
Experimental Program Analysis:
A New Paradigm for Program Analysis

Joseph R. Ruthruff
Department of Computer Science and Engineering

University of Nebraska–Lincoln
Lincoln, Nebraska 68588-0115, U.S.A.

ruthruff@cse.unl.edu

ABSTRACT
Program analysis techniques are used by software engineers to de-
duce and infer targeted characteristics of software systems for tasks
such as testing, debugging, maintenance, and program compre-
hension. Recently, some program analysis techniques have been
designed to leverage characteristics of traditional experimentation
in order to analyze software systems. We believe that the use of
experimentation for program analysis constitutes a new program
analysis paradigm: experimental program analysis. This research
seeks to accomplish four goals: to precisely define experimental
program analysis, to provide a means for classifying experimental
program analysis techniques, to identify existing experimental pro-
gram analysis techniques in the research literature, and to enhance
the use of experimental program analysis by improving existing,
and by creating new, experimental program analysis techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, testing tools; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—program analysis

General Terms
Experimentation

Keywords
experimental program analysis, program analysis, experimentation

1. INTRODUCTION
Program analysis techniques analyze software systems in order

to ascertain characteristics of those systems that are of interest to
software engineers. The information provided by these techniques
can be used to assist researchers and practitioners in testing, debug-
ging, impact analysis, maintenance, program comprehension, and
many other software-engineering-related purposes.

In the past, program analysis techniques have generally been
considered either “static” or “dynamic”. Recent work, however,

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

has gone beyond this traditional classification of program analysis
techniques. For example, one of the primary realizations in Delta
Debugging [14] is that it does not require static information (such
as system source code, system specifications, or program depen-
dence graphs) or dynamic information (such as coverage or profile
information, or information about runtime exceptions) in advance.

One of the ways that some techniques have moved beyond tra-
ditional program analysis considerations is by the use of experi-
mentation. For example, one implementation of Delta Debugging,
HOWCOME [14], attempts to isolate the minimal relevant variable
values in program states in order to explain why a failure f oc-
curred. To do this, HOWCOME applies a subset of variable values
in a failing execution to the corresponding variables in a passing
execution, and tests whether the applied changes reproduce f . If
the applied subset “fails” the test (by not reproducing f ), then a
different subset is tested. If the subset “passes” the test (by repro-
ducing f ), then a subset of those incriminating variable values are
tested. Essentially, HOWCOME is conducting experiments designed
to isolate the minimal relevant variable values.

Despite this type of recent movement in program analysis, there
has been little formal consideration given to the use of traditional
experimentation in program analysis. One consequence of this is
that many researchers are unaware of experimentation as a potential
avenue for addressing program analysis research questions. One ef-
fort to account for the use of experimentation in program analysis
was undertaken by Zeller [15], who proposed that program analysis
techniques reason by means of deduction, observation, induction,
and experimentation. In this context, Zeller describes experimen-
tation as a reasoning technique for program analysis, characterized
by the use of a tool to control multiple executions of a program in
order to determine the causes of observed effects.

We agree that the use of experimentation in program analysis is
unique, and warrants separate consideration from other approaches
such as static and dynamic analysis. However, its use in program
analysis is potentially more extensive than merely the notion of
controlling executions with tools, and its goals more powerful than
merely explaining cause and effect. Considering the use of ex-
perimentation in program analysis, in the context of its traditional
use in science, reveals many characteristics of the science of ex-
periment design that either are presently used, or could potentially
be used, by program analysis techniques. These characteristics in-
clude the formulation and testing of hypotheses, the iterative pro-
cess of exploring and adjusting these hypotheses in response to
findings, the use of sampling to cost-effectively explore effects rel-
ative to large populations in generalizable manners, the manipula-
tion of independent variables to test effects on dependent variables
while controlling other factors, the use of experiment designs to fa-

977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357367049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cilitate the cost-effective study of interactions among multiple fac-
tors, and the employment of statistical tests to assess results. The
relevance of several of the foregoing characteristics can be seen
in debugging, for example. Debuggers routinely form hypothe-
ses about the causes of failures, conduct program runs (in which
factors that might affect the run other than the effect being inves-
tigated are controlled) to confirm or reject these hypotheses, and
based on the results of this “experiment”, draw conclusions or cre-
ate new hypotheses about the cause of the failure. However, there
has been little formal consideration of these types of characteristics
in program analysis, and the potential for leveraging them, to date,
remains largely untapped by the community.

Given the foregoing discussion, this research has four goals.
First, this research will precisely define experimental program anal-
ysis. Second, this research will provide a means for classifying
techniques into an experimental program analysis paradigm. Third,
this research will identify a variety of existing experimental pro-
gram analysis techniques in the research literature. Fourth, this
research will enhance the use of experimental program analysis by
(1) using approaches in the traditional experiment design literature
to improve existing experimental program analysis techniques, and
(2) creating new experimental program analysis techniques.

This research offers three primary incentives. First, precise def-
initions of experimental program analysis will help expose experi-
mental program analysis techniques to the community. Second, the
use of traditional experimentation strategies to improve existing ex-
perimental program analysis techniques will suggest many oppor-
tunities for researchers to improve their own techniques. Third,
the creation of new experimental program analysis techniques will
promote the use of experimentation in program analysis, thereby
empowering researchers to confront program analysis problems in
manners that they have not previously considered.

2. RELATED WORK
There is a growing body of knowledge on the employment of ex-

perimentation to assess the performance of, and evaluate hypothe-
ses related to, software engineering methodologies, techniques, and
tools. For example, Wohlin et al. [13] introduce an experimen-
tal process tailored to the software engineering domain, Fenton and
Pfleeger [7] describe the application of measurement theory in soft-
ware engineering experimentation, Basili et al. [2] illustrate how
to build software engineering knowledge through a family of ex-
periments, and Kitchenham et al. [9] provide guidelines for con-
ducting empirical studies in software engineering. However, these
approaches do not formally explain the use of experimentation in
program analysis, nor do they provide support for properly classi-
fying experimental program analysis techniques.

There are also instances in which software engineering tech-
niques utilize experimentation principles as part of their operation
(not just for hypothesis testing). For example, the concept of sam-
pling is broadly used in software profiling techniques to reduce
their associated overhead [1, 5, 10], and experiment designs are uti-
lized in interaction testing to drive an economic selection of com-
binations of components to achieve a target coverage level (e.g., [3,
4]). In many cases, we believe that techniques that utilize principles
of experimentation may in fact be experimental program analysis
techniques. This work will provide support for properly identifying
techniques as such.

Within the program analysis domain, to the best of our knowl-
edge, Zeller is the first to have used the term “experimental” in ap-
plication to program analysis techniques [15]. Zeller’s work, how-
ever, suffers from three key limitations that this work attempts to
address. First, Zeller provides only informal definitions of specific

analysis approaches in order to identify their benefits and limita-
tions. In this work, we apply our understanding of, and experience
with, controlled experimentation to provide a more precise notion
of what experimental program analysis is, and can be. Second,
Zeller’s view of experimental program analysis does not consider
the rich literature on traditional experimentation and its potential
application to the domain of program analysis. In this work, we
provide an operational definition for experimental program analy-
sis in the context of the foregoing traditional experimentation liter-
ature. Third, Zeller’s explication contains no discussion of several
concepts that are integral to experimentation — e.g., the roles of
population and sample selection. He also does not discuss in de-
tail the nature of “control”, which requires careful consideration
of nuisance variables and various forms of validity threats. All of
these quintessentially experimentation-related notions are present
in our experimental program analysis definitions, and the utility of
including them is supported [11].

3. GOALS AND APPROACHES
In this section, we describe the overall goal of this research, and

the approach that will be taken to address its central thesis.

3.1 Overall Goal
The overall goal of the research is to establish a new class of

program analysis approaches that are completely experimental in
nature, and to provide a staging point for a new area of program
analysis research. This research will provide an operational defini-
tion for explaining the use of experiments by techniques in order to
conduct program analysis, identify techniques that conform to this
experimental program analysis definition, and empirically investi-
gate the use of experimental program analysis techniques.

3.2 Activities
The approach for this research involves five activities. After enu-

merating these activities, we elaborate on how we expect to com-
plete each activity.

1. Define experimental program analysis precisely, and provide
a detailed operational definition outlining the traditional ex-
perimentation steps performed by experimental program
analysis techniques.

2. Identify existing experimental program analysis techniques
in the research literature, show how these techniques map
to the experimental program analysis operational definition,
and use the definition to assess the limitations of the tech-
niques.

3. Use approaches in traditional experiment design to adapt ex-
perimental program analysis techniques, and empirically in-
vestigate the improvement to the techniques.

4. Design and implement new experimental program analysis
techniques to address open problems in the research litera-
ture — or to better address program analysis problems with
existing, but inadequate, solutions — and empirically evalu-
ate the ability of the new techniques in addressing each tar-
geted problem.

5. If necessary, refine the techniques investigated in Activities
3 and 4, and empirically evaluate the refined techniques.

To accomplish Activity 1, we will descriptively define experi-
mental program analysis in a manner that concisely describes the
paradigm. We will augment this descriptive definition with a de-
tailed “operational” definition that will serve as a foundation for
outlining the methodologies in traditional experimentation that
characterize experimental program analysis techniques. To help

978



formulate this operational definition, we will draw from an over-
view of the empirical method that is generalized from various
monographs in empirical science. We expect that our operational
definition will help map techniques to the experimental program
analysis paradigm, thereby serving to help classify techniques.

To accomplish Activity 2, we will survey the broad base of pro-
gram analysis techniques in the literature, identify techniques that
conform to the definitions created in Activity 1, and use these def-
initions to assess the limitations of the experiments conducted by
these techniques. The goal of this survey is two-fold. First, we
wish to use our operational definition to show that experimental
program analysis is not an abstract theory, but rather a practical
paradigm mapping to real program analysis techniques. We have
already found well-known and powerful techniques that map to
our operational definition, and we expect that an extensive survey
of the research literature will reveal additional techniques. Sec-
ond, we wish to show that our definition is of sufficient power to
be extended to a wide variety of program analysis domains. We
believe that our operational definition will support the creation of
techniques in program analysis domains such as testing, debugging,
impact analysis, and program maintenance. This survey will help
to identify such domains.

To accomplish Activity 3, we will draw upon research in tra-
ditional experimentation to adapt experimental program analysis
techniques in an effort to facilitate their improvement. More specif-
ically, from the survey in Activity 2, we will select a variety of tech-
niques from multiple program analysis domains and study whether
we can leverage well-established principles from the statistical and
experiment design literature to provide improvements related to
power, cost-effectiveness, and other metrics. For example, the fore-
going literature contains many strategies for sampling large popu-
lations of interest in order to support cost-effective investigations,
assigning selected treatments to units in the sample to maximize
conclusion power while minimizing cost and the influence of ex-
traneous variables, and employing statistical analyses to assess and
refine hypotheses under investigation. We expect such opportuni-
ties to be explicitly revealed, in part, using the operational defini-
tion designed in Activity 1, which maps such experiment design
tasks to experimental program analysis techniques.

To accomplish Activity 4, we will identify open problems in the
program analysis literature, or problems where existing approaches
have not to date provided sufficient solutions, and design new tech-
niques that utilize experimental program analysis to address these
problems. We will then empirically evaluate these new techniques
to assess their effectiveness, and to compare them with their non-
experimental counterparts. We believe that the design, presenta-
tion, and evaluation of such techniques will encourage other re-
searchers to consider the use of experimental program analysis.

3.3 Scope and Research Plan
The research just defined will be scoped in a number of ways to

make its completion feasible in a reasonable amount of time.
We will limit the number of techniques that will be investigated

in Activities 2–4. Adjustments to these activities may be made as
we acquire a better understanding of the difficulty of adapting, cre-
ating, and empirically evaluating techniques; however, at this time,
we expect to identify a minimum of five techniques in Activity 2.
We also expect that a minimum of three techniques will be im-
proved in Activity 3, and a minimum of three techniques will be
created in Activity 4.

There will also be feedback present within these activities that
will influence the process undertaken in other activities. For exam-
ple, the techniques that are surveyed in Activity 2 may influence

those that are adapted in Activity 3, and the domains in which tech-
niques are created in Activity 4; feedback obtained during the em-
pirical evaluations in Activity 3 may influence the evaluations in
Activity 4; and so on.

Finally, the five activities will not necessarily progress in a se-
quential manner. For example, the improvement of existing tech-
niques in Activity 3 may be interleaved with the creation of new
techniques in Activity 4. Also, techniques created in Activity 4
may be improved and evaluated in a manner similar to the proce-
dures in Activity 3.

4. PRELIMINARY WORK
We have completed preliminary work toward each of the first

four activities listed in Section 3.2. We briefly discuss that work
here.

In accordance with Activity 1, we have descriptively defined ex-
perimental program analysis as follows:

Experimental program analysis is the evolving process
of manipulating a program, or factors related to its exe-
cution, under controlled conditions in order to charac-
terize or explain the effect of one or more independent
variables on an aspect of the program.

To further elucidate this definition, we have augmented it with a
detailed operational definition that serves as a foundation for clas-
sifying experimental program analysis techniques, explaining their
use of experimentation according to traditional experiment design
literature, and assessing their limitations. Due to space constraints,
we do not present this operational definition here; instead, we refer
readers elsewhere [11].

We have made progress in our survey of the program analysis
literature (Activity 2), our improvements of techniques (Activity
3), and our creation of new techniques (Activity 4). In the follow-
ing discussion, we elaborate on three domains in which we have
studied experimental program analysis techniques.

Within the debugging domain, one technique that we have con-
sidered is Delta Debugging, which has been used for various debug-
ging-related purposes. For example, the HOWCOME technique [14]
uses Delta Debugging to manipulate the variable values in program
states, and tests whether those values reproduce the failure of in-
terest, until a minimal subset of variable values is isolated. One
improvement that we have proposed to HOWCOME, but not empir-
ically investigated, is to utilize random sampling over the program
state space in order to improve the scalability of the technique; us-
ing random sampling, the size of the sample could be based on the
availability of resources (e.g., time). Although the use of random
sampling could result in missing information in the cause-effect
chains reported by HOWCOME, it would provide an opportunity to
employ statistical analysis to generate confidence as to the accuracy
(and perhaps completeness) of the cause-effect chain thus created.

Within the domain of program characterization, one technique
that we have investigated is Daikon [6], a technique that infers
likely program invariants from execution traces. One improvement
that we have made to Daikon is incorporating sequential analy-
sis [12] — a well-known statistical analysis technique — so that
it halts the consideration of invariants (and reports them early to
the user) after sufficient confidence has been placed in their accu-
racy. Reporting invariants early may save many unnecessary ob-
servations that “further validate” likely invariants. However, it may
also increase the number of false-positive invariants reported by
the technique. We conducted a case study to investigate the cost-
effectiveness of this strategy, where we found that, on average, 16%
of the early-reported invariants were false positives. However, in

979



terms of comparisons between variable values in execution traces
to prospective invariants, the savings of reporting invariants early
was, on average, 50%. Thus, if performance savings are important,
sequential analysis may help improve the practicality of Daikon by
ensuring that some useful results can be reported, even if the preci-
sion of those results suffers.

Within the domain of program optimization, one technique that
we have investigated is a new experimental program analysis strat-
egy for automating source code refactoring [8]. Because refac-
toring a segment of code may not necessarily improve the source
code depending on a targeted measure of improvement, and be-
cause many types of refactorings are possible, we have proposed
an experimental refactoring technique that applies combinations of
individual code refactorings to source code, measures their effects,
tests whether they should be kept or discarded, and repeats this
process until a sufficient number of refactoring groups have failed
to improve the program further. We considered an extended ex-
ample to illustrate the potential of this technique, where we found
that experimentally applying code refactorings was preferable to
simply applying all possible refactorings, and helped leverage (and
address) various interactions between combinations of individual
code refactorings that improved (or worsened) the code. To date,
we are aware of no well-accepted standards defining when partic-
ular code refactorings should (and should not) be applied. Among
other things, we believe that an experimental program analysis ap-
proach may provide a completely automated means for deciding
when and where refactorings should be applied to source code.

5. EXPECTED CONTRIBUTIONS
Experimental program analysis provides numerous opportuni-

ties for program analysis and software engineering research. Ex-
perimental program analysis offers distinct advantages over other
forms of analysis — at least for particular classes of analysis tasks
— including procedures for systematically controlling sources of
variation in order to experimentally analyze software systems, and
experiment designs and sampling techniques that reduce the cost of
generalizing targeted aspects of a program. Such advantages will
lead to significant advances in program analysis research and in
associated software engineering technologies.

We expect that the five activities outlined in Section 3.2 will ex-
pose the research community to the use of experimental program
analysis techniques, identify domains in which experimental pro-
gram analysis might be useful, suggest many opportunities for im-
provements to existing techniques, and promote the use of experi-
mentation in program analysis in order to confront program analy-
sis programs in innovative ways. We also expect many implications
from experimental program analysis, even apart from those that
we have described here. A first implication involves opportunities
for other researchers to create new experimental program analysis
techniques. In particular, larger and more difficult program anal-
ysis challenges should become reasonable targets with the assis-
tance of, for example, advanced experiment designs and sampling
mechanisms. We also anticipate that qualitative improvements to
the state of the art will lead to a new generation of experimental
program analysis techniques.

A second implication involves automation opportunities with re-
gard to experimentation tasks performed by techniques. It seems
likely that the selection of the approach for tasks can be automated.
For example, experimental program analysis techniques could be
encoded to consider multiple experiment designs (e.g., blocking,
split-plot, latin square), and select that which is best suited for a
specific instance of a problem. Improvements such as these may
increase techniques’ efficiency, thereby making them more afford-

able to solve different classes of problems, while freeing human
designers from these occasionally difficult and error-prone tasks.

A third implication with somewhat broader potential impacts in-
volves recognizing and exploiting differences between experimen-
tal program analysis and traditional experimentation. There are
several such interesting differences including, for example, the po-
tential for experimental program analysis techniques to cost-effec-
tively consider enormous numbers of treatments. It is likely that
further study of experimental program analysis will open up in-
triguing new problems in the fields of empirical science and statis-
tical analysis.

6. REFERENCES
[1] M. Arnold and B. G. Ryder. A framework for reducing the

cost of instrumented code. In Proc. ACM SIGPLAN 2001
Conf. Prog. Lang. Des. Impl., pages 168–179, June 2001.

[2] V. R. Basili, F. Shull, and F. Lanubile. Using experiments to
build a body of knowledge. In NASA Softw. Eng. Wshop.,
pages 265–282, December 1999.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The AETG system: An approach to testing based on
combinatorial design. IEEE Trans. Softw. Eng.,
23(7):437–444, July 1997.

[4] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
and A. Iannino. Applying design of experiments to software
testing: Experience report. In Proc. 19th Int’l. Conf. Softw.
Eng., pages 205–215, May 1997.

[5] S. Elbaum and M. Diep. Profiling deployed software:
Assessing strategies and testing opportunities. IEEE Trans.
Softw. Eng., 31(4):312–327, April 2005.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Trans. Softw. Eng.,
27(2):99–123, February 2001.

[7] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. Course Technology, 2nd

edition, 1998.
[8] M. Fowler. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 1999.
[9] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,

D. C. Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering.
IEEE Trans. Softw. Eng., 28(8):721–734, August 2002.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proc. ACM SIGPLAN
2005 Conf. Prog. Lang. Des. Impl., pages 15–26, June 2005.

[11] J. R. Ruthruff, S. Elbaum, and G. Rothermel. Experimental
program analysis: A new program analysis paradigm.
Technical Report TR-UNL-CSE-2005-0001, Dept. of Comp.
Sci. and Eng., University of Nebraska–Lincoln, April 2005.
http://csce.unl.edu/∼ruthruff/papers/tr-unl-cse-2005-
0001/TR-UNL-CSE-2005-0001.pdf.

[12] D. Siegmund. Sequential Analysis: Tests and Confidence
Intervals. Springer-Verlag, 1985.

[13] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering. Kluwer Academic
Publishers, 2000.

[14] A. Zeller. Isolating cause-effect chains from computer
programs. In Proc. 10th ACM SIGSOFT Symp. Found. Softw.
Eng., pages 1–10, November 2002.

[15] A. Zeller. Program analysis: A hierarchy. In Proc. ICSE 2003
Wshop. Dyn. Ana., pages 6–9, May 2003.

980


