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Abstract. We investigate the entropic properties of a simple two-dimensional random 
quasicrystal model: a random tiling by the 36'and 72'rhombi. Applying the transfer matrix 
Monte Carla (TMMC) method to random tilings for the first time, we have calculated the 
entropy as a function of phasan strain. We confirm earlier results that the slate of zero 
phasan strain (i.e. ten-fold symmetry) has the largest entropy; the entropy is 0.4810 ( 5 )  per 
tile. In addition, by fitting the dependence ofthe entropy on the pharon strain wedetermined 
the three stiffness constants in the phason elasticity, one of which is not measurable by 
previous approaches. We compare the efficacy of the TMMC method with that of other 
methods. 

1. Introduction 

1.1.  Theoretical and experimental background 

Since the first identification of materials with non-crystallographic long-range order 
in 1984 [I] ,  extensive work has been done in the field [2-41. Still the atomic structure 
and the thermodynamic mechanisms of formation are unresolved. It is not clear whether 
the mechanisms of formation are the same for all alloys, or whether a number of 
different models are needed to explain the broad range of solidification rates and 
varying amounts of disorder of the different families of quasicrystal forming alloys. 
There are currently three kinds of model: the icosahedral glass model, the perfect 
quasicrystal model, and the random tiling model. 

Until recently, all quasicrystals were produced by thermal quenching and had a 
high degree of disorder [5]. Whereas the orientational correlation length was typically 
a micron, positional correlation lengths were on the order of a few hundred angstroms 
producing finite width diffraction peaks [6]. 

The icosahedral glass model [7 ,8]  is a non-equilibrium model where the system is 
grown from a seed icosahedron by adding icosahedra of the same orientation vertex 
to vertex at random locations; the positional correlation length is finite although the 
orientational correlation length spans the system. The positions of simulated diffraction 
peaks are in agreement with experiment [9]. With some annealing of a icosahedral 
glass growth process the peak widths will scale linearly with the phason momentum 
in agreement with experiment [lo, 111. 

t To whom correspondence should be addressed. 
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The perfect quasicrystal model supposes an energetic ground state with 
quasiperiodic long-range order [ 121. Like an ideal crystal, its diffraction pattern consists 
solely of delta-function peaks. The existence of perfect quasicrystals as a ground state 
requires the unlikely microscopic characteristics of highly specific atomic bonding (in 
analogy to the matching rules of perfect Penrose tilings). 

The random tiling model, on the other hand, supposes the system has many atomic 
arrangements of almost degenerate energy. The quasicrystal state is a thermal equi- 
librium phase (as in the perfectly quasiperiodic theory) but the role of disorder is 
emphasized (as in the icosahedral glass model). The phason fluctuations (see section 
2) have an elastic theory of the usual gradient-squared kind. It has been shown that 
this implies that a random-tiling model has delta-function diffraction peaks in three 
dimensions [2,13], despite the short-range phason fluctuations. There is a Debye- 
Waller reduction of intensity, which is transferrred to diffuse scattering; these are 
determined quantitatively by the values of the stiffness constants. In two-dimensional 
systems, such as the random Penrose tiling considered in this paper, the diffraction 
peaks are expected to have a power-law form where the exponent in the power-law is 
determined by the stiffness constants. The importance of the stiffness constant has 
motivated our calculation, both for its direct relevance to two-dimensional quasicrystals, 
and as a test of our transfer-matrix method in view of possible adaptation to the three 
dimensional case. 

In addition, it was hypothesized [13,14] that the random tiling state might be 
thermodynamically stabilized because of the reduction in free energy from the configur- 
ational entropy. Models of entropically stabilized long-range order predict that the 
quasicrystal phase is stable at higher temperatures (less than the melting point) but a 
related crystal phase of slightly lower energy becomes stable at lower temperatures as 
the entropy term becomes less significant. 

Interest in random tilings has increased since the recent discovery of equilibrium 
quasicrystals such as i(A1CuFe) [15]. These have resolution limited diffraction peaks 
indicating long-range order, which is consistent with either the ideal quasicrystal model 
or the random-tiling model. Furthermore, some experiments have found the equilibrium 
quasicrystals to undergo a phase transition at lower temperatures to a periodic state 
[15]. This is contrary to the premises of the ideal quasiperiodic model but in agreement 
with predictions of the random-tiling model. Further discussion of random tilings and 
their relevance to experiment may be found in two brief reviews [16,17]. 

Numerical studies of two- and three-dimensional random tilings confirm the 
existence of an entropically stabilized quasiperiodic phase [18, 191 i.e. random tilings 
possess long-ranged quasiperiodic order. Strandburg er a/ (1989) [ 191 have performed 
Monte Carlo simulations on the two-dimensional binary and unconstrained random 
tiling models. Unconstrained random tilings (see figure 1) are random tilings of 36" 
and 72" rhombi, i.e. Penrose rhombi. Binary random tilings are tilings of the Penrose 
rhombi with colouring restrictions. Binary random tilings may be mapped to disc 
packings, where the discs have (non-additive) radii 7 and unity. Strandburg et a/ 1191 
performed simulations on unconstrained random tilings of up to 3571 rhombi and 
estimated K =$(K++K_)=0.60+0.02 and K1=0.56+0.03, and on binary random 
tilings of up to 3571 discs they estimated K =0.627*0.015, where K,, K _  and K :  are 
the independent stiffness constants (see section 2.3). Widom er al [18] calculated the 
transfer-matrix, and thereby the tiling entropy, exactly for systems with widths Of UP 
to 13 discs. Using finite-size scaling to extrapolate to the thermodynamic limit, they 
estimated an entropy density per unit area of 0.2374*0.0003, and K =0.600*0.006, 
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in rough agreement with Strandburg et al. Monte Carlo simulations of random tilings 
of Ammann rhombohedra [20,21] have also confirmed the existence of long-range 
order in three-dimensions. 

1.2. Plan of the paper 

Here we investigate the entropic properties of unconstrained (maximally) random 
Penrose tilings. That is, our ensemble consists of all ways to tile the plane with rhombi 
of unit edge and acute angles either 36" or 72". The number of possible tilings grows 
exponentially with the area of the system. Equal weight is given to each distinct 
configuration; in other words there is n o  Hamiltonian but only the tiling constraint 
(as in other purely entropic models such as hard spheres). It is plausible that the 
thermodynamic state is ten-fold symmetric, in the sense of having equal distributions 
of all the different possible orientations of the tiles; however, this does not necessarily 
imply any degree of long-range order. 

To determine the long-wavelength properties, in particular the shape of diffraction 
peaks, it suffices to know the coarse-grained free energy (which is purely entropy in 
our case) in terms of the 'phason' degree of freedom. (The latter is defined in section 
2.1; it will suffice to say here that ten-fold symmetry corresponds to zero phason strain 
and any phason strain corresponds to a deviation from this state.) Therefore, the goal 
of the paper is to calculate the entropy as a function of phason strain. We only consider 
small phason strains so this reduces to the calculation of the entropy for zero phason 
strain, and the stiffness constants which are coefficients of the leading terms in the 
expansion ahout this point. 

Since the tiling may be decomposed into layers, a numerical transfer-matrix formula- 
tion can be used to calculate the thermodynamic properties of the tiling on a strip 
[14, 18,221. A numerically exact transfer-matrix calculation is formidable except for 
the narrowest strips, since the dimension of the vector space grows exponentially with 
the width of the system. The transfer-matrix Monte Carlo (TMMC) method is useful 
because it does not require storing the transfer-matrix or a complete vector in computer 
memory. We work with transfer-matrices up to a dimension of approximately 10" x IO" 
corresponding to a system width of 24 tiles. Although we can use much larger system 
sizes than with the ordinary, numerically exact transfer matrix technique, the price is 
the introduction of random statistical errors. 

In section 2 we introduce notation and review results of earlier work. In particular, 
we give the relations between the phason strain and the tile densities, the continuum 
elastic theory of phason fluctuations, and the transfer-matrix formulation for random 
Penrose tilings [14]. Section 3 contains new analytic results, extending the earlier work, 
which are technically necessary in implementing the numerical calculation of the 
entropy and stiffness constants. In particular, we explain the use of chemical potentials 
to control the phason strain; show a useful identity of the needed value of the chemical 
potential with the true entropy per unit  area; and derive the dependence of the entropy 
on the transverse phason strain (the variable we control). Nearly identical results are 
equally valid for the other two-dimensional tilings with ten-fold symmetry. In section 
4 we present results and conclusions. We present a numerically precise determination 
of the entropy per tile (in the ten-fold symmetric state where it is maximized). Using 
chemical potentials to deviate from this state, and fitting the variation of the entropy 
to the known form of the quadratic 'phason' elasticity, we extract estimates for the 
three independent phason stiffness coefficients K,, K -  and K,. (Our approach to the 



4132 

data analysis is different from that of Widom et a1 [18] who did not separate K ,  and 
K.)  We also discuss the efficacy of the TMMC method as compared with standard 
Monte Carlo simulation, or the finite-size scaling of exact transfer-matrix computations 
for small systems. Appendix A provides the basic theory of the transfer-matrix Monte 
Carlo method and presents details of the implementation which may be applied to 
any TMMC calculation. Appendix B presents the particulars of our TMMC implementa- 
tion for the random Penrose tiling, and discusses our attempts to improve the conver- 
gence of the method with importance sampling. Appendix C summarizes useful 
information about the random tiling of 60" rhombi. 

L J Shaw and C L Henley 

2. Basic theory of random Penrose tilingsi 

2.1. Physical and phason space 

A random Penrose tiling (i.e. a tiling of 36" and 72" rhombi, see figure 1) may be 
viewed as the projection of a connected two-dimensional hypersurface made of 2-faces 
of a five-dimensional simple cubic lattice. Each vertex of the tiling is specified by a vector 

where n,  are integers and 

e! = (-sin(Zra/5), cos(2na/5)) 

as shown in figure 1. Types of tiles are specified by their edge directions. For instance, 
tiles with edge directions er and e! are called (1,3) (or (3, 1)) tiles. The (a, n +  1) and 
(a, a +2) tiles are termed thin and fat tiles respectively. The (1,3) and (1,4) tiles will 
be called thin vertical tiles, and (3,4) and (2,5) tiles will be called fat vertical and 
thin horizontal tiles respectively. 

The e! vectors are projections onto the two-dimensional 'physical space' of the 
basis vectors of a five-dimensional cubic lattice. The corresponding 'phason' coordinate 
of the vertex (1) is 

wherel 

e'= (-sin(4ra/5), cos(4ra/5) ,  l/A) 

and the five-dimensional position is 
5 

r ' + d =  1 n , ( e : + e l )  
" - I  

t Corrections to a number of errors in [ I41 are listed here. The ( d l D )  of ( 2 . 6 )  should be replaced with a 
(dID)' ,  the 0.9960 in (4.6) should be replaced with 1.2892, the 0.95 in (4.7) should be replaced with 0.8123 
and (4.8) should read ( L l  N,) = 5/2r2=0.9549. A numerically incorrect entropy value (corrected in our 
(68) )  is quoted at the end of section 3.2. 
$The more common definition replaces 4na/5-6ro/S  in (4): this merely changes the sign of the X I  

components of all pharan vectors. 
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2.2. Phason strain and file densifies 

The long wavelength behaviour of the hypersurface is described by the coarse grained 
phason coordinate 

h(rll) =(r'),ii ( 6 )  

where (. . .),IN signifies averaging in the vicinity of r" over a region large in comparison 
with the tile size. (Henceforth we abbreviate r i l  as 1.) The phason strain tensor is given 
by 

E ( r ) = V . h ( r ) .  

For uniform phason strain E (  r )  = E, 

h + r = E r + r = (  Y = l  nee..) 

so the hyperplane may be parameterized 

(7) 

:re 

(9) 

Now let us consider a large parallelogram in the physical space with edge vectors pm 
and pa, and area IpexpPl ,  such that p;m,=O and p,.m,=O. This defines a 
parallelogram on the hyperplane whose projection onto the e,, e, plane is a square 
of area (pm.mP) (pp .m, )  in units of le,, x e P l = s .  Therefore nap. the number of ( a , P )  
tiles per unit area, [14] is 

Note that nap has terms up to quadratic in E. For future reference we present the 
first-order expansions 

n34= ( 2 f i / 2 5 ) [ 1  -E,,(T+ I ) +  EYy( l -T) - f iE , ]  

n 5 , = ( 2 f i / 2 5 ) [ 7 +  E,(T- 1) - EJI + ~)+v'?E,,.l. 

n,ilc = = n a d -  - E,,E,,)/T 1 

( 1 1 )  

(12) 

The complete and exact expression for the total tile density is 

(13) 3 

=, 

where the first/second subscript of E is the phason/physical space index, and 

n:,,= n,!,,(E = 0 )  = 2 i 2 f i / 5 =  1.231. (14) 

Hereafter, the superscript '0' denotes the E = O  value of a variable. Notice that there 
is no linear E term in n,j,c. 

2.3. Elasficify theory 

The tilings allowed by our packing rules form an ensemble, in which we have given 
each tiling configuration equal weight. (When we include chemical potentials, as 
introduced below for technical purposes, different configurations have different 
weights.) The entropy is proportional to the system size. Thus our fundamental 
thermodynamic function is the entropy density as a function of phason strain S (  E ) .  
(We will measure this in  w i t s  of entropy per tile.) 
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The fundamental conjecture of the random tiling model of quasiperiodic order is 
that the entropy of the tiling is a quadratic maximum at E =0 ,  i.e. 

where K,  the stiffness constant tensor, is positive definite [lo, 141. Group theoretic 
arguments [23] have been used to identify the number of independent components of 
K.  The functional form of the entropy must be invariant under any rotation of the 
tiling by a multiple of 72'together with the corresponding rotation about z' in  phason 
space (which is twice the angle, see (4)). This analysis yields three independent stiffness 
constants which couple components of the phason strain to give: 

S = S"-fK+[(E,, + E?,,)*+ (Exy - E,.,)'] 

-fK_[(E, - E,,.)'+ (E,. + - Kz[E:,+ €$I 
= so - (K ,  + K _ ) [  E:, + E:,, + E:, + €3 

- 2 ( K + -  K-) [  E&", .~ - ExJEYx1- K,[EZ,+ EX]. (16) 
This work provides the first estimates of both ( K + + K _ )  and ( K + - K _ )  for 

decagonal quasiperiodic tilings. The ( K + -  K-)  contribution to the entropy of a region 
reduces to an integral over the boundary since 

E,,E,-E,,E,=Vx[h,Vh,I (17) 

is an exact differential [24]. If one is only interested in the fluctuations about the 
average phason strain, or  if the average phason strain is zero, the (K+ - K - )  term may 
be neglected. (This is equivalent to converting to Fourier components, i.e. E,, -f q,h,, 
Ex." -f q,h,, etc.) Thus, Monte Carlo simulations which determine the (entropic) elastic 
constants by measuring fluctuations around a state can only measure the combination 
(K++  K)?. This is true whether there is a fixed net phason strain due to the boundary 
conditions, or  whether the system is allowed to find the maximum-entropy state with 
zero phason strain. Our estimate of the value of (K ,  - K - )  is of physical importance 
since, if the global phason strain is not constrained at zero, the sign of (K,  - K-)  
determines the stability of the zero phason strain random tiling as compared to states 
with non-zero uniform strain, e.g. large rational approximant crystals with random 
tiling disorder [16]. 

2.4. E'ling rules and the transfer-matrix 

The nearly horizontal dotted lines across figure 1 separate 'layers' of the tiling. The 
tiling has periodic boundary conditions horizontally. Dotted line segments of length 
1, I ,  7-' and r-' along e! ,  -e?, e! ,  and -e! are termed L+, L-, St and S' steps 
respectively. For instance, the sequence of steps across the leading (top) layer of figure 
1 is {LtL'L~L-S-StL~S-LtS+). Layer lines cut through all thin and fat vertical tiles. 
A simple counting argument shows that the number of steps per unit area, n,,,,= 
n (  Lt) + n( L-)+ n(S+) + n ( S - ) ,  obeys [ 141 

(18) flneP = ntilC + n34 - ns2.  

t But a Monte Carlo simulation with free boundary conditions, could in principle determine ( K + -  K.1, if 
one measures the global phason strain: this fluctuates according to a statistical weight which is exponential 
in the system area times the full phason elastic term. 
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Figure 1. A random Penrose tiling configuration. Layer lines are shown broken. (After 
figure 4 of [141.) 

The transition rules assign a weight to each permissible permutation of steps between 
two layers. These weights form the entries of the transfer-matrix. The tiling of a new 
layer is determined by the state of the previous layer and the operations performed in  
the permutation of steps between layerst. The transition rules for generating successive 
layers may be divided into three stages as follows (see appendix B for TMMC 

implementation details): 
(i) The LL rule is composed of any number of L+L-+ L-Lt exchanges between 

nearest-neighbour steps. Thus, the LL rule changes the plus/minus ordering within 
strings of consecutive L steps; L+ steps can move to the right and the L- steps can 
move to the left, but they cannot move past an S. Each exchange corresponds to adding 
a thin horizontal tile to the leading edge of the tiling since the bottom surface of the 
tile is an L-L+ pair and the top surface is an  LtL- pair. Since thin horizontal tiles 
are to be assigned a chemical potential p s 2  to preserve five-fold symmetry (see below), 
a permutation requiring n of these exchange operations is given a weight e""52. 

(ii) The SL rule is composed of any number of S t L  + LS' or L S - +  S - L  exchanges 
between nearest-neighbour steps, where L refers to either an L+ or L- step, and 
similarly S refers to either S' or S-. The SL rule can change the ordering of the S 
and L steps across the layer, but clearly cannot change the plus/minus ordering of 
the L steps or the S steps. Each possible permutation of steps is given a weight of 
unity. The SL rule determines the positions of thin vertical (1,4) and ( I ,  3 )  tiles in the 
next layer of the tiling. An added ( I ,  4) tile, for instance, is positioned so that its lower 
vertex is n vertices to the right of the right-hand edge of the corresponding St in the 
layer below, where n is the number of S + L +  LS' exchanges applied. Gaps between 
thin vertical tiles are filled in by a single layer of (1, Z), ( I ,  5), ( 3 , s )  and ( 2 , 4 )  tiles in  
a manner which maintains the ordering of L steps from the layer below. 

(iii) The SS rule is composed of StS-+ S-S' nearest-neighbour exchanges, but 
unlike the previous rules each S step can undergo at most one SS exchange per layer. 
The SS exchange corresponds to the substitution of a fat vertical tile for a ( l ,4 ) ,  ( I ,  3) 
pair of thin vertical tiles; the lower contour of a fat vertical tile is the same as that of 
a (1 ,4) ,  ( 1 , 3 )  pair, and the upper contour is the same as that of a ( 1 , 3 ) ,  ( I ,  4) pair. 
Since fat vertical tiles are to be assigned a chemical potential pX4 to preserve five-fold 

t The mapping of step permulalions to tilings is not unique when there are no thin vectica !iles. but this is 
far from the condition of five-fold symmetry and will not concern us here. 
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symmetry (see below), the weight of a permutation is e"'>< where n is the number of 
SS exchanges. 

L J Shaw and C L Henley 

The transfer-matrix T is equal to the product 

T =  TSSTSLTLL (19 )  
where the entries of TSL, TLL,  and TSs are determined by the SL, LL, and Ss rules. 
Because the entropy is related to Tr T N  (see below), cyclic permutations of the matrices 
in the product o i  equation (19) do not affect the entropy. The matrices T,, and T~~ 
commute, since the application of the SS rule has no effect on the apphcation of the 
LL rule, and vice versa. Therefore we are free to permute the order of multiplication 
of the matrices in (19). Reordering of the matrices does affect how the layer lines are 
drawn in figure 1; the layer lines go above/below groups of horizontal thin tiles when 
TLL comes afterlbeiore TsL in the product defining T. 

The number of steps of each type across a layer will be termed the 'transverse 
boundary condition'. Since the transition rules only involve permutations of steps, the 
number of Lt, L-, S' and S- steps per layer ( N ( L + ) ,  N ( L - ) ,  N ( S + )  and N ( S - ) )  is 
conserved and the transverse boundary conditions (to be denoted as { N (  Lt), N (  L-) ,  
N(S+) ,  N ( S - ) } )  across each layer are the same. The net displacement upon traversing 
the steps of a layer (transversely), 

(20) 
1 
1 

1 
w?= s i n ( 2 ~ / 5 )  ( N ( L + ) +  N(L- ) )+-  ( N ( s + ) +  N(s - ) )  

7 

1 

[ 
[ 7 

W J  = cos(271/5) ( N ( L + ) -  N ( L - ) ) + - (  N(S+)  - N ( S - ) )  

and the corresponding phason space displacement 

w: = s i n ( 2 ~ / 5 )  ( - N ( S + )  - N ( S - ) ) + -  ( N ( L + ) +  N ( L - ) )  I 1 
7 

(21) 1 1 
( N ( S + )  - N ( S - ) ) + - ( - N ( L + ) +  N ( L - ) )  

[ 
W $  = (1  + c o s ( ~ T / ~ ) )  [ 7 

1 
W: =x [ 2 N ( S + ) - 2 N ( S - ) +  N ( L + ) -  N ( L - ) ]  

is therefore determined by the transverse boundary conditions. For ease of reference, 
table 1 lists w "  and wL for a number of transverse boundary conditions. Notice that 

Table 1. Displacements across strips. 

~~ 

Initial conditions W !  4 w.: W :  w ;  

3.08 0 
4.98 0 
8.06 0 
6.88 0 

13.04 0 
11.86 0 
11.14 0 
9.01 -0.309 

-0.727 
0.449 

-0.278 
1.63 
0.17 
2.07 

-1.00 
0.310 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0.809 -0.707 
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when N ( L + )  = N ( L - )  and N ( S + )  = N ( S - ) ,  only w?, and w$ are non-zero. In general, 
the choice of transverse boundary conditions imposes three restrictions on E for any 
given system corresponding to the three components of the equation 

w L =  EwII. (22) 

3. Implementation and related theory 

3.1. The functional form of the entropy 

The TMMC method allows the determination of the largest eigenvalue A. of the 
transfer-matrix. The entropy per layer S,,, is related to ha by 

(23) 

There is no physical significance to our definition of layers; the quantity of interest is 
actually the entropy per unit area S, where 

4 , , / N w  = S/n, , , ,  (24) 

Slay = In A,, . 

and 

N ,  = N ( L + ) +  N ( L - ) +  N ( S + )  + N ( S - )  (25 )  

is the number of steps across the width of the system, a constant. The largest eigenvalue 
A,, is in effect a maximization of the entropy with respect to Exy,  E,,?, and E.? with the 
'transverse boundary condition' held fixed. 

Because ns,LD is a function of E, S,,, is not simply proportional to S and the maxima 

strain so as to allow exploration of the functional dependence of S,,, near the phason 
strain corresponding to the maximum of S, we modify equations (15) and (16) by 
introducing the chemical potentials p34 and p5*, i.e. we generalize the entropy to the 
free energy 

F =  So-;  EKE -p34n34-pz2n52.  (26) 

of Siay 2nd S occ1?r E! different v2!??es of the ph2son .!min. To !nanip!!!2te the ph2son 

When 

p 5 2 = - p , 4 = p o - S o / n : , ,  (27) 

the second-order expansion of (24), using equations (26) and (18) is 

where np,,,= 1.29 is the value of (18) at E = O ;  here EK'E has the same functional 
form as equation (16) with 

where for convenience we have defined 
In other words, if p S 2  and p34 have the special values given by (271, then (28) says 

that F,,, has a maximum at the same phason strain (E =0)  as S does, and furthermore 
that at that phason strain Fjry/ Nw equals the entropy per tile pu. Thus, small variations 

= n:,,/r'=0.29. 
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of w ' / w "  about zero, and p52 and -p34 about po therefore allow the determination 
of the functional form of Fl,,/Nw (and consequently that of S) about E = O .  Using 
equations (11)-(13), (IS), and (24)-(30), the expansion of F,,,/N, to second order 
for general p14 and pLS2 is 

L J Shaw and C L Henley 

(31) 
0 1  

F l a y /  Nw = I-L -7 [ t E K ' E  + L E x . r  + $$, + #,,E,.l 
n"rp 

where 8pJ2=po-pLS1, where 

0 with -p34 .  
The value of F,ay/ Nw is proportional to the maximum eigenvalue of T. Therefore, 

the expected form of F , r y / N w  as a function of p52,  P,~, w l ,  and w I I  is found by 
maximizing equation (31) with respect to E subject to the transverse-boundary-condi- 
tion constraints (22). This calculation is facilitated by the definitions: 

and 

The right-hand side of equation (37) contains all the E dependence. After considerable 
calculation we determine that the solution of minimizing equation (37) subject to 
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constraint (38) is 

1 
n:, , , (wp+Wp) 

( F d  N w )  = PO+ ( S P , , ~ & +  8/~52n!2) /  n L P +  

&Wy+*;.,,wp *$wp 1 
+--- K,w:' 

K + + K _  2 K ,  2 

1 +w?w: ( *xx+*yy  K + + K _  

1 +.a w: ( *."Y + *xx 

1. (39) 

K -  - K +  + 2Pp0 

K -  - K + + 2 P p n  
K+  + K _  

- (wy+ w;z) ( K + - P f i 0 ) ( K - + P p o )  
K + + K _  

The requirement of an entropy maximum at Sp,, = BpLSz = 0 restricts (( K + - P p o )  x 
( K - + P p ' ) ) / ( K + +  K - )  and K ,  to positive values. Since much of the analysis of 
numerical results will consider systems where w: = w: = w!, = 0, for ease of reference 
we display the form of equation (39) under these conditions: 

(FjaylNw) = PO+ (&,n:,+ S~szn!z)/n:t,, 

4. Results and conclusions 

The transfer-matrix Monte Carlo method is described in appendix A; the implementa- 
tion of the transfer-matrix for the random Penrose tiling [14] is outlined in appendix 
B. Due to practical limitations, we are restricted to calculating F,.,/N, for systems 
with N w S 2 4  (see appendix A) so it is necessary to apply finite-size scaling to the 
TMMC data. Each TMMC run produces an  estimate of F,,,/Nw for a given w', w I I ,  p,4 
and p S 2 .  Each infinite size extrapolation (see table 2 )  for a given w' /wI '  is based on 
finite-size scaling of the results for two system sizes. 

To fit for the maximum entropy density So and the stiffness constants K , ,  K _  and 
K , ,  we will use the expansions (39) and (40) from section 3. These expansions depend 
on po; however, this is proportional to the entropy So and so i t  is one of the objects 
of the calculation. In principle we can find po self-consistently because Flay/ N w  must 
equal po, but we need a preliminary estimate for po (section 4.1), so that we can limit 
our fits to data in the vicinity of E = 0 where equation (39) is valid. (Since the transverse 
boundary condition forces a finite phason strain, the validity of the quadratic expansion 
(39) is problematical, see section 4.2). 
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Table 2. Infinite-size extrapolations of the TMMC data. 

Entry Initial conditions -*,a ! 4 2  L I N w  

a 
b 

d 

f 
g 
h 
i 

k 

in 

c 

e 

j 

" 
0 

P 
4 

5 

1 

0.4805 
0.4750 
0.5812 
0.3812 
0.5812 
0.3812 
0.4805 
0.4805 
0.3305 
0.6305 
0.6305 
0.4805 
0.5805 
0.3805 
0.5805 
0.3805 
0.3305 
0.4810 
0.4805 
0.4805 

0.4805 
0.4750 
0.5812 
0.3812 
0.3812 
0.5812 
0.3305 
0.6305 
0.4805 
0.4805 
0.6305 
0.4805 
0.5805 
0.3805 
0.3805 
0.5805 
0.4805 
0.4810 
0.4805 
0.4805 

0.4810 (7) 
0.4805 (6) 
0.4874 (2) 
0.4758 (5) 
0.5006 (3) 
0.4624 (2) 
0.4919 (2) 
0.4717 (4) 
0.4627 (3) 
0.4999 (4) 
0.4906 (3)  

0.4813 (4) 
0.4793 (4) 
0.5001 (2) 
0.4609 (3) 
0.4648 (2) 
0.4793 (3) 
0.4745 (2)  
0.4698 (2) 

0.4800 (7) 

4.1. Finite-size scaling and preliminary esfimaies 

The finite-size scaling behaviour of F,,,/Nw with N w  satisfies 

where c is a function of w' /wI I ,  fi34 and f i 52 .  This scaling form is consistent with 
capillary wave theory 1251, the six-fold symmetric random tiling of the 60" rhombi (see 
appendix C and 1261) and the data of Widom et a/ 1181. To illustrate the smallness 
of the corrections to the finite-size scaling form, figure 2 displays F,,,/ Nw against N G  0'52m I3nf3n,n,nl 

-3 2;' 01 ::y,,,j In,n.n.nl 

0.46 
0 5 10 15 20 

( i / ~ " ~ )  x io3 
Figure 2. Finite size behaviour of F, , , /N,  for ( n .  n, n. n) and (3% 3% n. nt systems for 

= - F , ~ =  0.4805. The error bars of the  { 3 n ,  3n, n, n )  data points and the two right-hand 
(n, n, n, n) data points are magnified for clarity. 
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for two systems: { n ,  n, n, n )  layers with n = 2 , .  . , ,6 ,  and {3n, 3n, n, n }  layers with 
n = 1,2,3, where pS2 = -p34 = 0.4805. Table 2 displays least-squares infinite size 
extrapolations of the TMMC data using equation (41). The n + CO extrapolations for 
1 3 4  3% 2% 2 n )  systems utilized Fl,,/Nw data from {3,3,2,2}  and (6,6,4,4} systems, 
and the {2n, 2n, n, nl extrapolations utilized {4,4,2,2} and IS, S,4,4) systems. 

To explore the quadratic maximum of S and determine So, K , ,  K _  and K ,  we 
must locate the value of pa. For simplicity let us consider { n ,  n, m, m }  layers so that 
w: = w: = w! = O .  In view of equation (27), it is natural to restrict ourselves to the line 
p5> = -p3q = p; when we speak of Flay/ Nw as  a function of p, this is to be understood. 
For notational convenience we now define a modified 

Examination of equation (40) shows that 

That is, if we plot the graph of the function Fkay(p) /NW against p, this curve will 
intersect the line through the origin with unit slope at (po,  pO). Since the definition 
(42) of S I N w  depends upon po, this might not seem helpful; however, it turns out 
that the intersection of this line with the unmodified curve F,&), as illustrated in 
figure 3, gives a very good estimate of pLo. For 

( K +  - Pw0)(K- +Pro) ~ o,2 
( K + +  K - )  

(see below), and forthe (3n, 3n, 2n, 2 n )  data, ( l /np , , , ) (w: /wL)2=0.001.  Consequently, 
the shift (F,ay- Flsy)/Nw due to the extra term in (42) is near the resolution of figure 
3, even with its expanded vertical scale, and the p values of the intersections of the 
line with Fl.,/Nw and with Flilny/NW are indistinguishable. Thus we extract the 
preliminary estimate 

po=0.4812f0.0007 (44) 

0.47 
0.3 0.4 0.5 0.6 

P 
Figure% Entropyasa functionofps,=-p',n=p.Thepvalueatwhich the (3n ,3n ,2n32n)  
data ccosses the line of unit slope through the origin (full line) provides an estimate of p". 
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from the intersection of the {3n, 3n, 2n, 2n) data (chain) in figure 3 with the line of 
slope one through the origin (full). 

A comparison of the p=O.4805 values of Ft , , /Nw for the {3n,3n,2n,2n} and 
( 2 4  2n, n, n} data points (see figure 3 or entries (a) and ( I )  of table 2) provides a bound 
on ( ( K , - P p ' ) ( K _ + P p O ) ) / ( K , . +  K) .  Because we believe that p=0.4805 is within 
0.001 of po,  we expect from (32) that the $'s are of order 0.0002. Assuming that the 
coefficients of the ( W : / W ! ) ~ ,  ( w ; / w ! ) $ ,  and IL2 terms in equation (40) are of order 
unity or iess (see beiowj, the main contribution to the difference between the two data 
points must come from the term quadratic in ( w $ / w ! ) .  Noting that l / n ; , . J w $ / ~ ! ) ~ =  
0.008 and 0.001 for the {2n, 2n, n, n }  and {3n, 3n, 2n, 2n) systems respectively, the 
difference of less than 0.002 between the two points implies the bound 

4.2. The higher-order terms problem 

Unfortunately, the range over which F,,,/ N ,  is adequately described by equation (39) 
is severely limited. This is exemplified by the difference of 4.7 x IO-' in the values of 
Ft.,/Nw for the {n,  n, n, n }  and {3n,3n, n, n} systems at + s 2 =  - ~ ~ ~ = 0 . 4 8 0 5  (entries 
(s) and (t) in table 2). As elaborated in appendix C ,  this difference cannot be attributed 
to any of the terms in equation (40) since the magnitude of w $ / w !  for both transverse 
boundary conditions is the same although the sign differs, and since the values of pjq 
and p S 2  are also the same, the only candidate is the term linear in w : / w ! .  However, 
this term is about two orders of magnitude too small since Iw:/ w.!i = 0.236, and with 
the assumption that I (K_-K++2Ppn) /K,+K-I  is of order unity (see below), then 
the terms linear in w ; / w !  have a magnitude of about 7 x  IO-'. If we ascribe the 
discrepancy to terms of cubic order or higher in w'/w",  then the magnitude of these 
terms becomes of the order of the random error (=4  x 

The restrictions I w'/wl'l< 0.1 and Nw s 2 4  severely limit the viable transverse 
boundary conditions since we need at least two system sizes with the same phason 
strain to apply finite-size scaling (see table I )? .  For instance, we cannot use 
{5n, 5n, 3n, 3n)  systems because the {IO, IO, 6,6} system is prohibitively large. 

when 1 w'/ will = 0.1. 

4.3. Fitting results 

The values of K,, K - ,  K: and ,U" have been estimated by nonlinear least squares fits 
of subsets of the top seventeen entries in table 2 to equation (39). The results of these 
fits are displayed in table 3. The fitting parameters in the top part of the table are 
(K++  K - ) ,  ( K ,  - K ) ,  Ki and p'. The large covariance between the ( K ,  + K - )  and 
( K + -  K - )  estimates prompts the display of the fitting results in terms of K,, K - ,  Kz 
and p" at the bottom of table 3. The goodness of fit is displayed in the right-hand 
column. Starred parameters are constrained at either the central value of the estimates 
by Strandburg eta1 [I91 ( ( K + + K _ ) = 0 . 6 0 + 0 . 0 2  and KI=0 .56+0 .03) ,  or at the high 
or iow end of the error bars so as to iest the sensiiiviiy OT ihe fiis io iiie coiisiiaiiied 
parameters. The data points (k), (4) and (I) apparently lie outside the region described 

? I f  we were to calculaie F,,,,/ N,, roc one ryrrem size at each philsan strnin Y B I U C .  and utilize rhe phsson 
stmin and stiffness canstani dependence of the finite-size scaling form. the infinire iize rrtrapalations and 
the 61 to equation 139) would have to be done aimullaneously. This has not heen attempted here. 
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Table 3. Least-squares fits for 
constrained. 
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and the stiffness constants. Starred parameters are 

Points F 0  K + + K -  K + - K .  KT Goodness 

a-j, I-p, k 
a-]. I - P , ~  
a-j, I-p, I 
a-j, I-p 
a, b, g-j, 1-P 
a-f, I-p 
a,g-J, I - P  
a-f, I-p 
a-f. I-p 
a-f. I-p 
a-f, I-p 
a-f, I-p 

0.4732 (2)  
0.4813 (2)  
0.4809 (2) 
0.4812 (2) 
0.4713 (3) 

0.4806 (I) 
0.4808 ( I )  

0.4808 ( I )  
0.4807 (2) 
0.4809 (2)  

0.4809 (3) 

0.4808 ( 1 1  

0.165 (5)  0.40 (1) 
i . 6  (2)  1.4(2) 
1.8 (4)  1.6 (3) 
1 .8(3)  1.5(3) 
1.6 (3)  1 . 3  (3) 
1.4 (3)  1.2 (31 
l.2* 1.08 (51 
1.2* 0.99 (6) 
1.2* 0.99 ( 6 )  
1.24* 1.03 (6) 
1.2* 1.00 ( 6 )  

0.140 (5)  
1.5 (8) 
0.51 (9) 
0.9 (3)  
3 + 6  
0.53 ( I S )  
0.56* 
0.56: 
0.59" 
0.56' 
0 . 5 ( 1 )  
0.56' 

0.00 
0.000 05 
0.000 05 
0.06 
0.24 

0.008 
0.1 
0.1 
0.1 
0.07 
0.1 

0.07 

Points 2 K +  K .  K ;  Goodness 

a-j, I-p 0.4812(2) 1.7 (3)  0.14 (4) 0.9 (3)  0.06 
a ,b ,g - j , l -p  0.4713(3) I .5 (1 )  0.13 (4)  3 + 6  0.24 
a-f, I-p 0.4809 (3)  1.3 (3)  0.12 (4) 0.53 ( I S )  0.07 

by equation (39) since the goodness of fit of the first three entries in table 3 is extremely 
low; the entropy and stiffness constant estimates must be obtained from data points 
with smaller magnitudes of $ and w'/ W ' I .  

The po estimates from the remaining constrained and unconstrained fits are very 
accurate and consistent, though the graphical estimate of po may be more trustworthy 
since the least-squares fits may be biased by the higher-order terms in the F,,,/N, 
expansion. We estimatet 

S 0 / n ~ , .  = 0.4810*0.0005. (46) 
The estimates for K- from constrained and unconstrained fits are very consistent and 
relatively insensitive to the value of K,. Unconstrained fits would indicate K _ =  
0.13*0.05; the fits constrained to [19] give the estimate 

(47) K -  = 0.09 * 0.03 

which we believe is somewhat more trustworthy. The fitted values of K, and K ,  are 
rather poorly determined; we hypothesize the bounds 

(48) 1 < K + < 2  and 0.4 < K= < 1.0. 

The assumptions made earlier in this section concerning the magnitudes of various 
terms involving the stiffness coefficients are clearly justified. These stiffness constant 
estimates are consistent with Strandburg el a1 [ 191. 

4.4. Discussion 

The marked discrepancy between the accuracy of our stiffness constant estimates and 
those of Strandburg e f  a1 [I91 and Widom e f  a1 [18] deserves discussion. Strandburg 

t We indulge in a little numerology and note the intriguing coincidence between the estimated value of 
So/n:r,, and In i. 
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et a1 determined the stiffness constants by measuring the phason fluctuations of a 
Monte Carlo simulation. This is more direct than our approach where the stiffness 
constants are extracted by fitting the data to equation (39). Fitting for the stiffness 
constants, which are the coefficients of quadratic terms in $ and w'/wIl ,  is difficult 
for noisy data because in effect it requires performing two numerical differentiations. 

In [18] an entropy estimate was obtained for the constrained binary tiling with an 
accuracy comparable to that found here, but a much more accurate determination of 
the stiiiness constant iC = f(K++ E(_)  was made. They caicuiated the entropy using the 
transfer-matrix for a series of small systems whose transverse boundary conditions 
minimized the phason strain. The curvature of the entropy function for these small 
systems was determined from the response of the entropy to varying a chemical 
potential. The results were extrapolated to the infinite size limit. The unexpectedly 
small region about E = O  to which equation (39) applies makes the fit for the stiffness 

accuracy of the TMMC data. It may be more fruitful to follow [IS] and calculate the 
second derivatives with respect to & and fiZ." for a similar set of small systems (in 
particular the [F",  F,, Fn-,, F,-,} systems, where F, is the nth Fibonacci number), 
and then extrapolate to the infinite size limit. Although this may allow accurate 
determination of ( K + + K _ )  and K ,  (see equation (4011, ( K + - K - )  could not be 

In conclusion, we have described a way to implement a TMMC computation of the 
entropy of a random Penrose tiling near zero phason strain. We have determined 
estimates of the maximum entropy density So and the stiffness constants K , ,  K -  and 
K , .  We have compared the efficacy of this computation to related Monte Carlo and 
finite-size transfer-matrix computations. We present for the first time an estimate of 
So, znd ixdependen! es!itxtes of K ,  2nd K ,  for the random Penrose ti!ing. 

L J Shaw and C L Henley 

coiijiafliS, w;iic:i is in efieci equiva;ei-lt io nur,,r,icai ;ifereniia(ion, &R,cuii given iht: 

""*:...-A"> L.. hL:" ,a..l...: 
CJLIIIIaLG" " J  L l l l J  r r c r r l l r q u c .  
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Note added. A more thorough discussion of  thermodynamics including the use of chemical potenlialr, and 
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diagram of the randam eight-fold rhombus tiling [27]. 

Appendix A. The transfer-matrix Monte Carlo method 

A.1. Basic theory 

The transfer-matrix Monte Carlo (TMMC) method [28] is a stochastic technique for 
doing matrix multiplications without storing the matrices or even the vectors. This 
makes TMMC useful for calculations involving extremely large matrices. Here we will 
describe the algorithm for calculating the leading eigenvalue of a matrix with non- 
negative entries. 
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In the transfer-matrix Monte Carlo method [28] a population of M walkers labelled 
with the integers {a,, a2,. . ., a,] and the positive real numbers (w, ,  w2,. .  .. wMM) 
represents the n-component vector 

M 

U =  E we,, (49) ,=, 
where ex is the unit vector with a single non-zero entry in the kth position, and 
1 S a, S n. The a's and w's are said to represent the 'positions' and 'weights' of the 
walkers respectively. 

TMMC multiplication of v by the transfer-matrix T is accomplished by performing 
a 'TMMC decomposition' of T into the product of a diagonal matrix D and a stochastic 
matrix P, i.e. T = PD. where, by definition, the sum of the entries in each column of 
a stochastic matrix is unity. Assume that all the entries of T are positive, then all the 
entries of P and D can also be positive, and the entries of P may be interpreted as 
probabilities. Upon the operation of P on the population representing U, the position 
a, of each walker has the probability P,:,,, of changing to a:, The weights are unchanged 
by P. On average, the vector equivalent (as in equation (49)) of the resulting population 
is equal to Pu. As M + m, the vector equivalent of the TMMC operation of P on D 

becomes equal to the matrix multiplication Pv. The matrix D operates on U by changing 
theweights{w,, w2,. . . , w,}of U to{D,,,,,w,, Do2,y2w2,. . . , D,,,,,w,},whileleaving 
the positions unchanged. Clearly the vector equivalent of the TMMC operation of D 
on U is equal to Do. If the weights of the population representing U are non-negative, 
the weights of T"u are also non-negative. 

On repeated application of P and D to the population, some walkers will accrue 
very large weights and others will accrue very small weights. It is computationally 
advantageous to divide each of the walkers with larger weights into a number of walkers 
with smaller weights, and to conglomerate or annihilate walkers with very small weights. 
There are many algorithms for redistributing the positions and weights of the walkers 
while, on average, keeping the vector equivalent unchanged [28,29]. We have found 
the following algorithm to reduce the variance of TMMC calculations and to be 
computationally efficient. Before redistribution, the population weight 

W = E  wI/Mlargel (50) 
I 

is factored from each walker weight w, i.e 

The population weight is to be considered as a scalar prefactor to the vector equivalent 
of the population. If the new scaled weight of a walker satisfies the bounds f S w, < 2, 
the weight and position are left unchanged by redistribution. If 2 6  w,, the walker at 
a, is replaced by [w,] walkers at a,, each with a weight of w,/[w,l, where [XI is the 
greatest integer less than or equal to x. If w, <;, the walker is replaced with a walker 
at the same position with a weight of unity with a probability w,, and destroyed with 
a probability of 1 - w,. This algorithm insures that ( i )  the walker weights stay between 
f and 2, (ii) the number of walkers remains near M,,,,,,, and (iii) on average the vector 
equivalent of the population is unchanged. 

The scalar prefactor of the vector equivalent of the population after T~ successive 
applications of the transfer-matrix and redistributions of the population, is the product 
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of the population weights W, W,  . . . WTr. When using TMMC, the natural norm of an 
n-dimensional vector is the I-norm: IIuII, =X:=, I u , ~ .  After the T,th scalar prefactor is 
divided from the population weights, but before the redistribution operation, 

L J Shaw and C L Henley 

Estimation of the leading eigenvalue Aa  of T utilizes the relation 

U"= lim T'w,. (53) 
(."it)-- 

where the expansion of U,. in terms of the eigenvectors of T is required to contain a 
non-zero component of v o ,  A o ,  A , ,  A,, . . . are the eigenvalues in order of descending 
magnitude, [-'= ln(Aa/Al) is the correlation length, and U,= (I /A,)Tv is the leading 
eigenvector. The random Penrose tiling, as a critical system, has a correlation length 
on the order of the width of the system ( = N , )  1301. 

The leading eigenvalue A. can he extracted either using the relationship 

In terms of the population weights, equations (54) and ( 5 5 )  lead to two alternative A. 
estimators: 

and 

respectively. The summation performs an average over approximately 
max{T,/(, T,,/T,} independent terms. The random fluctuations in the vector equivalent 
of the population with i+j insure that the vector equivalent of the population will 
generally contain a non-zero component of U,, in an expansion in terms of the eigenvec- 
gors of T. There are systematic and random errors associated with finite M and T,,, 

but for  with M'mor T , , ' W , A ~ ' ( M , T , , T ~ ) ' A ~ .  

A.Z. Implementation 

Although the use of the estimator A;' has been discouraged 1311 because of the 
systematic error associated with finite T,,, from our experience this estimator is prefer- 
able to A:". The estimator AY' has much more random error than Ag', and the magnitude 
of the systematic error for the two estimators is about the same. Figure 4 shows A Y '  
and A;'' against T~ for a 12, 1, 1, I }  system with wS2 = pj4 = 0.0. Our calculations utilize 
Ab,', and for the remainder of the text we will simply refer to this estimator as the 
estimator. 
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0 10 20 30 40 50 
T.7 

~ i g u r e  4.  ne estimators A:! and ,iF! from a singie run ior D ii, i ,  i .  i j  system with 
flS2 = 0.0, M = IO0 and i,, = 100. The broken line marks the exact leading eigenvalue. 

Calculation of ho requires the generation of T" + T ,  - 1 weights, and for large 'rr 
requires a computational effort that scales as NwMr,. As figure 5 shows, the random 
and systematic errors are reduced as M/T, increases. For a given M and T", the mean 
and standard deviation of A c ( ~ r )  is calculated from an  ana!ysis of !en Independent 
runs. The entropy estimate F,,,( M ,  T,,) is obtained from 

Flay(M,~m)=-  1 F , a y ( M , ~ c , r r ) = -  1 InA0(M,'r,,,Tr). (58)  

The estimated error for a F,,, computation is taken as the largest of several errors @ ' I ,  

%'(2) and 8(3', associated with the estimate. 
The systematic error %'"' is estimated as the magnitude of the difference between 

the estimate F,,,(M, ru) and the estimate F,,,(M/Z"", T , , / Z " ~ )  requiring half the run 
time, i.e. 

1 Z N w  1 2Nw 

N w  T ~ = N ~ + I  Nw i ,=~w+i  

0.4960 

0.4958 

0,4956 E . - . A  
X i T , = i O G  

z' 

M / T , = ~  B 
\. 
m- 0.4954 

0.4952 

B 

0.4950 
0 ! O  20 30 

7" 

Figure 5. Estimates of F,,,,/Nw from a single run for a (4.4. 2. 2)  system with pS2 = -e3< = 
0.4805 for M/T,,=I,  10 and 100 where Mr,,= IO*. The broken lines bound the more 
accurate estimate F,, , , /Nw =0.49 565 ( 5 ) .  The random and systematic error decrease with 
increasing M / T ' , .  
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The random errors 8'" and 8'3' are 

and 

8'"= max SFl,,(M, T", 7,) (61) 
N w c 7 , h Z N w  

where SF,,, is the standard deviation of Flay. For constant MT,,, 8'" and 8"' are 
relatively insensitive to N,; but 8"' grows rapidly (probably exponentially) with N,. 
To obtain entropy estimates with an accuracy of about 0.1% or less we are restricted 
to system sizes Nw s 24. The errors 8"' and 8'3) are typically of the same order of 
magnitude for those system sizes under consideration here. 

To illustrate the typical parameters for a data point calculation we present two 
examples. The calculation of FLayl N ,  to an accuracy of 0.01% for the {4,4,2,2} system 
with pS2 = - w , ~  = 0.4805 was achieved by a run with M = 20 496 and T* = 142, requiring 
4.1 CPU hours on a Convex C210. The magnitudes of the errors were 8'" = 3.7 x 
8"' = 2 x For the {6,6,3,3} system with psz = -p3,= 0.4805, 
an accuracy of 0.06% was achieved by a run with M = 20 489 and = 142 requiring 
seven CPU hours on the Convex. The magnitudes of the errors were 8"' = 3.1 x 
8'" = 2 x 

and go' = 4.9 x 

and 8'" = 6 . 2 , ~  lo-'. 

Appendix B. TMMC for the random Penrose tiling and importance sampling 

B.1. TMMC implementation of the tiling rules 

The tiling rules and the TMMC method have been described in section 2.4 and appendix 
A, respectively. This section outlines the algorithm for a TMMC implementation of the 
tiling rules to compute the entropy of the tiling. 

The entropy is computed by monitoring the population weight while repeatedly 
applying the transfer-matrix T =  TssTsLTLr to the walkers. The diagonal operators of 
the TMMC decompositions of T,,, TsL and TLL, modify the weights of the walkers. 
The stochastic operators change the positions of the walkers, the position of a walker 
corresponding to a configuration of steps across a layer of the tiling. 

The population weight is monitored after each application of the SS rule in the 
course of redistributing the walkers as described in appendix A. We have found that 
the point within the SS-SL-LL cycle at which the redistribution is implemented has 
little effect on the statistics of the estimate. 

The Tss, TsL and TLL algorithms described in sections B.l.1-B.1.3 (i) perform the 
D operation by determining the sum of the weights of all possible step permutations 
consistent with the tiling rules and, increasing the walker weight by this factor, (ii) 
perform the P operation by stochastically choosing a new step configuration with a 
probability proportional to the weight of that configuration. 

B.1.I. The Tss operation. The string of steps is searched for all adjacent S'S- pairs 
(with the St on the left). Since the tiling has periodic boundary conditions, the sequence 
of steps across a layer is to be considered as periodic also. Each S'S- pair is a 'Tss 
operation interval.' For each StS- pair the walker weight is increased by a factor of 
(1 + z3J. where z3g = e-''". Each S'S- pair is switched to a S-S' pair with probability 
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z3&/(1 +zj4), and left unchanged with a probability 1/(1+ z3J. The TMMC operations 
for each Tss operation interval are independent i.e. Pss and Dss may be decomposed 
into a direct product of matrices acting on individual S'S- pairs. 

8.1.2. The T,, operation. The string of steps is divided into 'TSL operation intervals'. 
The left-hand end of each operation interval starts with an St or immediately to the 
right of an S-; the right-hand end of each interval ends with an S- or immediately to 
the left of an St. The interior of the interval consists entirely of L steps. €or example, 
the layer of steps [L'L-S'L'L'S'L-S-L'L-S-} consists of the TSL operation intervals 
[S+LtLtl, [S+L-S-], [L+L-S-], and [L+L-]. The TMMC operations for each SL 
interval are independent i.e. PSL and Dsr may be decomposed into a direct product 
of matrices acting on individual SL intervals. The application of the SL rules to the 
four different types of T,, operation intervals are as follows: 

(i) The interval [ S + L , L , .  . . L,_,L.] becomes [L ,L ,  L,_,S+L ,... L,_,L,],where 
Os is n, with probability l / ( n + l ) .  The weight is increased by a factor of ( n +  1). 

(ii) The interval [ L , L  2 . . .  L,_,L,S-] becomes [L,L, L,KL,+,  . . . L,_,L.], 
where 0 s is n, with probability l / (  n + 1). The weight is increa by a factor of ( n  + 1). 

(iii) The interval [ S t L , L 2 . .  . L,,S-] becomes [ L ,  L,s+L,+, . . .  L,s-L,+, ... L.], 
where 0 s  i s j s n, with probability 2/[(n + l ) (n  + 2)J. The weight is increased by a 
factor of ( n + l ) ( n + 2 ) / 2 .  

(iv) The interval [ L , L 2 . .  . L,_,L.] and the weight remain unchanged. 

8.1.3. The TLL operation. Strings of consecutive L steps are the 'TLL operation inter- 
vals'. The TLL operations for each operation interval are independent, i.e. PLL and DLL 
may be decomposed into a direct product of matrices acting on individual TLL operation 
intervals. 

Computation of the stochastic and diagonal matrix entries for the LL rule is more 
difficult than for the SL and SS rules; the L strings can be of any length (as is the 
case for SL strings) and since there is a chemical potential attached to the (5 ,2 )  tiles, 
different permutations of the original string have different weights (as is the case with 
the SS rule). We introduce a diagrammatic method for performing the TLL operations. 
Each initial configuration of L steps corresponds to a different diagram [ 141 on the 
square lattice (see figure 6;  compare figure 5 of [14]). To optimize the computation 
speed, diagrams for all L strings up to length eight are stored in a look-up table. In 
the unlikely event that a longer L string occurs, the diagram is generated and used, 
but not stored. 

A sequence of L steps corresponds to a path on the diagram, the Lt and L- steps 
corresponding to ( 0 , l )  and (1,O) displacements, respectively. (This is simply a rotation 
and distortion of the actual sequence of steps.) Each LL exchange operation conserves 
the number of L' and L- steps in a string, while moving a segment of the path up 
and to the left. Therefore any allowed LL permutation of an initial string produces a 
path which lies above and to the left of the initial path, yet begins and ends at the 
same points as the initial path. The initial sequence of L's is mapped to a path on the 
square lattice starting at the origin and ending at ( x ' , y ' )  (see the full curve in figure 
6 ) .  The 'partial weight' at an intermediate point (x,y) along an allowed permutation 
of steps is defined as e-'"'52= 2"' (the subscript on the L has been dropped for notation 
convenience) where m is the number of whole or half ( 5 . 2 )  tiles between the allowed 
permutation path and the initial path from point (x, y )  to the left-hand end. Each 
lattice point (x, y)  on the diagram is labelled with the sum w ( x ,  y )  of the partial weights 
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Figure 6. T,, diagram far the sequence [L-L+L-L+L+]. The values of w ( x , y )  are shown 
at lattice points. 

of all allowed permutations by the following algorithm: (i) The origin is assigned a 
weight of unity. (ii) Lattice points below and to the right of the initial path have a 
weight of zero. (iii) For O s  y s y '  and OS x s  x', w ( x ,  y )  is determined by 

W ( X , Y ) = f ( X . Y ) ( w ( x - 1 , Y ) + w w ( X , Y  - 1 ) )  (62)  

wheref(x,y)=z"'"~'". Here m ( x , y )  is the integer such that ( x , y ) + m ( x , y ) ( l , - 1 )  is 
a lattice point on the initial path (i.e., the number of steps across unit square diagonals 
to the initial path). 

The weight of the walker is increased by a factor of w ( x ' ,  y ' ) ,  the sum of the weights 
of all allowed permutations. An allowed permutation of the initial sequence is chosen 
with a probability proportional to the weight of the permutation by stochastically 
tracing a path from (x', y ' )  to the origin. A horizontal step from w ( x , y )  to w ( x -  1, y )  
istaken withprobability w(x-1,y)/[w(x-1,y)+w(x,y-1)],andaverticalstepfrom 
w ( x ,  y )  to w ( x .  y -  1) is taken with probability w ( x ,  y -  l ) / [ w ( x -  I , y ) +  w ( x ,  y -  l ) ] .  
The stochastic path is mapped to a string of L's; again each L+ in the string (from 
left to right) corresponds to a displacement of (0, l ) ,  and each L- corresponds to a 
(1,O) displacement. 

The average length of the TLL and TSL operation intervals, and the number of each 
type of operation interval per unit length, reach well-defined limits as the number of 
steps N ,  across a layer becomes large. Since the TMMC operations may he decomposed 
into independent operations on the finite length operation intervals, the computation 
time per walker scales linearly with Nw.  (In contrast, the computation time required 
to perform an exact transfer-matrix multiplication goes exponentially with N w . )  

8.2. Importance sampling 

Although importance sampling [32] was not implemented in  the computation described 
in section 2, we outline the technique and present some conclusions concerning useful 
importance sampling transformations. 



Transfer-matrix MC of random Penrose tiling 4151 

By the weighting algorithms outlined in this appendix, and equations (50) and 
(57), the variance of TMMC estimates vanishes when each of the diagonal matrices 
Dss, DSL and D,,, is proportional to the identity matrix. An effective importance 
sampling implementation performs a transformation on the transfer-matrices which 
makes the diagonal matrices more nearly proportional to the identity matrix, thereby 
reducing the variance of the estimates, while leaving the eigenvalue spectrum 
unchanged. 

For simplicity we consider a transfer-matrix T = TI T2 ( T ,  and T2 are arbitrary), 
where U, and u2 are the leading left eigenvections of T,T2 and T,T, respectively, i.e. 

u , T , T 2 =  A,u, and u,T,T, = Aou2. (63) 

~ U , T , U ; ' = U , T , U ; ' = A , U ~ U ; ' = A , I  (64) 
IU2T,U;'=u2T2U;'=h,u,U;'=A,l  (65) 

where entries of the vector 1 are all unity, and U, = diag(u,). The vector 1 is the leading 
left eigenvector of T f  = U2T,U;' and TT = U, TI U ; ' ,  and therefore the diagonal parts 
of the TMMC decompositions of T: and TT are proportional to the identity matrix. 
Since T, T2 is related to 

(66) 
by a similarity transformation, the eigenvalues of both products are the same. Matrices 
of the form VT,W-' and VT,W-', where V and W are any diagonal matrices, are 
said to be the importance sampled versions of T ,  and T2.  

Unfortunately, if we are using TMMC to determine the leading eigenvalue, the 
leading left eigenvectors are certainly not known. Effective importance sampling relies 
on finding vectors which (i) are a good approximation to the leading left eigenvectors, 
and (ii) are of a form such that the speed of the TMMC operations is not greatly reduced. 

It is crucial that the importance sampling transformed matrices may be decomposed 
into direct products. Otherwise the advantages mentioned at the end of section B.l  
are lost since a stochastic operation consists of a single random choice among all 
possible tiling permutations (a daunting prospect considering that the number of 
permutations grows exponentially with the system width while the weighting of each 
permutation is non-trivial). 

Then u , T , = u , ,  u,T,=u,,and 

TTTT = ( U ,  T ,  u ; ~ ) ( u ~ T ~ u ; ~ )  

Consider the TMMC application of some importance sampled matrix T*, 

(67) 
where V and W are any two diagonal matrices, and P*D* and P*D** are the TMMC 

decompositions of T* and W, respectively. Useful forms of W-'  do not have to have 
the same operation intervals as D** if we choose to apply W-'  and D** sequentially. 
(Sequential application of these operations is equivalent to the application of their 
product since the matrices are diagonal and TMMC algorithm does not involve any 
random choices.) On the other hand, application of VT is not equivalent to sequential 
application of the two TMMC operations since the stochastic matrices of the TMMC 

decompositions of T and W are different. For VT to maintain the same operation 
intervals as T, (i) the functional form of the entry V,, must be a product of n factors, 
where n is the number of T operation intervals in the ith configuration, and (ii) only 
a single factor in the product must change on application of the T operations to a 
single operation interval. It is not clear whether there are useful importance sampling 
transformations for the tiling which saitisfy the above restrictions. 

T* = VTW-'= p*D** W-1= p*D* 
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Appendix C .  Application of 60-degree rhombus tiling 

The 60" rhombus tiling is a non-quasicrystalline analogue of the Penrose tiling with a 
one-dimensional 'phason' space. The 60" rhombus tiles have edge vectors 

d, = (-sin(2?ra/3), c o s ( Z ~ a / 3 ) )  

",." - *A  . I P l t ; , . e L  ....L.-ua of a ~ ! i n g  are by p=, E&m. ;he :ile densZe; for 
type of tile are equal, the entropy per tile is [33] 

=0.323 066. (68) 

A distortion of the tiling plane maps a 60" rhombus tiling onto a special case of 
the Penrose tiling using only three out of the ten types of rhombi. The mapping 

d,  + er d2+ -e4 I/ d , + - e l  

transforms a 60" rhombus tiling to a tiling of the (1,3), (1,4) and (3,4) Penrose tiles. 
When n , ,  = rill= n,4, the average area per tile is -0.7088; dividing the entropy in (68) 
by this figure, the entropy per unit area is 20.4558. Similarly, mapping 

produces a tiling of the (1, 2 ) ,  (1,5) and ( 2 , 5 )  Penrose tiles. When q2= n I 5 =  n25r  the 
average area per tile is =0.8300, and the entropy per unit area is =0.3893. 

A comparison of the above exact values of the entropy density for special cases of 
the phason strain, with estimates produced using the results of section 4.1 and equation 
(16), confirms that there are significant corrections to the quadratic form assumed in 
equation (15). A random tiling of equal densities of (1 ,3) ,  (1,4) and (3 ,4)  tiles has 
an entropy density of -0.46 and non-zero phason strain components E, = 7 and 
Eyy = T - ~ .  But, since K ,  is at least as large as unity and the entropy density maximum 
So has a value of about 0.59, the entropy density according to equation (16) should 
be considerably negative (about -2) with this phason strain. A similar analysis for the 
random tiling with equal densities of (1, 2 ) ,  (1 ,s)  and (2,5) tiles (non-zero phason 
strain components E, = T - ' ,  E,">, = T - ~  and E,, = 2~'?7-~, and entropy density ~ 0 . 3 9 )  
shows that the entropy density according to equation (16) should again be negative 
(5-0.3).  
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