) Deterministically: show this is true for a special x. The class group ClK has a distinguished
element, namely the identity e ∈ ClK ; and the corresponding point [e] looks very special:

3Namely, [x] is represented by the point −b+
√
−D

2a
, where au2 + buv + cv2 is a quadratic form of discriminant −D

corresponding to the ideal class x, i.e. there exists a fractional ideal J in the class x and a Z-basis α, β for J so that

Norm(uα + vβ) = Norm(J)(au2 + buv + cv2).
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it lives very high in the cusp. Therefore f([e]) 6= 0 for obvious reasons (look at the Fourier
expansion!)

Thus we have given two (fundamentally different) proofs of the fact that there exists χ such that
L( 1

2 , f ⊗ χ) 6= 0! Soft as they appear, these simple ideas are rather powerful. The main body of the
paper is devoted to quantifying these ideas further, i.e. pushing them to give that many twists are
nonvanishing.

Remark 1.2. The first idea is the standard one in analytic number theory: to prove a family of
quantities is nonvanishing, compute their average. It is an emerging philosophy that many averages
in analytic number theory are connected to equidistribution questions and thus often to ergodic
theory.

Of course we note in the above approach one does not really need to know that {[x] : x ∈ ClK}
become equidistributed as D →∞; it suffices to know that this set is becoming dense, or even just
that it is not contained in the nodal set of f . This remark is more useful in the holomorphic setting,
where it means that one can use Zariski dense as a substitute for dense. See [Co].

In considering the second idea, it is worth keeping in mind that f([e]) is extremely small – of size
exp(−

√
D)! We can therefore paraphrase the proof as follows: the L-function L( 1

2 , f ⊗ χ) admits a
certain canonical square root, which is not positive; then the sum of all these square roots is very
small but known to be nonzero!

This seems of a different flavour to any analytic proof of nonvanishing known to us. Of course
the central idea here – that there is always a Heegner point (in fact many) that is very high in the
cusp – has been utilized in various ways before. The first example is Deuring’s result [De] that the
failure of the Riemann hypothesis (for ζ) would yield an effective solution to Gauss’ class number
one problem; another particularly relevant application of this idea is Y. André’s lovely proof [A] of
the André–Oort conjecture for products of modular surface.

Acknowledgements. We would like to thank Peter Sarnak for useful remarks and comments during
the elaboration of this paper.

1.2. Quantification: nonvanishing of many twists. As we have remarked, the main purpose of
this paper is to give quantitative versions of the proofs given in §1.1. A natural benchmark in this
question is to prove that a positive proportion of the L-values are nonzero. At present this seems out
of reach in our instance, at least for general D. We can compute the first but not the second moment
of {L( 1

2 , f ⊗ χ) : χ ∈ ĈlK} and the problem appears resistant to the standard analytic technique of
“mollification.” Nevertheless we will be able to prove that � Dα twists are nonvanishing for some
positive α.

We now indicate how both of the ideas indicated in the previous section can be quantified to give
a lower bound on the number of χ for which L( 1

2 , f ⊗ χ) 6= 0. In order to clarify the ideas involved,
let us consider the worst case, that is, if L( 1

2 , f ⊗χ) was only nonvanishing for a single character χ0.
Then, in view of the Fourier-analytic description given above, the function x 7→ f([x]) is a linear
multiple of χ0, i.e. f([x]) = a0χ0(x), some a0 ∈ C. There is no shortage of ways to see that this is
impossible; let us give two of them that fit naturally into the “probabilistic” and the “deterministic”
framework and will be most appropriate for generalization.

(1) Probabilistic: Let us show that in fact f([x]) cannot behave like a0χ0(x) for “most” x.
Suppose to the contrary. First note that the constant a0 cannot be too small: otherwise
f(x) would take small values everywhere (since the [x] : x ∈ ClK are equidistributed). We
now observe that the twisted average

∑
f([x])χ0(x) must be “large”: but, as discussed

above, this will force L( 1
2 , f ⊗ χ0) to be large. As it turns out, a subconvex bound on this

L-function is precisely what is needed to rule out such an event. 4

4Here is another way of looking at this. Fix some element y ∈ ClK . If it were true that the function x 7→ f([x])
behaved like x 7→ χ0(x), it would in particular be true that f([xy]) = f([x])χ0(y) for all x. This could not happen,

for instance, if we knew that the collection {[x], [xy]}x∈Cld ⊂ Y 2 was equidistributed (or even dense). Actually, this
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(2) Deterministic: Again we will use the properties of certain distinguished points. However,
the identity e ∈ ClK will no longer suffice by itself. Let n be an integral ideal in OK of
small norm (much smaller than D1/2). Then the point [n] is still high in the cusp: indeed,
if we choose a representative z for [n] that belongs to the standard fundamental domain, we
have =(z) � D1/2

Norm(n) . The Fourier expansion now shows that, under some mild assumption
such as Norm(n) being odd, the sizes of |f([e])| and |f([n])| must be wildly different. This
contradicts the assumption that f([x]) = a0χ(x).

As it turns out, both of the approaches above can be pushed to give that a large number of
twists L( 1

2 , f ⊗ χ) are nonvanishing. However, as is already clear from the discussion above, the
“deterministic” approach will require some auxiliary ideals of OK of small norm.

1.3. Connection to existing work. As remarked in the introduction, a considerable amount of
work has been done on nonvanishing for families L(f ⊗ χ, 1/2) (or the corresponding family of
derivatives). We note in particular:

(1) Duke/Friedlander/Iwaniec and subsequently Blomer considered the case where f(z) = E(z, 1/2)
is the standard non-holomorphic Eisenstein series of level 1 and weight 0 and Ξ = ĈlK is
the group of unramified ring class characters (ie. the characters of the ideal class group)
of an imaginary quadratic field K with large discriminant (the central value then equals
L(gχ, 1/2)2 = L(K,χ, 1/2)2). In particular, Blomer [Bl], building on the earlier results of
[DFIDMJ], used the mollification method to obtain the lower bound

(1.3) |{χ ∈ ĈlK , L(K,χ, 1/2) 6= 0}| �
∏
p|D

(1− 1
p
)ĈlK for |disc(K)| → +∞.

This result is evidently much stronger than Theorem 1.
Let us recall that the mollification method requires the asymptotical evaluation of the

first and second (twisted) moments∑
χ∈dClK

χ(a)L(gχ, 1/2),
∑
χ∈dClK

χ(a)L(gχ, 1/2)2

(where a denotes an ideal of OK of relatively small norm) which is the main content of
[DFIDMJ]. The evaluation of the second moment is by far the hardest; for it, Duke/Friedlander/Iwaniec
started with an integral representation of the L(gχ, 1/2)2 as a double integral involving two
copies of the theta series gχ(z) which they averaged over χ; then after several tranforma-
tion, they reduced the estimation to an equidistribution property of the Heegner points
(associated with OK) on the modular curve X0(NK/Q(a))(C) which was proven by Duke
[D].

(2) On the other hand, Vatsal and Cornut, motivated by conjectures of Mazur, considered a
nearly orthogonal situation: namely, fixing f an holomorphic cuspidal newform of weight 2
of level q, an K an imaginary quadratic field with (q,disc(K)) = 1 and fixing an auxiliary
unramified prime p, they considered the non-vanishing problem for the central values

{L(f ⊗ χ, 1/2), χ ∈ ΞK(pn)}

(or for the first derivative) for ΞK(pn) the ring class characters of of K of exact conductor
pn (the primitive class group characters of the order OK,pn of discriminant −Dp2n) and for
n→ +∞ [Va1,Va2,Co]. Amongst other things, they proved that if p - 2qdisc(K) and if n is
large enough – where “large enough” depends on f,K, p – then L(f⊗χ, 1/2) or L′(f⊗χ, 1/2)
(depending on the sign of the functional equation) is non-zero for all χ ∈ ΞK(pn).

is evidently not true for all y (for example y = e or more generally y with a representative of small norm) but one
can prove enough in this direction to give a proof of many nonvanishing twists if one has enough small split primes.

Since the deterministic method gives this anyway, we do not pursue this.
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The methods of [Co,Va1,Va2] look more geometric and arithmetic by comparison with
that of [Bl, DFIDMJ]. Indeed they combine the expression of the central values as (the
squares of) suitable periods on Shimura curves, with some equidistribution properties of
CM points which are obtained through ergodic arguments (i.e. a special case of Ratner’s
theory on the classification of measure invariant under unipotent orbits), reduction and/or
congruence arguments to pass from the ”definite case” to the ”indefinite case” (i.e. from the
non-vanishing of central values to the non-vanishing of the first derivative at 1/2) together
with the invariance property of non-vanishing of central values under Galois conjugation.

1.4. Subfamilies of characters; real qudratic fields. There is another variant of the nonvanish-
ing question about which we have said little: given a subfamily S ⊂ ĈlK , can one prove that there
is a nonvanishing L( 1

2 , f ⊗ χ) for some χ ∈ S ? Natural examples of such S arise from cosets of
subgroups of ĈlK . We indicate below some instances in which this type of question arises naturally.

(1) If f is holomorphic, the values L( 1
2 , f ⊗ χ) have arithmetic interpretations; in particular, if

σ ∈ Gal(Q/Q), then L( 1
2 , f

σ ⊗ χσ) is vanishing if and only if L( 1
2 , f ⊗ χ) is vanishing. In

particular, if one can show that one value L( 1
2 , f⊗χ) is nonvanishing, when χ varies through

the Gal(Q/Q(f))-orbit of some fixed character χ0, then they are all nonvanishing.
This type of approach was first used by Röhrlich, [R]; this is also essentially the situation

confronted by Vatsal. In Vatsal’s case, the Galois orbits of χ in question are precisely cosets
of subgroups, thus reducing us to the problem mentioned above.

(2) Real quadratic fields: One can ask similar questions to those considered here but replacing
K by a real quadratic field. It will take some preparation to explain how this relates to
cosets of subgroups as above.

Firstly, the question of whether there exists a class group character χ ∈ ĈlK such that
L( 1

2 , f⊗χ) 6= 0 is evidently not as well-behaved, because the size of the class group of K may
fluctuate wildly. A suitable analogue to the imaginary case can be obtained by replacing
ClK by the extended class group, C̃lK := A×

K/R∗UK×, where R∗ is embedded in (K ⊗R)×,
and U is the maximal compact subgroup of the finite ideles of K. This group fits into an
exact sequence R∗/O×

K → C̃lK → ClK . Its connected component is therefore a torus, and
its component group agrees with ClK up to a possible Z/2-extension.

Given χ ∈ ̂̃ClK , there is a unique sχ ∈ R such that χ restricted to the R∗
+ is of the form

x 7→ xisχ . The “natural analogue” of our result for imaginary quadratic fields, then, is of
the following shape: For a fixed automorphic form f and sufficiently large D, there exist χ
with |sχ| 6 C – a constant depending only on f – and L( 1

2 , f ⊗ χ) 6= 0.
One may still ask, however, the natural question of whether L( 1

2 , f ⊗ χ) 6= 0 for χ ∈ ĈlK
if K is a real quadratic field which happens to have large class group – for instance, K =
Q(
√
n2 + 1). We now see that this is a question of the flavour of that discussed above: we

can prove nonvanishing in the large family L( 1
2 , f ⊗ χ), where χ ∈ ̂̃ClK , and wish to pass to

nonvanishing for the subgroup ĈlK .
(3) The split quadratic extension: to make the distinction between C̃lK and ClK even more

clear, one can degenerate the previous example to the split extension K = Q⊕Q.
In that case the analogue of the θ-series χ is given simply by an Eisenstein series of trivial

central character; the analogue of the L-functions L( 1
2 , f ⊗ χ) are therefore |L( 1

2 , f ⊗ ψ)|2,
where ψ is just a usual Dirichlet character over Q.

Here one can see the difficulty in a concrete fashion: even the asymptotic as N →∞ for
the square moment

(1.4)
∑
ψ

|L(
1
2
, f ⊗ ψ)|2,
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where the sum is taken over Dirichlet characters ψ of conductor N , is not known in general;
however, if one adds a small auxiliary t-averaging and considers instead

(1.5)
∑
ψ

∫
|t|�1

|L(
1
2

+ it, f ⊗ ψ)|2dt.

then the problem becomes almost trivial.5

The difference between (1.4) and (1.5) is precisely the difference between the family
χ ∈ ClK and χ ∈ C̃lK .

2. Proof of Theorem 1

Let f be a primitive even Maass Hecke-eigenform (of weight 0) on SL2(Z)\H (normalized so that
its first Fourier coefficient equals 1); the proof of theorem 1 starts with the expression (1.2) of the
central value L(f ⊗ χ, 1/2) as the square of a twisted period of f over HK . From that expresssion
it follows that ∑

χ

L(f ⊗ χ, 1/2) =
2hK√
D

∑
σ∈ClK

|f([σ])|2.

Now, by a theorem of Duke [D] the set HeK = {[x] : x ∈ ClK} become equidistributed on X0(1)(C)
with respect to the hyperbolic measure of mass one dµ(z) := (3/π)dxdy/y2, so that since the function
z → |f(z)|2 is a smooth, square-integrable function, one has

1
hK

∑
σ∈ClK

|f([σ])|2 = (1 + of (1))
∫
X0(1)(C)

|f(z)|2dµ(z) = 〈f, f〉(1 + of (1))

as D → +∞ (notice the the proof of the equidistribution of Heegner points uses Siegel’s theorem,
in particular the term of (1) is not effective). Hence, we have∑

χ

L(f ⊗ χ, 1/2) = 2
h2
K√
D
〈f, f〉(1 + of (1)) �f,ε D

1/2−ε

by (1.1). In particular this proves that for D large enough, there exists χ ∈ ĈlK such that L(f ⊗
χ, 1/2) 6= 0. In order to conclude the proof of Theorem 1, it is sufficient to prove that for any
χ ∈ ĈlK

L(f ⊗ χ, 1/2) �f D
1/2−δ,

for some absolute δ > 0. Such a bound is known as a subconvex bound , as the corresponding bound
with δ = 0 is known and called the convexity bound (see [IS]). When χis a quadratic character, such
a bound is an indirect consequence of [D] and is essentially proven in [DFI1] (see also [H,M]). When
χ is not quadratic, this bound is proven in [HM].

Remark 2.1. The theme of this section was to reduce a question about the average L( 1
2 , f ⊗ χ) to

equidistribution of Heegner points (and therefore to subconvexity of L( 1
2 , f ⊗ χK), where χK is the

Dirichlet character associated to K). This reduction can be made precise, and this introduces in a
natural way triple product L-functions:

(2.1)
1
hK

∑
χ∈dClK

L(1/2, f ⊗χ) ∼ 1
hK

∑
x∈ClK

|f([x])|2 =
∫

SL2(Z)\H
|f(z)|2dz+

∑
g

〈f2, g〉
∑
x∈ClK

g([x])

Here ∼ means an equality up to a constant of size D±ε, and, in the second term, the sum over g is
over a basis for L2

0(SL2(Z)\H). Here L2
0 denotes the orthogonal complement of the constants. This

g-sum should strictly include an integral over the Eisenstein spectrum; we suppress it for clarity. By

5We thank K. Soundararajan for an enlightening discussion of this problem.
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Cauchy-Schwarz we have a majorization of the second term (continuing to suppress the Eisenstein
spectrum):

(2.2)

∣∣∣∣∣∑
g

〈f2, g〉
∑
x∈ClK

g([x])

∣∣∣∣∣
2

6
∑
g

∣∣〈f2, g〉
∣∣2 ∣∣∣∣∣ ∑

x∈ClK

g([x])

∣∣∣∣∣
2

where the g-sum is taken over L2
0(SL2(Z)\H), again with suppression of the continuous spectrum.

Finally, the summand corresponding to g in the right-hand side can be computed by period formulae:
it is roughly of the shape (by Watson’s identity, Waldspurger/Zhang formula (1.2), and factorization
of the resulting L-functions) L(1/2,sym2f⊗g)L(1/2,g)2L(1/2,g⊗χK)

〈g,g〉2〈f,f〉 .
By use of this formula, one can, for instance, make explicit the dependence of Theorem (1) on the

level q of f : one may show that there is a nonvanishing twist as soon as q < DA, for some explicit A.
Upon GLH, q < D1/2 suffices. There seems to be considerable potential for exploiting (2.2) further;
we hope to return to this in a future paper. We note that similar identities have been exploited in
the work of Reznikov [Reznikov].

One can also prove the following twisted variant of (2.1): let σl ∈ ClK be the class of an integral
ideal l of OK coprime with D. Then one can give an asymptotic for

∑
χ χ(σl)L(f ⊗ χ, 1/2), when

the norm of l is a sufficiently small power of D. This again uses equidistribution of Heegner points
of discriminant D, but at level Norm(l).

3. Proof of Theorem 2

The proof of Theorem (2) is in spirit identical to the proof of Theorem (1) that was presented
in the previous section. The only difference is that the L-function is the square of a period on a
quaternion algebra instead of SL2(Z)\H. We will choose language that emphasizes this similarity.

For the proof of Theorem (2) we need to recall some more notations; we refer to [G] for more
background. Let q be a prime and Bq be the definite quaternion algebra ramified at q and ∞. Let
Oq be a choice of a maximal order. Let S be the set of classes for Bq, i.e. the set of classes of left
ideals for Oq. To each s ∈ S is associated an ideal I and another maximal order, namely, the right
order Rs := {λ ∈ Bq : Iλ ⊂ I}. We set ws = #R×s /2. We endow S with the measure ν in which
each {s} has mass 1/ws. This is not a probability measure.

The space of functions on S becomes a Hilbert space via the norm 〈f, f〉2 =
∫
|f |2dν. Let SB2 (q)

be the orthogonal complement of the constant function. It is endowed with an action of the Hecke
algebra T(q) generated by the Hecke operators Tp p - q and as a T(q)-module SB2 (q) is isomorphic
with S2(q), the space of weight 2 holomorphic cusp newforms of level q. In particular to each Hecke
newform f ∈ S2(q) there is a corresponding element f̃ ∈ SB2 (q) such that

Tnf̃ = λf (n).f̃ (n, q) = 1.

We normalize f̃ so that 〈f̃ , f̃〉 = 1.
Let K be an imaginary quadratic field such that q is inert in K. Once one fixes a special point

associatd to K, one obtains for each σ ∈ GK a “special point” xσ ∈ S, cf. discussion in [G] of “xa”
after [G, (3.6)].

One has the Gross formula [G, Prop 11.2]: for each χ ∈ ĈlK ,

(3.1) L(f ⊗ χ, 1/2) =
〈f, f〉
u2
√
D

∣∣∣∣∣ ∑
σ∈ClK

f̃(xσ)χ(σ)

∣∣∣∣∣
2

Here u is the number of units in the ring of integers of K. Therefore,∑
χ∈dClK

L(f ⊗ χ, 1/2) =
hK〈f, f〉
u2
√
D

∑
σ∈ClK

∣∣∣f̃(xσ)
∣∣∣2
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Now we use the fact that the ClK-orbit {xσ, σ ∈ ClK} becomes equidistributed, as D → ∞, with
respect to the (probability) measure ν

ν(S) : this is a consequence of the work of Iwaniec [I] (see also
[M] for a further strengthening) and deduce that

(3.2) h−1
K

∑
σ

∣∣∣f̃(xσ)
∣∣∣2 = (1 + oq(1))

1
ν(S)

∫
|f̃ |2dν

In particular, it follows from (1.1) that, for all ε > 0∑
χ

L(f ⊗ χ, 1/2) �f,ε D
1/2−ε.

Again the proof of theorem 2 follows from the subconvex bound

L(f ⊗ χ, 1/2) �f D
1/2−δ

for any 0 < δ < 1/1100 which is proven in [M].

Remark 3.1. Again, it is possible to pursue the analysis above in a more precise form, following
the outline given in Remark 2.1 above, by using Gross formula 3.1 and triple product formula of
Gross/Kudla [GK] and by exploiting the factorization of the resulting triple products L-functions.

4. Quantification using the cusp; a conditional proof of Theorem 1 and Theorem 3
using the cusp.

In this section we elaborate on the second method of proof discussed in Section 1.1.

4.1. Proof of Theorem 1 using the cusp. We note that Sβ,θ implies that there are � Dβθ−ε

distinct primitive ideals with odd norms with norm 6 Dθ. Indeed Sβ,θ provides many such ideals
without the restriction of odd norm; just take the “odd part” of each such ideal. The number of
primitive ideals with norm 6 X and the same odd part is easily verified to be O(logX), whence the
claim.

Proposition 4.1. Assume hypothesis Sβ,θ, and let f be an even Hecke-Maass cusp form on SL2(Z)\H.
Then � Dδ−ε twists L( 1

2 , f ⊗ χ) are nonvanishing, where δ = min(βθ, 1/2− 4θ).

Proof. Notations being as above, fix any α < δ, and suppose that precisely k−1 of the twisted sums

(4.1)
∑
x∈ClK

f([x])χ(x)

are nonvanishing, where k < Dα. In particular, k < Dβθ. We will show this leads to a contradiction
for large enough D.

Let 1/4 + ν2 be the eigenvalue of f . Then f has a Fourier expansion of the form

(4.2) f(x+ iy) =
∑
n>1

an(ny)1/2Kiν(2πny) cos(2πnx),

where the Fourier coefficients |an| are polynomially bounded. We normalize so that a1 = 1; moreover,
in view of the asymptotic Kiν(y) ∼ ( π2y )1/2e−y(1+Oν(y−1)), we obtain an asymptotic expansion for
f near the cusp. Indeed, if z0 = x0 + iy0 belongs to the standard fundamental domain for SL2(Z),
the standard asymptotics show that – with an appropriate normalization –

(4.3) f(z) = const. cos(2πx) exp(−2πy)(1 +O(y−1)) +O(e−4πy)

Let pj , qj be primitive integral ideals of OK for 1 6 j 6 k, all with odd norm, so that pj are
mutually distinct and the qj are mutually distinct; and, moreover that

Norm(p1) < Norm(p2) < · · · < Norm(pk) < Dθ(4.4)

Dθ > Norm(q1) > Norm(q2) > · · · > Norm(qk).(4.5)
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The assumption on the size of k and the hypothesis Sβ,θ guarantees that we may choose such ideals,
at least for sufficiently large D.

If n is any primitive ideal with norm <
√
D, it corresponds to a reduced binary quadratic form

ax2 + bxy + cy2 with a = Norm(n) and b2 − 4ac = −D; the corresponding Heegner point [n] has as
representative −b+

√
−D

2Norm(n) . We note that if a = Norm(n) is odd, then

(4.6)
∣∣∣∣cos(2π ·

(
−b

2Norm(n)

)
)
∣∣∣∣� Norm(n)−1.

Then the functions x 7→ f([xpj ]) – considered as belonging to the vector space of maps ClK → C
– are necessarily linearly dependent for 1 6 j 6 k, because of the assumption on the sums (4.1).
Evaluating these functions at the [qj ] shows that the matrix f([piqj ])16i,j6k must be singular. We
will evaluate the determinant of this matrix and show it is nonzero, obtaining a contradiction. The
point here is that, because all the entries of this matrix differ enormously from each other in absolute
value, there is one term that dominates when one expands the determinant via permutations.

Thus, if n is a primitive integral ideal of odd norm < c0
√
D, for some suitable, sufficiently large,

absolute constant c0, (4.3) and (4.6) shows that one has the bound – for some absolute c1, c2 –

c1e
−π

√
D/Norm(n) > |f([n])| > c2D

−1e−π
√
D/Norm(n).

Expanding the determinant of f([piqj ])16i,j6k we get

(4.7) det =
∑
σ∈Sk

k∏
i=1

f([piqσ(i)])sign(σ)

Now, in view of the asymptotic noted above, we have

k∏
i=1

f([piqσ(i)]) = c3 exp

(
−π

√
D
∑
i

1
Norm(piqσ(i))

)
where the constant c2 satisfies c3 ∈ [(c2/D)k, ck1 ]. Set aσ =

∑
i

1
Norm(pi)Norm(qσ(i))

. Then aσ is
maximized – in view of (4.4) and (4.5) – for the identity permutation σ = Id, and, moreover, it is
simple to see that aId− aσ > 1

D4θ for any σ other than the identity permutation. It follows that the
determinant of (4.7) is bounded below, in absolute value, by

exp(aId)
(
(c2/D)k − ck1k! exp(−πD1/2−4θ)

)
Since k < Dα and α < 1/2− 4θ, this expression is nonzero if D is sufficiently large, and we obtain
a contradiction. �

4.2. Variant: the derivative of L-functions and the rank of elliptic curves over Hilbert
class fields of Q(

√
−D). We now prove Thm. 3. For a short discussion of the idea of the proof,

see the paragraph after (4.9).
Take ΦE : X0(N) → E a modular parameterization, defined over Q, with N squarefree. If f is

the weight 2 newform corresponding to E, the map

(4.8) ΦE : z 7→
∫
τ

f(w)dw,

where τ is any path that begins at ∞ and ends at z, is well-defined up to a lattice L ⊂ C and
descends to a well-defined map X0(N) → C/L ∼= E(C); this sends the cusp at ∞ to the origin of
the elliptic curve E and arises from a map defined over Q.

The space X0(N) parameterizes (a compactification) of the space of cyclic N -isogenies E → E′

between two elliptic curves. We refer to [GZ, II. §1] for further background on Heegner points;
for now we just quote the facts we need. If m is any ideal of OK and n any integral ideal with
Norm(n) = N , then C/m → C/mn−1 defines a Heegner point on X0(N) which depends on m only
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through its ideal class, equivalently, depends only on the point [m] ∈ SL2(Z)\H. Thus Heegner
points are parameterized by such pairs ([m], n) and their total number is |ClK |.ν(N), where ν(N) is
the number of divisors of N .

Fix any n0 with Norm(n0) = N and let P be the Heegner point corresponding to ([e], n0). Then
P is defined over H, the the Hilbert class field of Q(

√
−D), and we can apply any element x ∈ ClK

(which is identified with the Galois group of H/K) to P to get P x, which is the Heegner point
corresponding to ([x], n0).

Suppose m is an ideal of OK of norm m, prime to N . We will later need an explicit representative
in H for Pmn0 = ([mn0], n0). (Note the correspondence between z ∈ Γ0(N)\H and elliptic curve
isogenies sends z to C/〈1, z〉 7→ C/〈1/N, z〉.) This representative (cf. [GZ, eq. (1.4–1.5)]) can be
taken to be

(4.9) z =
−b+

√
−D

2a
,

where a = Norm(mn0), and mn0 = 〈a, b+
√
−D

2 〉,m = 〈aN−1, b+
√
−D

2 〉.
Let us explain the general idea of the proof. Suppose, first, that E(H) had rank zero. We denote

by #E(H)tors the order of the torsion subgroup of E(H). This would mean, in particular, that
Φ(P ) was a torsion point on E(H); in particular #E(H)tors.Φ(P ) = 0. In view of (4.8), and the
fact that P is very close to the cusp of X0(N) the point Φ(P ) ∈ C/L is represented by a nonzero
element zP ∈ C very close to 0. It is then easy to see that #E(H)tors.zP /∈ L, a contradiction.
Now one can extend this idea to the case when E(H) has higher rank. Suppose it had rank one, for
instance. Then ClK must act on E(H)⊗Q through a character of order 2. In particular, if p is any
integral ideal of K, then Φ(P p) equals ±Φ(P ) in E(H) ⊗ Q. Suppose, say, that Φ(P p) = Φ(P ) in
E(H)⊗Q. One again verifies that, if the norm of p is sufficiently small, then Φ(P p)−Φ(P ) ∈ C/L
is represented by a nonzero z ∈ C which is sufficiently close to zero that #E(H)tors.z /∈ L.

The Q-vector space V := E(H) ⊗ Q defines a Q-representation of Gal(H/K) = ClK , and we
will eventually want to find certain elements in the group algebra of Gal(H/K) which annihilate
this representation, and on the other hand do not have coefficients that are too large. This will be
achieved in the following two lemmas.

Lemma 4.1. Let A be a finite abelian group and W a k-dimensional Q-representation of A. Then
there exists a basis for W with respect to which the elements of A act by integral matrices, all of
whose entries are 6 Ck

2
in absolute value. Here C is an absolute constant.

Proof. We may assume that W is irreducible over Q. The group algebra Q.A decomposes as a
certain direct sum ⊕jKj of number fields Kj ; these Kj exhaust the Q-irreducible representations of
A.

Each of these number fields has the property that it is generated, as a Q-vector space, by the
roots of unity contained in it (namely, take the images of elements of A under the natural projection
Q.A→ Kj). The roots of unity in each Kj form a group, necessarily cyclic; so all the Kj are of the
form Q[ζ] for some root of unity ζ; and each a ∈ A acts by multiplication by some power of ζ.

Thus let ζ be a kth root of unity, so [Q(ζ) : Q] = ϕ(k) and Q(ζ) is isomorphic to Q[x]/pk(x),
where pk is the kth cyclotomic polynomial. Then multiplication by x on Q[x]/pk(x) is represented,
w.r.t. the natural basis {1, x, . . . , xϕ(k)−1}, by a matrix all of whose coefficients are integers of size
6 A, where A is the absolute value of the largest coefficient of pk. Since any coefficient of A is a
symmetric function in {ζi}(i,k)=1, one easily sees that A 6 2k.

For any k× k matrix M , let ‖M‖ denote the largest absolute value of any entry of M . Then one
easily checks that ‖M.N‖ 6 k‖M‖‖N‖ and, by induction, ‖Mr‖ 6 kr−1‖M‖r. Thus any power of
ζ acts on Q(ζ), w.r.t. the basis {1, ζ, . . . , ζϕ(k)−1}, by an integral matrix all of whose entries have
size 6 kk · 2k2

6 Ck
2

for some absolute C. �

Lemma 4.2. Let assumptions and notations be as in the previous lemma; let S ⊂ A have size
|S| = 2k. Then there exists integers ns ∈ Z, not all zero, such that the element

∑
nss ∈ Z[A]
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annihilates the A-module W . Moreover, we may choose ns so that |ns| � Ck
2

2 , for some absolute
constant C2.

Proof. This follows from Siegel’s lemma. Indeed, consider all choices of ns when |ns| 6 N for all
s ∈ S; there are at least N2k such choices. Let {wi}16i6k be the basis forW provided by the previous
lemma. For each i0, the element (

∑
nss) .wi0 can be expanded in terms of the basis wi with integral

coefficients of size 6 (2k)Ck
2
.N . So the number of possibilities for the collection {(

∑
nss)wj}16j6k

is � Ck
3

2 Nk, for some suitable absolute constant C2. It follows that if N � Ck
2

2 two of these must
coincide. �

We are now ready to prove Theorem 3.

Proof. (of Thm. 3). Fix α < δ = min(βθ, 1/2 − 4θ) and suppose that the rank of E(H) ⊗ Q is k,
where k < Dα. We will show that this leads to a contradiction for D sufficiently large.

Choose {p1, . . . , p2k, q1, . . . , q2k} satisfying the same conditions (4.4) and (4.5) as in the proof of
Prop. 4.1. We additionally assume that all pj , qj have norms coprime to N ; it is easy to see that
this is still possible for sufficiently large D. Recall we have fixed an integral ideal n0 of norm N .
Lem. 4.2 shows that there are integers ni (1 6 i 6 2k) such that the element

(4.10) Υ :=
2k∑
i=1

ni · pin0 ∈ Z[ClK ]

annihilates E(H)⊗Q and moreover |ni| � Ck
2

2 . In particular

(4.11) Υ.ΦE(P qj ) = 0 (1 6 j 6 k)

But ΦE(P piqjn0) is the image under the map ΦE (see (4.8)) of a point zP,i,j ∈ H whose y-
coordinate is given by (cf. (4.9)) yP,i,j =

√
D

2Norm(piqjn0)
. In particular this satisfies yP,i,j � D1/2−2θ.

The weight 2 form f has a q-expansion in the neighbourhood of ∞ of the form

f(z) = e2πiz +
∑
n>2

ane
2πinz

where the an are integers satisfying |an| � n1/2+ε. In particular, there exists a contour C from ∞
to zP,i,j so that∣∣∣∣∫

C

f(τ)dτ
∣∣∣∣ = 1

2πi
exp(−π

√
D

Norm(piqjn0)
)
(
1 +O(exp(−πD1/2−2θ))

)
Thus the image of the Heegner point P piqjn0 on E(C) = C/L is represented by zij ∈ C satisfying

|zij | = 1
2πi exp(−π

√
D

Norm(piqjn0)
)
(
1 +O(exp(−πD1/2−2θ))

)
. The relation (4.11) shows that

#E(H)tors ·
∑

nizij ∈ L.

Note that #E(H)tors is bounded by a polynomial in D, by reducing modulo primes of H that lie
above inert primes in K. Since |ni| � Ck

2

2 and k < Dα, this forces
∑
nizij = 0 for sufficiently

large D. This implies that the matrix (zij)16i,j62k is singular, and one obtains a contradiction by
computing determinants, as in Sec. 4.1. �
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