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For the reliable communication network design (RCND) problem links are unreliable and
for each link several options are available with different reliabilities and costs. The goal
is to find a cost-minimal communication network design that satisfies a pre-defined over-
all reliability constraint. This paper presents two new EA approaches, LaBORNet and
BaBORNet, for the RCND problem. LaBORNet uses an encoding that represents the
network topology as well as the used link options and repairs infeasible solutions using
an additional repair heuristic (CURE). BaBORNet encodes only the network topology
and determines the link options by using the repair heuristic CURE as a local search
method. The experimental results show that the new EA approaches using repair heuris-
tics outperform existing EA approaches from the literature using penalties for infeasible
solutions and find better solutions for existing problems from the literature as well as
for new and larger test problems.

Keywords: evolutionary algorithms; network design; repair heuristics, all-terminal relia-
bility.

1. Introduction

The design of communication networks is a complex optimization problem for

telecommunication companies and has strong impact on their economic success.

For the construction of communication networks different types of communication

links are available which typically differ in their costs and their reliability. The re-

liability of a link measures the probability that it is available and can be used for

the transport of data. In practice, all communication links are vulnerable to fail-

ures and the cost of a link is increasing with higher reliability (and lower failure

probability). Network designers are confronted with the problem to construct com-

munication networks such that the cost of the resulting network is minimized and

the overall reliability is above some pre-defined threshold. A common measurement
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for the overall reliability of a communication network is the all-terminal reliability.

It is defined as the probability that all nodes in the network keep connected, given

the probability of success/failure for each node and link in the network.5 The re-

sulting network design problem is to find a communication network that minimizes

the overall network costs under a given reliability constraint. Both, the reliable

communication network design (RCND) problem as well as the calculation of the

all-terminal reliability has been proven as NP-hard.12,24 In the past, heuristic opti-

mization methods and especially evolutionary algorithms (EA) have already been

applied to the RCND problem.7,4,16,8,21

This paper presents two new EA-based approaches for the RCND problem and

compares their performance to existing approaches. Both new approaches (LaBOR-

Net and BaBORNet) use repair strategies that ensure that the all-terminal relia-

bility of the resulting network design is above some pre-defined threshold. The two

new approaches differ in the handling of the all-terminal reliability constraint. In

LaBORNet an EA determines the network topology as well as the types of commu-

nication links that are used. In BaBORNet the EA only determines the topology

and a local search strategy assigns the types of communication links. A comparison

to existing EA approaches that use penalties for infeasible solutions shows for ex-

isting and new test problem instances that both new approaches show significantly

higher performance. A comparison between LaBORNet and BaBORNet shows that

for small RCND problems LaBORNet is faster and finds better solutions. However,

with increasing problem size, combining an EA that determines the topology with a

local search strategy that determines the types of link (BaBORNet) is more efficient

as the search space of the EA is smaller.

The following section defines the RCND problem and reviews measurements

for network reliability and existing approaches for the RCND problem. Section 3

describes a repair heuristic (local search) that ensures the feasibility of solutions

and presents the two new EA approaches (LaBORNet and BaBORNet). Experi-

mental results and a comparison to existing approaches for the RCND problem are

presented in section 4. In section 5 the paper closes with a short conclusion.

2. Design of Cost-minimal Communication Networks under

Reliability Constraints

2.1. The Reliable Communication Network Design Problem

The reliable communication network design (RCND) problem seeks a network de-

sign with minimal costs under a given reliability constraint. The network design

consists of the network topology and the type of links that are used for the edges.

The topology of a network N is modeled as an undirected graph G(V, E) with V is

the set of vertices and E is the set of possible edges. n is the number |V | of nodes.

The position of the nodes is fixed and node setup costs are not considered. For each

edge eij ∈ E between node i and j several link options lk (k = 1, . . . , kmax) with
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different reliabilities r(lk(eij)) and costs c(lk(eij)) are possible. lk(eij) is the link

option k chosen for edge eij . It is assumed that all nodes are perfect reliable, an

edge can be either in the state seij
”operational” (seij

= 1) or ”failed” (seij
= 0),

link failures are independent, and all links are bidirectional. A candidate solution

for the RCND problem is represented by a subgraph GN (V, EN ⊂ E) and the set

of link options lk that are used for the eij ∈ EN . The objective function is:

C(GN ) =
∑

eij∈EN

c(lk(eij)) → min, with: R(GN ) ≥ R0 (reliability constraint), (1)

where C(GN ) is the total cost of a network design summarizing the costs c(lk(eij))

of all links eij ∈ EN . R(GN ) is the overall reliability of the network and R0 is the

minimal required reliability.

2.2. Reliability Measurements for Communication Networks

We give a short overview about connectivity and other reliability measurements

for communication networks that are used in the paper. As mentioned before we

assume that nodes are perfectly reliable and only edges can fail.

2.2.1. Connectivity

The connectivity6 of a network describes if a fully connected network is still fully

connected if one or more edges fail. A connected network component is a subset of

nodes that remains connected after the failure of one or more edges. A network is

edge 1-connected if there is at least one distinct path between each node pair in the

network. A failure of one edge already disconnects an edge 1-connected network.

Fig. 1 shows an example with 6 nodes. The network is edge 1-connected as the

failure of edge e1,4 separates the network in two unconnected components {1,2,3}

and {4,5,6}. The connectivity of the example network can be increased by adding

one more edge (e.g. e2,5). Then, the network is edge 2-connected as there are two

edge-disjoint paths between any node pair.

In general, in an edge n-connected network there are at

4

6

5

1

2

3

Fig. 1. Example network

least n edge-disjoint paths for each node pair and it re-

mains connected if less than n edges fail. Using the con-

nectivity of a network as a measurement for its reliability

allows only to consider the survivability of a network and

no failure or reliability probabilities can be given. There-

fore, probability-based reliability measurements have been developed that consider

the failure probabilities of the links.

2.2.2. All-Terminal Reliability

The limitations of the simple connectivity measurements are overcome by the

source-terminal reliability and k-terminal reliability.6 These reliability measure-

ments describe the probability that two or k nodes of a network are connected. The
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all-terminal reliability RAll
6 is equivalent to the n-terminal reliability and is the

probability that all n nodes of a communication network are connected (n = |V |).

Therefore, RAll is the probability that there is a path between each node pair in

GN .5 The all-terminal reliability RAll is an appropriate measurement for the relia-

bility of a network design based on imperfect edges.6

The exact calculation of RAll is NP-hard.24 In the literature a variety of exact

and approximative methods for calculating RAll have been proposed.19,11,15,5,17

In this work different methods depending on the size of the network problem are

used. To check if the reliability constraint is fulfilled (R(GN ) ≥ R0) the upper

bound from Konak and Smith15 is used. If the upper bound is larger than R0,

R(GN ) is calculated using the exact decomposition approach proposed by Chen5 if

the problem has less than 15 nodes. Due to the large computational effort of this

approach it is substituted by a Monte-Carlo simulation technique from Fishman11

if n ≥ 15.

2.3. Existing Solution Approaches for the RCND problem

In the literature, several approaches using heuristic optimization methods have been

proposed for the RCND and slightly modified problems. Dengiz et al.9 proposed a

genetic algorithm (GA) for a simplified RCND problem with only one possible

link option lk (kmax = 1) using a penalty function for infeasible solutions GN ,

where R(GN ) < R0. This approach was extended by Baran and Laufer3 who par-

allelized the GA to solve larger problem instances. Reichelt et al.21 examined both

approaches and found that for several problem instances only infeasible networks

are found as best solutions. The penalty for infeasible networks designs is too low

and infeasible solutions can have higher fitness than the optimal (feasible) solution.

To overcome the problems of the penalty approach, Reichelt et al. proposed a GA

using a repair function. Dengiz and Alabap8 presented a simulated annealing ap-

proach for the RCND problem which showed better performance in comparison to

the previous GA approaches.

The approaches presented by Dengiz et al. are limited to only one possible link

type. This means the network designer can not select different link types for different

edges of the network but only decide if there is a link between node i and j or not

(0/1 problem). Therefore, a solution for the RCND problem is determined by the

network topology alone and no decisions about the used link type are possible.

However in reality, network designers can usually choose from several link types

with different reliabilities and costs. In general, links with low reliability are cheap

and links with high-reliability are extremely expensive.

Baran et al.10,2 addressed several possible link types and solved the RCND prob-

lem as a multi-objective problem using a multi-objective GA. In this approach there

are several link types available and the objectives, overall cost of the network and re-

liability, are optimized in parallel. As the computational effort of this multi-objective

approach is high, Baran et al. used a Monte-Carlo simulation for the evaluation of
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RAll using only 10,000 replications. Due to the small number of replications the

variance of the estimation R̂All(GN ) of the all-terminal reliability RAll(GN ) is high

and the results for high-reliable communication networks (RAll(GN ) ≈ 0.99) are

inaccurate. The RCND problem with a reliability constraint (RAll(GN ) ≥ R0) and

different link options has also been investigated by Deeter and Smith.7 Similarly to

Dengiz et al. the authors proposed a GA using a penalty function. The penalty has

to be adjusted for each network problem using a penalty rate parameter. Deeter and

Smith recommend that the penalty should be set according to the problem com-

plexity but give no advice on how the problem complexity can be measured or how

the parameter can be chosen for a specific problem. Therefore, using this method

requires either additional knowledge about the problem complexity or additional

experiments for finding appropriate penalty values.

3. Evolutionary Algorithms using Repair Concepts for the Design

of Reliable Communication Networks

When using heuristic optimization methods like evolutionary algorithms for the

RCND problem there are different strategies18 for handling infeasible networks that

violate the reliability constraint (compare equation 1). Infeasible solutions can be

either removed from the population, repaired such that they become feasible, or the

fitness of infeasible solutions can be reduced by additional penalties. To just remove

infeasible solutions from the population is not appropriate as most randomly cre-

ated networks are infeasible and the optimal solution is at the boundary between

feasible and infeasible solutions. Therefore, previous approaches mostly used penal-

ties for infeasible solutions. However, the analysis of existing penalty approaches for

the RCND problem21 as well as penalty approaches for other constraint optimiza-

tion problems13 shows that the proper design of penalties is difficult and EAs are

often misled. Therefore, we propose to use repair approaches for the RCND prob-

lem. Consequently, repair mechanisms are developed that are applied to infeasible

solutions and output a valid network.

3.1. CURE - A Deterministic Cut-Based Repair Heuristic

The purpose of the cut-based repair heuristic (CURE) is to repair infeasible solu-

tions GN of the RCND problem that violate the reliability constraint (RAll(GN ) <

R0). CURE performs iterative repair steps and increases in each step the overall

reliability of the network until RAll(GN ) ≥ R0. To increase the overall reliability

RAll, CURE iteratively increases the reliability of the edges eij by choosing a link

option lk with a higher reliability r(lk(eij)). If the reliability of all edges eij ∈ GN is

maximal and still RAll(GN ) < R0, CURE iteratively adds additional edges to GN

using the procedure proposed by Reichelt et al.21

The concept of CURE is based on minimal cuts in graphs. For a graph

GN (V, EN ) a cut C ⊂ V is defined as a non-empty subset of the nodes V . Each cut
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C determines a set of edges EC ⊂ E, with ∀eij ∈ EC : i ∈ C and j /∈ C. Removing

all edges EC from GN would split the graph in two subgraphs with the vertex sets C

and V \C. Therefore, the failure of all edges eij ∈ EC would disconnect the network.

The weight of a cut C is the sum of weights of the edges eij ∈ EC . A minimal cut

(MinCut) is the cut with minimal weight. In CURE, minimal cuts are used to find

a set of edges, where an increase in reliability (choosing more reliable link types)

can be achieved with minimal cost. Therefore, the weight of an edge eij ∈ GN is

the cost c(lk+1(eij)), where k is the currently used link option and k +1 is the next

more reliable link option (the reliabilities of the links increase monotonously with

larger k). As a result, the edges contained in the minimal cut represent a set of

edges that increase the all-terminal reliability of the network with minimal costs.

CURE process the following steps:

Input: GN (V, EN ), G(V, E), R0

Queue Q = ∅

Q.append(GN )

while (!Q.empty) & (RAll(GN ) < R0)) do begin

Gwork = Q.first()

assign weights (costs) to eij ∈ Gwork: c(lk(eij)) =

{

c(lk+1(eij)) if k < kmax

c(lk(eij)) if k = kmax

C = MinCut(Gwork) (using the weights c(lk(eij))

increase reliability ∀eij ∈ EC : lk(eij) =

{

lk+1(eij) if k < kmax

lk(eij) if k = kmax

calculate RAll(GN )

GN1
= Gwork \ {C}, GN2

= C

if number of nodes in (GN1
) > 1

Q.append(GN1
)

if number of nodes in (GN2
) > 1

Q.append(GN2
)

Q.remove(Gwork)

if (Q.empty) & (∃eij ∈ EN : k < kmax)

Q.append(GN )

end

if (RAll(GN ) < R0) begin

add eij ∈ E \ EN to GN

∀eij ∈ GN : lk(eij) = l1(eij)

call CURE

end

In a first step, CURE assigns weights to all edges eij ∈ GN . The weights of the

edges are the cost c(lk+1(eij)) of the next more reliable link option (k is the number

of the current option). If the reliability of an edge is already maximal (k = kmax),

the cost of the currently chosen link option is used. Then, CURE calculates22 the



March 11, 2005 17:1 WSPC/157-IJCIA nwtelcom˙issue˙ijcia-v8

Reliable Communication Network Design with Evolutionary Algorithms 7

minimal cut C using the weights c(lk(eij)). As a result, we get a set of nodes C

and a set of edges EC . In a next step, for all edges eij ∈ EC the next more reliable

link options are chosen. If the use of more reliable link options allows GN to fulfill

the reliability constraint, CURE terminates. Otherwise, CURE considers the two

subgraphs GN1
and GN2

, that are created by the removal of all cut edges EC from

GN . Both subgraphs are added to the queue if they have more than one node. If the

queue is empty, RAll(GN ) < R0, and there are still some eij whose reliability can

be increased, GN is added again to the queue. If for all edges in GN the link options

with the maximal reliability are chosen and still RAll(GN ) < R0 an additional

heuristic21 adds more edges to GN and CURE is called again.

k=1
1

2

3

4

k=1 k=2

k=3

(a) GN with
link options k

241

2

3

4

20

56

96

(b) GN with
weights
c(lk(eij))

1

2

3

4

(c) subgraph
GN1

l1(eij) l2(eij) l3(eij)
r c r c r c

e1,2 0.8 10 0.9 20 0.95 40
e2,4 0.8 14 0.9 28 0.95 56
e3,4 0.8 24 0.9 48 0.95 96
e1,3 0.8 12 0.9 24 0.95 48

(d) reliability r(lk(eij)) and cost

c(lk(eij)) for different link op-
tions lk

Fig. 2. Functionality of the CURE repair heuristic

Fig. 2 illustrates the functionality of CURE. There are three different link options

(kmax = 3). Fig. 2(d) lists the reliabilities r(lk(eij)) and costs c(lk(eij)) of the

different options. The topology and the used link options k for an example network

GN are shown in Fig. 2(a). Using the numbers from Fig. 2(d) CURE assigns weights

to all eij (compare Fig. 2(b)). Based on the weights, the minimum cut finds the

node set C such that the sum of the weights of the links eij ∈ EC is minimal. When

removing the links eij ∈ EC from GN the network becomes disconnected. The

minimal cut is C = {1} with EC = {e1,2, e1,3} and a weight of 44 (indicated by the

dashed lines in Fig. 2(c)). In the next step the reliability of e1,2 and e1,3 is increased

to r(e1,2) = 0.9 and r(e1,3) = 0.9 and RAll(GN ) is calculated. If RAll(GN ) < R0,

CURE continues with the graph GN1
. If the queue is empty and still RAll(GN ) < R0,

GN is appended to the queue. This procedure is repeated until all edges eij ∈ EN

have maximum reliability. Then, additional edges are added to GN , all link options

are set to the most unreliable value (k = 1), and CURE is called again.

3.2. Using Repair Heuristics for Evolutionary Algorithms

The purpose of a repair heuristic is to modify an infeasible solution for the RCND

such that it becomes valid and fulfills the reliability constraint. There are two dif-

ferent possibilities for the repair process: either the repaired and valid solution

completely replaces the infeasible solution18 or the infeasible solution remains in
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the population and only the fitness of the repaired and valid solution is assigned to

the infeasible solution,20 which remains in the population. These two possibilities

on how to perform the repair process follow the notion of Lamarckian evolution

versus the Baldwin effect. In Lamarckian evolution23 each individual bequeathes

the learned improvements (repairs) to its offspring. That means that a repair strat-

egy based on Lamarckian evolution repairs an infeasible solution and replaces it by

the repaired solution. In contrast, the Baldwin effect1 is based on the assumption

that only the individual’s fitness is changed by the learned improvements (repair)

but the changes itself are not inherited to the offspring. Therefore, the underlying

genotype remains untouched (the infeasible solution remains in the population) and

only the fitness value of the valid solution is assigned to the infeasible individual.

In the following two sections, we present two EA approaches (LaBORNet and

BaBORNet) for the RCND problem which use a repair mechanism (compare section

3.1) and are inspired by the Lamarckian evolution and the Baldwin effect respec-

tively:

t:=0

create initial population P(t)

evaluate P(t), repair individuals with RAll < R0

repeat until stop criteria

t := t+1

P*(t) := select individuals from P(t)

P’(t) := recombine P*(t)

P”(t) := mutate P’(t)

evaluate P”(t), repair individuals with RAll < R0

P(t+1) := choose best individuals from P(t) and P”(t)

During the evaluation step each solution is checked if it fulfills the reliability con-

straint RAll(GN ) ≥ R0. If a solution violates the constraint it is repaired (compare

section 3.1) such that the reliability constrained is fulfilled.

3.3. LaBORNet - A Lamarckian Based Optimizer for Reliable

Network Design Problems

LaBORNet is inspired by the Lamarckian evolution and describes an EA where all

infeasible solutions are replaced by repaired, valid, solutions. In LaBORNet each

solution is encoded as a vector g with length n(n − 1)/2, where n = |V | is the

number of nodes. Each element of g corresponds to a possible edge eij and indicates

the number k of the link option lk(eij) (1 ≤ k ≤ kmax) that is chosen for the edge

eij . gi = 0 indicates that there exists no link. Fig. 3 illustrates the encoding of a

network. Dashed lines indicate edges that do not exist in the network (gi = 0).

Randomly created solutions as well as solutions created by standard crossover

(e.g. uniform or one-point crossover) or mutation operators (e.g. exchange or mod-

ification of alleles) can result in infeasible solutions. Such solutions are repaired by
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k=1

k=0

k=0

k=1

k=2

k=3

edge(from, to):

((1,2),(1,3),(1,4),(2,3),(2,4)),(3,4))

encoding: ( 1  1  0  0  2  3 )

Fig. 3. LaBORNet encoding of a network

the approach presented in section 3.1 and replace the infeasible solution. LaBOR-

Net is a combination of EA and local search where each EA individual encodes the

topology of the network as well as the link options that are used for the links. The

resulting search space is large, (kmax + 1)n(n−1)/2.

3.4. BaBORNet - A Baldwin Based Optimizer for Reliable

Network Design Problems

BaBORNet is inspired by the Baldwin effect and combines an EA with a local search

(repair heuristic) that creates valid solutions. Individuals only encode the topology

of the network and contain no information about the link types that are used for the

edges. Therefore, the EA can only determine the topology of the network and the

used link types are chosen by the repair strategy described in the next section. Fig.

4 shows the encoding of the same network as figure 3. The topology of a solution is

encoded as a binary string g of length n(n− 1)/2, where each allele corresponds to

an edge eij ∈ E.

For the fitness evalu-
edge(from, to):1

3 4

2

k=1

k=0

k=0

k=1

k=2

k=3

((1,2),(1,3),(1,4),(2,3),(2,4)),(3,4))

encoding: ( 1  1  0  0  1  1 )

Fig. 4. BaBORNet encoding of a network

ation of an individual

each link type is set

to the cheapest possible

link option. If the re-

sulting network violates

the reliability constraint

(RAll < R0) the repair procedure from section 3.1 is applied. The repair heuristics

changes the link options (chooses more reliable but more expensive link types) and

adds additional edges to the network to obtain a valid solution. The repair heuristic

outputs a network that satisfies the reliability constraint. Finally, the fitness of the

repaired and valid solution is assigned to the individual. If the repair heuristics has

added additional links to the network the bitstring representing the topology of the

network also is changed and the additional links are added.

In comparison to the LaBORNet approach presented in the previous section the

search space of the EA in BaBORNet is smaller (2n(n−1)/2). For example, the search

space of a small problem with 10 nodes and three link types is 245 ≈ 3.5 ∗ 1013 for

BaBORNet but 445 ≈ 1.2 ∗ 1027 for LaBORNet. Due to the smaller size of the
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search space the EA is expected to find better network topologies. The BaBORNet

approach can be seen as a combination of an EA which is responsible for finding

good topologies and a local search (repair heuristic) which is responsible for finding

proper link types. Despite the smaller EA search space, the computational effort

of BaBORNet is higher as almost all solutions are initially infeasible and have to

be repaired. As the repair process is time-consuming and has to be invoked for all

fitness evaluations, the overall running time of BaBORNet is expected to exceed

the overall running time of LaBORNet.

4. Experiments and Results

4.1. Test Problems

The performance of the EAs proposed in section 3 is evaluated for six test instances

representing artificial and real world design problems:

Deeter10 (10 nodes): This test problem was created by Deeter and Smith.7 The

nodes are randomly placed on a 100x100 grid and there are three different link

options with reliabilities r(l1) = 0.7, r(l2) = 0.8, and r(l3) = 0.9 and corresponding

costs c(l1) = 8, c(l2) = 10, and c(l3) = 14 for each edge. The cost of a link with

reliability r(lk) is calculated as the Euclidean distance between two nodes multiplied

by c(lk). The best solution for R0 = 0.95 published by Deeter and Smith7 is 5,661.

Turkey19 (19 nodes): This problem represents a simplified version of a real-world

design problem of the Turkish government.7 The goal is to find a network with

R0 = 0.99 that interconnects 19 academic centers in 9 cities in Turkey. The cost of

the best solution for this problem found by Deeter and Smith7 was 7,694,708. This

result was improved by Baran et al.2 to 1,755,474 using a multi-objective GA.

ger15, ger20, ger25, ger30 (15, 20, 25, 30 nodes): We introduce four new test

instances representing the 15, 20, 25 and 30 largest cities in Germany. There are

three link options (kmax = 3) with different reliabilities (r(l1) = 0.7, r(l2) = 0.8,

r(l3) = 0.9) and corresponding costs (c(l1) = 8, c(l2) = 10, c(l3) = 14). As for

Deeter10, the cost of a link is the Euclidean distance between the nodes multiplied

with c(lk). We present results for R0 = 0.95.

4.2. Experimental Design

We performed experiments for the test problems described in the previous section

and compared the performance of LaBORNet and BaBORNet with the penalty-

based EA from Deeter and Smith.7 For the experiments a steady state EA (with

50% overlapping populations), uniform crossover and allele-flipping mutation was

used. The EA was stopped after 200 generations or if there was no fitness improve-

ment over the last 20 generations. The crossover probability pcross was 0.9 and the

mutation probability pmut was set to 0.01. The individuals in the initial population

were randomly created using a propability of P = 0.4 for creating a link between

two nodes. For LaBORNet and for the penalty-based EA all initial link option were
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chosen uniformly with probability P = 1/kmax. For each problem, 10 independent

runs have been performed. For Deeter10, RAll was calculated using an exact decom-

position method5; as the calculation of RAll is NP-complete, for all other problems

the exact method was replaced by a Monte-Carlo simulation.11,17 The Monte-Carlo

simulation starts with 30,000 samples which are increased by 1,000 each fifth gen-

eration to get more accurate predictions in later stages of the search.

Table 1 shows the experimental results for the different test problems. The ta-

bles show the EA type, the used population size pop, the cost C(Gbest) of the best

solution found at the end of a run (mean and standard deviation over 10 runs and

best found solution), the average running time tconv in seconds, and the number of

fitness evaluations (average and standard deviation). For LaBORNet and BaBOR-

Net we present results for pop = 100 and pop = 200. As a benchmark, we present

results for the penalty EA for pop = 200. The cost of the best ever found solution

is marked bold.

4.3. Results

A direct comparison to the best found results from the literature shows that by

using BaBORNetand LaBORNet the cost of the best found solution can be reduced

from 5,6617 to 4,386 for the Deeter10 problem and from 1,755,4742 to 1,624,960 for

the Turkey19 problem. This is a significant improvement. Interestingly, the results

obtained for our implementation of the penalty approach from Deeter and Smith7

are better than the results reported in the original work. This can be explained

by two modifications. Firstly, we create in the initial population a link between

two nodes with probability 0.4 instead of 0.75. This modified initialization strategy

makes use of the fact that high-quality solutions use only a low number of links.

Secondly, the use of a steady state EA with overlapping populations instead of a

standard generational EA results in higher selection pressure what leads to higher

EA performance than reported by Deeter and Smith.

The results show that the use of repair approaches like BaBORNet or LaBORNet

for the RCND problem allows to find better solutions than the use of the penalty

approach from Deeter and Smith7 or the multi-objective approach from Baran et

al.2 Furthermore, in all problem instances both repair approaches significantly out-

perform the penalty approach. The increase in solution quality for pop = 200 ranges

from about 10% for small problems with 10 nodes (Deeter10) to 40% for problems

with 30 nodes (ger30).

A direct comparison between LaBORNet and BaBORNet reveals that BaBOR-

Net, that means combining an EA for finding good topologies with a local search

strategy for determining appropriate link types, outperforms LaBORNet with in-

creasing problem size n. Only for the small Deeter10 problem instance, LaBORNet

outperforms BaBORNet. This can be explained by the increase of the search space

with larger n. When using LaBORNet, the resulting search space is much larger

as when using BaBORNet and the EA has to find both, a high-quality network
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Table 1. Experimental results

problem EA type pop
cost C(Gbest) at end of run tconv evaluations
mean (std.dev.) best (in sec) mean (std.dev.)

LaBORNet 4,501 (70) 4,433 710 2,640 (512)
BaBORNet

100
4,651 (40) 4,597 1,091 1,155 (394)

Deeter10 LaBORNet 4,457 (17) 4,386 1,897 4,450 (1,185)
BaBORNet

200
4,620 (35) 4,597 1,508 2,290 (525)

penalty EA 200 5,239 (210) 4,948 773 6,280 (1,248)
LaBORNet 2,348,899 (398,180) 1,886,350 6,300 8,250 (1,305)
BaBORNet

100
1,670,062 (34,700) 1,620,210 23,210 8,315 (1,573)

Turkey19 LaBORNet 2,160,075 (170,580) 1,802,870 25,200 15,460 (3,095)
BaBORNet

200
1,650,683 (18,250) 1,624,960 50,090 13,980 (3,473)

penalty EA 200 2,898,091 (263,880) 2,499,080 8,100 18,980 (1,603)
LaBORNet 49,284 (2,130) 46,326 3,390 5,480 (2,161)
BaBORNet

100
45,832 (460) 45,004 23,408 7,245 (2,036)

ger15 LaBORNet 47,419 (1,820) 44,648 10,800 11,130 (3,639)
BaBORNet

200
45,101 (700) 43,996 45,400 12,510 (4,627)

penalty EA 200 55,402 (1,900) 52,644 6,300 13,240 (2,045)
LaBORNet 58,732 (4,650) 51,064 10,950 8,985 (1,487)
BaBORNet

100
52,553 (818) 51,064 23,580 7,945 (1,722)

ger20 LaBORNet 57,980 (3,060) 53,998 26,100 13,370 (2,857)
BaBORNet

200
51,277 (660) 50,214 79,620 17,110 (2,862)

penalty EA 200 74,910 (10,000) 64,822 8,700 18,270 (2,747)
LaBORNet 91,064 (5,350) 84,620 14,520 10,000 (147)
BaBORNet

100
59,077 (1,800) 56,046 24,780 8,580 (1,271)

ger25 LaBORNet 76,750 (4,770) 70,396 45,370 19,530 (1,017)
BaBORNet

200
56,718 (700) 55,300 90,345 17,480 (2,616)

penalty EA 200 155,315 (50,700) 122,980 24,240 19,930 (395)
LaBORNet 171,649 (14,500) 158,664 21,750 9,030 (1,412)
BaBORNet

100
91,177 (3,600) 84,548 24,960 9,585 (492)

ger30 LaBORNet 147,674 (7,000) 138,646 44,040 18,830 (2,453)
BaBORNet

200
83,968 (2,100) 79,662 102,300 19,540 (563)

penalty EA 200 190,283 (25,153) 159756 84,600 33,329 (3,714)

topology and appropriate link options. When using BaBORNet, the EA only has

to find a good topology and proper link options are determined by the local search

strategy CURE.

Comparing the performance of LaBORNet and BaBORNet for different popula-

tion sizes shows the expected behavior. For small problems, doubling the population

size from pop = 100 to pop = 200 only slightly increases the solution quality as both

population sizes allow to efficiently solve the problem. Contrastly, large problems

like ger30 are more difficult and increasing the population size allows to increase

the success probability of EAs (compare Harik et al.14) resulting in better results

when using a higher population size.

Figure 5 compares the convergence behavior of the different EAs exemplary for

the Deeter10 and ger30 problem. It shows the average best fitness over the number of

generations for LaBORNet, BaBORNet, and the penalty EA. The plots are averaged

over 10 runs and a population size pop = 200 is used. The figures reveal that due

to the repair heuristic (local search) LaBORNet as well as BaBORNet find better

solutions than the penalty EA in the initial population. Consequently, both repair
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Fig. 5. C(Gbest) over the number of generations for Deeter10 and ger30. We compare LaBORNet,
BaBORNet, and a penalty EA (pop = 200).

approaches outperform the penalty approach. Furthermore, as already discussed,

for small problems like Deeter10, LaBORNet outperforms BaBORNet, whereas for

the larger ger30 problem BaBORNet finds better solutions than LaBORNet.

The remaining aspects are the running time tconv and the number of fitness

evaluations. The most time-consuming elements of the EA runs are the calculations

of RAll. The number of calculations of RAll depends on the repair strategy CURE

and on the solution that has to be repaired. The running time per fitness evaluation

is expected to be higher for BaBORNet in comparison to LaBORNet as BaBOR-

Net stores no information about link options. When using BaBORNet the repair

heuristic has to determine all link types by iteratively increasing the reliability of

links and it is necessary to calculate RAll in each iteration. When using LaBORNet,

the link types are encoded in an individual and there are less repair steps (and less

calculations of RAll) necessary to get a feasible solution.

Comparing the number of evaluations in table 1 shows about similar values for

all three EA approaches. With increasing problem size n the number of evaluations

increases until about 10,000 for pop = 100 and 20,000 for pop = 200 (the runs

are stopped after 200 generations). Comparing tconv to the number of evaluations

reveals that the penalty EA is fastest whereas the repair approaches need much

longer. The reason is that RAll is calculated only once for each solution if the penalty

EA is used. When using repair approaches, an infeasible solutions must be repaired

what makes it necessary to calculate RAll several times to repair one infeasible

solution. The highest number of calculations of RAll are necessary for BaBORNet

(resulting in a high running time tconv) as the repair process of a solution always

starts with the most unreliable link options and needs a large number of steps.

Although the computational effort of the repair approaches is higher when using

the same population size, they outperform the penalty approach when using the

same computational time. The numbers show that a penalty EA with pop = 200

needs about the same tconv as repair approaches with pop = 100. Comparing the
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quality of the solutions that can be found using about the same running time tconv

reveals that the repair approaches, LaBORNet and BaBORNet, find much better

solutions in comparison to the penalty EA when using about the same tconv.

5. Summary and Conclusions

This paper presented two new approaches for the reliable communication network

design (RCND) problem. The RCND problem assumes that links are unreliable

and that for each link several options are available with different reliabilities and

costs. The goal is to find a cost-minimal network design that satisfies a given overall

reliability constraint. The paper presented in section 2 existing measurements for

the overall reliability of a network and reviewed existing approaches for the RCND

problem. In section 3, two new EA approaches, LaBORNet and BaBORNet, are

presented. LaBORNet uses an encoding that encodes the network topology as well

as the used link options and repairs infeasible solutions using the repair heuristic

CURE. BaBORNet encodes only the network topology and determines the link op-

tions by using the repair heuristic CURE as a local search method. An investigation

into the performance of the two repair approaches together with a comparison to a

penalty EA approach from the literature is presented in section 4.

This presented results show that RCND problems can be solved more efficiently

using the proposed EA approaches, LaBORNet and BaBORNet, than using penalty

approaches. By using the new EA approaches, significantly better solutions for ex-

isting test problems from the literature can be found. The two new EA approaches

using repair mechanisms outperform existing penalty approaches reliably and gener-

ate solutions of higher quality for all considered test problems. A direct comparison

between the two new approaches reveals that BaBORNet, that means combining

an EA who determines the network topology with a local search method that de-

termines the link options, results in better solutions but needs more computational

effort than LaBORNet, where the EA has to determine both the topology and the

link options.

This work focus on reliability and cost aspects for network design problems.

Real world design problems are often highly constraint problems. In a more complex

planing scenario the capacity of nodes and links is limited by the technical properties

and a set of commodities for the network is given. Future work might incorporate

capacity issues in the design process. By adding capacity constraints for network

nodes and links in the model the problem is extended to a other interesting research

field considering routing and re-routing traffic in the network topology. Furthermore,

we plan to examine the problem by a multiobjective approach that considers costs

and reliability simultaneously.
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