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Selective Precision Synthesis of the 
Four-Bar Motion Generator With Prescribed 
Input Timing 
The recently developed Selective Precision Synthesis technique has been extended to the 
four-bar motion generating mechanism with prescribed input timing. A designer using 
this method can determine several mechanisms whose coupler triangle positions and 
orientations will be coordinated with the input crank rotations. The unique feature in 
the Selective Precision Synthesis formulation is that the path, orientations and rotations 
are specified along with allowable limits of accuracy creating an error envelope for each 
of these parameters. This modification removes the limiting conditions imposed by the 
precision point approach so that standard nonlinear programming techniques can be 
used to determine several mechanism solutions. It was found that the method yields 
fundamentally stable solutions rarely encountered in closed-form methods of mechanism 
synthesis. The problem of dyadic construction error in the original SPS technique is 
eliminated and the method developed here is well suited to batch or interactive computer-
aided design. The computer program of this method is being made available to interested 
readers. 

Introduction 
One of the most widely used mechanisms in industry is the 

four-bar motion generator with prescribed input timing. This 
planar mechanism can guide a rigid body through a specific path 
with specific orientations while coordinating this motion with 
rotations (or speeds) of the input crank of the mechanism. In 
the precision point approach to the solution of the problem, the 
number of attainable precision conditions is only three due to 
the balance of unknowns and independent loop closure equa­
tions. Although this mechanism solution will provide exact 
agreement with input data at these precision points, the actual 
rigid body motion and timing may deviate considerably from the 
desired motion and timing between these points. 

In practice, however, the structural error at any point need 
never be zero provided it does not exceed some prescribed limit 
of accuracy. In this way several mechanism solutions can often 
be found which generate a larger number of these accuracy (al­
though not exact) conditions. The accuracy conditions are de­
fined by discrete tracer point positions, coupler link rotations 
and input crank rotations and each of these quantities is as-
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sociated with an allowable deviation from the nominally specified 
values. 

Mathematical Formulation 
The four-bar motion generating mechanism with prescribed 

input timing is shown in Fig. 1 in its initial and jth position. 
The input crank, Zi, will rotate through prescribed values of 
6j and within limits of accuracy of plus or minus %". The 
coupler triangle will rotate through prescribed values of (j>j and 
within limits of accuracy of plus or minus hj'. The tracer point 
of the coupler triangle will intercept the accuracy neighborhoods 
defined by position vectors Ry and maximum allowable devia­
tions hj. The quantities specified by the designer are dj, hj' , 
(/>,-, h/, Rj and hj. The subscript j is a counter for each position 
and varies from one to m planar positions. Although there is no 
mathematical limit of the value of m, designer judgement is 
necessary in deciding its value as well as reasonable values of the 
input parameters. Since dj and </>,• represent rotations from the 
initial position, 6i and <j>\ are each equal to zero. For simplicity 
the values of hi", hi and hi are also equal to zero with no loss 
of accuracy to the mechanism solution. 

By introducing two unknowns at each specified mechanism 
position, the rotations of the coupler triangle and input crank 
can be represented respectively by: 

<j>j + \jhj' 

dj + Ujhj" 
for j = 2, 3 . . . TO (1) 
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Fig. 1 The four-bar motion generating mechanism with prescribed 
input timing in the initial and y'th position. 

where Xy and yity are 2(TO — 1) unknown scalar quantities. 
Using this representation, the values of the coupler and input 
rotations will not exceed their error envelopes provided tha t : 

|Xy| < i 

and for j = 2, 3 . . 

(2) 

(3) 

The dyadic loop closure equations for the first position are: 

Zo + Zi + Z2 = Ri (4) 

Z6 + Z4 + Z3 = Ri (5) 

In the j t h position, the dyadic loop closure equations are: 

Zo + Zi exp {i(dj + Hjhj")} + Z2 exp [i'(0y + Xyfcy')] = Ry + dy 

(6) 

Z6 + Z4 exp [iyA + Z3 exp [i(<t>,- + Xyfty')] = Ry + dy1 (7) 

and dy and dy' are vectors representing the dyadic deviations be­
tween the tracer point position and the precision point position 
for j = 2, 3, . . . TO. From the Selective Precision Synthesis tech­
nique [1-3] the tracer point of the mechanism will fall within the 
specified accuracy neighborhoods when dy and dy' are equal to 
each other and their magnitudes do not exceed the value of fcy 
for j = 2, 3, . . . m. By combining equations (4-7), the dis­
placement equations can be obtained as follows: 

Zi(exp (idj) exp (ifXjhj") — 1) + Za(exp {i<j>j) exp (•iXyfc.y1) — 1) 

= Ry - Ri + dy (8) 

and 

Z4 (exp (iy,-) — 1) + Z3 (exp (vf>t) exp (iXjhj') — 1) 

= Ry - Ri + dy' (9) 

Since fijhj" and Xyfcy' have very small radian values, the ap­
proximation: 

exp (ix) ~ 1 + i t (10) 

can be used to simplify the displacement equations. Solving for 
dy and dy' using this simplification and by replacing the ex­
ponentials by their trigonometric representations, one obtains: 

dy = ZiAy + Z2By + Rl - Ry 
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( i i ) 

dy' = Z4(eW - 1) + ZsBy + R, - Ry (12) 

where 

Ay = cos dj - 1 + i sin 0y + n,-hj"(i cos 0y - sin 0y) (13) 

and 

By = cos 0y — 1 + i sin 4>j + \jhj\i cos <f>j — sin <j>j) 

for j = 2,3, ... m (14) 

Since dy and dy' must be equal, the value of e'7 ' can be found 
from equating equations (11) and (12): 

e»T> = 1 - | — for ] = 2, 3, . . . m (15) 

For 7y to have a real value insuring closure of the mechanism, 
the following equality relations must hold: 

1 + 
Z,Ay + (Zs - Z4)By 

1 fo r j = 2, 3, . . . TO (16) 

For the mechanism to intercept the accuracy neighborhoods, 
the magnitudes of dy must not exceed the values of hj\ 

|ZiAy + ZsBy + Ri - R/| < hi for j = 2, 3, ... m (17) 

For the Selective Precision Synthesis of the four-bar motion 
generating mechanism with prescribed input timing the inequality 
constraint relations tha t need to be satisfied are systems (2), 
(3) and (17). Equation (16) represents the equality constraint 
relations that must be satisfied . The numerical methods used in 
the solution of the problem become exceedingly more efficient 
by approximating the equality constraints with inequality con­
straints. This can be accomplished by specifying that the dif­
ference between the left and right-hand sides of equation (16) 
should not exceed "A", a very small positive quantity. This ap­
proximation works quite well in that convergence is greatly en­
hanced with no noticeable loss of accuracy. 

For TO discrete planar positions, the number of inequality con­
straint relations is (4m — 4). The number of independent scalar 
unknowns is (2TO + 6). This includes (TO — 1) variables denoted 
by /xy, (TO — 1) variables denoted by Xy, and 8 variables represent­
ing the horizontal and vertical components of link vectors Zi, 
2.2, Z3 and Z4. 

The method of solution of these inequality constraints em­
ployed here is the Fiacco-McCormick Technique and the Hooke 
and Jeeves Search method [1, 2, 8]. These methods are standard 
non-linear programming techniques that are well suited to the 
types of equations in this formulation. 

In order to utilize these techniques, the independent variables 
must be denoted as: 

Xt for i= 1,2, ... (2TO + 6) (18) 

and the inequality constraints must be expressed in the form: 

Gk(Xt) < 0 for k = 1, 2, H . (4m - 4). (19) 

The independent variables are represented by Xf as follows: 

Zi = Xi + Z 2 

Z2 = Xz + iX4 

Z3 = X5 -f" tAg 

Z4 = Xi + iXs. 

(20) 

The next (m — 1) values of X, represent the set of fij and the 
last (m — 1) values of Xi represent the set of Xy. 

To start the search method, an initial X; vector is assumed. 
The designer may choose any eight numbers representing Xi 
through X8 and the initial guesses for the remaining (2TO — 2) 
values of X,- are equal to zero. The search method then attempts 
to find an optimum solution for X; such that all constraints are 
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satisfied. Once this is accomplished, a refinement of the solution 
is attempted. Starting from the current solution and with the 
maximum allowable deviations and the value of "A" being 
halved, a new search is attempted. The answer to this problem, 
if found, will approximate the desired path more closely and still 
guarantee the values of the rotations 0y and (j)j to be within 
limits. This process is repeated until convergence is no longer ob­
tained. 

Once a solution is found the locations of the fixed pivots can 
easily be determined as: 

Zo — Ri — Zi 

Ri — Z3 — Z4 (21) 

The rotation of the output crank can be found from equation 
(15): 

7 ; = arg 1 + 
ZiA,- + (Z2 - Z.)B/ 

for j = 2, 3, . . . m 

(22) 

Several initial X, vectors may be needed to find an acceptable 
mechanism since convergence is not assured. Designer judgement 
is necessary since the four-bar mechanism has obvious geometric 
limitations. Experience has shown that the numerical methods 
are extremely efficient and tha t the initial guesses need not be 
near the optimal value. Convergence is greatly enhanced, how­
ever, by educated guesses using standard kinematic synthesis 
techniques such as: Burmester theory, albegraic, matrix, 
graphical and vector methods. 

Numerical Example 1 
A four-bar motion generating mechanism with prescribed in­

put timing is desired which will guide a rigid body through six 
accuracy neighborhoods defined by position vectors, Ri through 
Re and by maximum allowable deviations, hi through /i6. The 
rigid body rotations (from the initial position) of $2 through <j>6 

plus or minus W through hi respectively. This motion is to be 
coordinated (or timed) to input crank rotations (from the initial 
position) of 02 through 06 plus or minus V through he". All of 
the above parameters are specified by the designer, are illustrated 
in Fig. 2 and are listed in Table 1. In this case, six planar posi­
tions will create a system of eighteen independent variables and 
twenty inequality constraints. 

With these input parameters the computer program initiates 

a search with an initial guess for the eight scalar unknowns 
mentioned in equation (20). Of the ten initial guesses attempted 
five converged to mechanisms. One of these mechanisms, how­
ever, had values for links Zo, Zi and Z2 almost identical to values 
for links Zs, Zi and Z3. In other words, two nondistinct dyads 
were found and a single degree-of-freedom mechanism could not 
be constructed. Of the remaining four answers, the one which 
approximates the desired motion most closely had thejollowing 
initial guess: 

Zinui.1 = { - 1 , 1, 2, - 1 , - 1 , - 1 , 1, 3} (23) 

for the first eight and zero for the remaining ten variables. 
The optimal value obtained was: 

Xoptta.i = {-0.80000 0.52000 2.71989 -1.07994 

-0.83999 -1.51981 1.19989 4.03990 

0.65999 0.47999 0.73999 0.21999 -0.49999 

-0.06000 0.20999 0.98249 -0.06000 0.82249} 

(24) 

The values of the link vectors can be found from equations (20) 
and (21). They are: 

(25) 

Zo = 

Zi = 

Z2 = 

Z3 = 

Z4 = 

Z6 = 

0.21411 

-0.80000 

2.71989 

-0.83999 

1.19989 

1.77410 

+ 0.05994 i 

+ 0.52000 i 

- 1.07994 i 

- 1.51981 i 

+ 4.03990 i 

- 3.02008 i 

Table X Mechanism requirements for example 1 

Position 
Hunber, j 

1 

2 

3 

4 

5 

a - 6 

Input Crank Rotation 
e, t t\\ (degrees) 

0.0 ± 0.0 

60.0 i 0.5 

120.0 ± 0.5 

160.0 ± 0.5 

240.0 ± 0.5 

300.0 i 0.5 

Coupler Triangle Rotation 
•• ± hi (degrees) 

0.0 ±0.0 

16.0 ± 2.0 

24.0 t 1.0 

0.0 t 2.0 

-14.0 * 2.0 

-10.0 t 3.0 

Position Vector 

2.134 - 0.500 1 

2.300 - 0.600 1 

3.100 - 0.700 1 

3.800 - 1.500 1 

3.500 - 1.200 1 

2.750 - 0.560 1 

tftxlBun AlloMbll 
Deflation, It.. 

0.000 

0.050 

0.100 

0.100 

0.100 

0.100 

0.3 

- J ? — - ^ 

0.3 

• 2 

0 o 0 

O 
O 

Fig. 2 Graphical representation of mechanism requirements for ex­
ample 1 
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Fig. 3 One of four optimum mechanisms determined for example 1 
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The values of the coupler link and input crank rotations can be 
found from equation (1). For j = 2, 3, 4, 5 and 6 these values 
are: 

fc = {17.31998 24.47998 1.47999 -13.56001 -11.49996} 

0, = {59.96999 120.10500 180.49124 239.96999 300.41113} . 

(26) 

The values of the linear deviations from each precision point 
can be found from equation (11) or (12). For j = 2, 3, 4, 5 and 6 
these values are: 

dy = {0.01868 0.05011 0.05011 0.05010 0.04465 0.05008}. 

(27) 

These values compare favorably with the values of the maximum 
allowable devations listed in Table 1. In fact, the actual devia­
tions are approximately half of the allowable deviations. 

The values of the output crank rotations can be found from 
equation (22). F o r j = 2, 3, 4, 5 and 6 these values are: 

7i = {4.80179 -3.36047 -25.48753 -26.04752 -12 .22070}. 

(28) 

The mechanism is illustrated in Fig. 3. 

Numerical Example II 
A straight line path is to be approximated by nine uniformly-

spaced accuracy neighborhoods having unequal maximum al­
lowable deviations. The coupler link rotations are to be zero 
degrees within allowable limits. This motion is to be coordinated 
with equally spaced input crank rotations thereby approximating 
a constant speed rigid body translation corresponding to pre-

R»1tl0ft 
Kysfcei*. J 

1 

2 

3 

4 

5 

6 

7 

a 

0-9 

Table 2 Mechanism requirements for example 2 

Input Crank Rotation 
a . i h; (degrees) 

0.0 ± 0.0 

15.0 i 3.0 

30.0 1 3.3 

45.0 1 3.5 

50.0 1 3.0 

75.0 t 4 .0 

90.0 t 3.8 

105.0 1 3.5 

120.0 1 3.3 

Coupler Triangle Rotation 
• . ± h! (degrees) 

0.0 i 0.0 

0.0 ± 4.0 

0.0 t 4.5 

0.0 > 4.5 

0.0 ± 5.0 

0.0 t 5.0 

0.0 i 4.5 

0.0 t 4.5 

0.0 t 4.0 

Position Vector 

0.0 t 0 .0 1 

0.150 • 0.250 1 

0.300 + 0.520 1 

0.450 + 0.779 1 

0.600 + 1.039 1 

0.750 » 1.299 1 

0.900 • 1.559 1 

1.050 * 1.819 1 

1.200 t 2.078 1 

HexlRua Allowable 
Deviation, h. 

0.000 

0.050 

0.050 

0.050 

0.060 

0.070 

0.050 

0.050 

0.050 

Z,o — 

z, = 
Z2 = 

z3 = 
Z4 = 

Z6 = 

-3 .14961 

0.26999 

2.87962 

1.92471 

4.27958 

-6.20429 

- 5 . 3 6 0 0 8 t 

-1.32957 i 

6.68965 i 

0.55996 i 

-3.59962 i 

3.03966 i 

scribed input timing conditions. Such a mechanism is used in 
packaging machines, transfer mechanisms and mechanical con­
troller systems. Table 2 lists the values of the input data rep­
resenting the above motion. 

For nine accuracy neighborhoods, there were twenty-four (24) 
independent variables and thirty-two (32) inequality constraint 
relationships that need to be satisfied. Of the thirteen (13) initial 
guesses, eight (8) converged to optimal mechanisms. The best 
mechanism had the following link vectors: 

(29) 

The values of <j>, 6, y and d for j = 2, 3, . . . . 9 are as follows: 

4>i = {1.99 3.19 3.60 3.48 2.70 1.29 - 0 . 7 9 -3 .99} 

(30) 

Bj = {17.22 31.56 44.65 57.13 72.12 86.25 102.72 121.75} (31) 

ys = {2.45 5.13 8.09 11.16 14.96 18.47 22.13 25.53} (32) 

dj = {0.021 0.028 0.028 0.032 0.021 0.032 0.029 0.024} . (33) 

The above values were computed for mechanism number 3 
listed in Table 3. An analysis of this mechanism showed that the 
velocities along the prescribed path were approximately equal in 
magnitude and direction. Comparison of the computed results 
with input data reveals that all rotations are within allowable 
limits and that the linear deviations at the nine precision points 
do not exceed the maximum allowable deviations. The mech­
anism is illustrated in Fig. 4. 

Conclusions 
This extension to the recently developed Selective Precision 

Synthesis techniques gives the mechanism designer the capa­
bilities of determining several four-bar motion generating mech­
anisms with prescribed input conditions. Previously only three 
precision conditions were obtainable using the precision point 
approach. With the extension presented in this paper, "m" 
prescribed accuracy conditions are obtainable. 

The numerical technique used in the formulation was the 
Hooke-and-Jeeves search method because of its speed and ac­

table 3 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 

-1 

-1 

0 

0 

-1 

1 

1 

1 

1 

-1 

0 

2 

-2 

-1 

1 

1 

1 

2 

0 

1 

0 

0 

0 

-1 

2 

In1t1a 

1 

2 

2 

2 

2 

1 

1 

2 

-1 

-1 

2 

3 

-1 

2 

3 

2 

-2 

-2 

3 

2 

2 

2 

-2 

2 

-1 

-1 

1 Guess 

-1 

-3 

-1 

-2 

-2 

-1 

-1 

-2 

-2 

-2 

-2 

2 

2 

-3 

2 

2 

-2 

-2 

2 

2 

2 

2 

-2 

0 

-2 

-1 

-1 

1 

1 

-2 

0 

-1 

1 

-1 

0 

0 

-1 

-3 

1 

2 

3 

2 

2 

2 

3 

1 

1 

2 

-1 

2 

-2 

0 

Optimum Solution: X. through 

0.2400 -1.3241 3.1195 7.1659 -0.2299 

0.2000 -1.3586 4.0393 6.9594 2.0797 

0.2700 -1.3296 2.8796 6.6897 1.9247 

0.5319 -1.0797 0.0343-14.4909 1.0798 

0.5706 -1.0048 1.0272 -16.5244 3.3098 

0.4413 -1.1998 1.8075 12.0249 -3.2223 

0.4425 -1.1995 2.1211 12.0074 -3.3884 

0.3850 -1.2397 2.0449 10 

Did Not Converge (0NC) 

DNC 

DNC 

DNC 

DNC 

0049 -3.6198 

X8 

-0.6449 

-0.8401 

0.5600 

1.3198 

2.8473 

1.1199 

2.0798 

0.6750 

-6.0842 2.3945 

-12.1588 5.6394 

4.2796 -3.5996 

-9.7996 4.6797 

-10.8501 6.4522 

-7.4797 3.3998 

9.0799 -6.3596 

-5.7548 2.3248 
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Fig. 4 One of eight optimum mechanisms determined for example 2 

curacy for the types of functions encountered in most mech­
anism synthesis problems. Recent developments iij the area of 
optimization techniques and their applications to mechanism 
synthesis problems involve slightly more efficient methods. Work 
is currently in progress by this author to incorporate a search 
technique which can directly handle equality constraints. In 
this way, equation (16) need not be modified and the search 
technique would deal with the constraint as well as the inequality 
constraints represented by equations (2), (3), and (17). 

The optimization methods under consideration are the gen­

eralization reduced gradient method [8, 10], the projected method 
[9, 10] and the method of successive linear approximations [6, 7 
9]. Although the Hooke-and-Jeeves search method provided 
accurate results with search times of five to twenty seconds on 
an IBM (Model 75) computer, it is hoped this can be improved 
with one of the other methods. This is the subject of current re­
search by this author. 

Acknowledgments 
The author wishes to acknowledge the support of the National 

Science Foundation through Research Initiation Grant Number 
ENG75-11303: "Research in the Theory of Optimum Mech­
anism Design." The author also wishes to thank Miss Pat 
Karmol for her skillful typing of the manuscript and Mr. Richard 
Schaefer for his assistance in computer programming. 

References 
1 Kramer, S. N., "Selective Precision Synthesis of Planar 

Mechanisms Satisfying Practical Design Requirements," Doc­
toral Dissertation, Rensselaer Polytechnic Institute, Troy, New 
York, Aug. 1973, 210 pages. 

2 Kramer, S. N., and Sandor, G. N., "Selective Precision 
Synthesis—A General Method of Optimization for Planar Mech­
anisms," ASME, Journal of Engineering for Industry, Vol. 97, 
No. 2, May 1975. pp. 689-701. 

3 Kramer, S. N., "Using the Selective Precision Synthesis 
Technique to Optimize Planar Mechanisms," Proceedings of the 
4th Applied Mechanisms Conference, Paper 15, Nov. 1975, 
Chicago. 

4 Hartenberg, R. S., and Denavit, J., Kinematic Synthesis of 
Linkages, McGraw-Hill, New York, 1964. 

5 Fox, R. L., Optimization Methods for Engineering Design, 
Addison-Wesley, Reading, Mass., 1971. 

6 Siddall, J. N., Analytical Decision-Making in Engineering 
Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1972. 

7 Gottfried, B. S., and Weisman, J., Introduction to Opti­
mization Theory, Prentice-Hall, Englewood Cliffs, N. J., 1973. 

8 Gabriele, G. A., and Ragsdell, K. M., "The Generalized 
Reduced Gradient Method: A Reliable Tool for Optimal De­
sign," Proceedings of the Design Engineering Technical Conference, 
Washington, Sept. 1975, ASME Paper No. 75-DET-103. 

9 Himmelblau, D. M., Applied Non-Linear Programming, 
McGraw-Hill, New York, 1972. 

10 Hadley, G., Nonlinear and Dynamic Programming, 
Addison-Wesley, Reading, Mass. 1964. 

618 / Vol. 101, OCTOBER 1979 Transactions of the ASME Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




