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Team cognition can be observed in the flow of communications among team members.  This
is shown in the context of a simulated unmanned aerial vehicle ground control station.
Automatic measures of low-level team communication flow were used to assess high-level
constructs of team cognition.  Measures show support for the expected results of
manipulations in this task.  Co-location and channel degradation effects were successfully
predicted by CHUMS, ProNet, and a cross-correlation function-based Dominance measure.
Results grant concurrent validity to the measures, and highlight substantive effects of the
manipulations.  In particular, in geographically distributed teams, communication patterns are
less stable, and the route planner exerts less communicative influence.  Some co-location
effects drop with task experience.  During a mission containing a five-minute one-way
communication channel cut, all teams communicate more like distributed teams, and team
members do create alternate pathways to retain information flow.

INTRODUCTION
Designers for team systems need a way to

exploit team cognitive processes, in the same way that
designers for individuals exploit individual cognitive
processes.  The most important advantage of cognitive
data, over outcome data, is that cognitive data can be
used to diagnose, and predict the team’s future
actions, even in the absence of an outcome measure.
Fortunately, team communication is an inherent
byproduct of team tasks, and so teams inherently yield
the equivalent of a think-aloud protocol.  However,
the complexity of communication data makes it
difficult to analyze.  To address this need, we have
developed automatic and semi-automatic measures of
team communication, in order to extract team
cognition (Kiekel, Cooke, Foltz, & Shope, 2001;
Kiekel, Cooke, Foltz, Gorman, & Martin, 2002;
Gorman, Foltz, Kiekel, Martin, & Cooke, 2003).

In this paper, we use our communication flow
measures to identify manipulations of co-location and
communication channel outages in a communication
rich, interdependent team uninhabited air vehicle
(UAV) task.  We wanted to know how UAV teams
would react to the isolation of geographic dispersion,
especially when exacerbated by cutting a
communication channel.  These manipulations impact
how the team can interact, but do not inherently
impact the difficulty of the task.  Consequently, we
have found a much weaker impact of these
manipulations on our performance measure than on

our process and cognitive measures.  This is
juxtaposed against a workload manipulation that was
specifically intended to make the task harder, and did
have a large impact on performance.

Communication data represent both team
process and team cognition, and so we suspected that
teams adapt to the process manipulations through
communication patterns.  If our measures possess
adequate concurrent validity, then they should be able
to discriminate between levels of these manipulations.
Moreover, these measures allow us to explore the
manipulation effects themselves, in a richer way than
with a performance measure alone.

Concurrent validity is especially well tested
by the communication outage or “glitch,” because
communication measures with adequate concurrent
validity should certainly be able to detect and describe
a 5-minute cut in a communication channel.  With this
manipulation, we have enough experimental control to
make specific a priori predictions, to be confirmed or
denied.  We would expect teams to exhibit more
communication patterns in the mission that includes
the glitch.  This is because during the glitch, the team
member whose channel is cut would have to create an
alternate path, through the remaining team member.
This should also weaken that team member’s ability to
influence the discourse.  Let us define “dominance”
among team members to mean that the dominant
member’s behavior is more predictive of other
member’s behavior, than vice versa.  Then discourse



dominance should generally be weaker in distributed
teams.

METHODS
Twenty teams of three members flew a

simulated UAV, taking photographs of targets, over
seven missions, each up to 40 minutes.  Each team
consisted of three randomly assigned interdependent
roles: DEMPC (Data Exploitation, Mission Planning,
and Control) plans the route, AVO (Air Vehicle
Operator) flies the plane, and PLO (Payload Operator)
takes pictures.  Team members communicated over
headsets.  The presence or absence of speech by each
team member was automatically recorded at each
second, into a communication log (ComLog).  The
ComLog is a record of who spoke to whom, when,
and for how long.

The experimental manipulations were 1) co-
location, 2) workload and 3) a communication
“glitch.”  Each team was randomly chosen to be co-
located in the same room, or distributed by portable
walls and separate locations.  After the fourth mission,
the scenario was made more difficult to increase
cognitive workload.  Due to space limitations, we do
not examine this effect in the present paper.  During
the sixth mission, a “glitch” was introduced.  The
communication channel from DEMPC to AVO was
disabled for five minutes.  However, AVO was still
able to speak to DEMPC.  We expected to see teams
develop new communication patterns, such that the
communication from DEMPC to AVO would be
indirectly re-routed to go through the PLO.

We employed a 7 (missions, WS) x 2 (co-
location, BS) model.  Intra-mission analysis of the
glitch effect is unavailable, because the precise timing
of the glitch depended on the team's route, and hence
could not be known in advance.  Accordingly, we
analyzed glitch effects with inter-mission repeated
measures contrasts.  We scrutinized changes in team
communication from Mission 5 (pre-glitch) to
Mission 6 (glitch), and from 6 to 7 (post-glitch).  We
examined differences in the Co-location effect
between these missions, using WS interaction
contrasts.

Communication measures are described next.

ProNet
ProNet (Procedural Networks; Cooke, Neville

& Rowe, 1996) is a form of lag sequential analysis,
based on the Pathfinder algorithm.  Pathfinder is used
to identify linkages between nodes, using the set of

pairwise proximities among nodes.  Nodes can be
defined as events in a potential sequence, and
proximity can be defined as a transition probability
among these events.  ProNet is the application of
Pathfinder to such a sequence of nodes.

In this case, we use ProNet to identify
representative sequences of discrete communication
flow events in our ComLog.  We define six nodes, one
for each team member beginning and ending a speech
act (i.e., Abeg, Pbeg, Dbeg, Aend, Pend, Dend).  This
is the most basic unit of communication, outside of
content analysis.

With these six nodes, many possible patterns
can be identified.  We used these nodes to define three
types of sequences.  First, an Xloop means that person
X begins and ends an uninterrupted utterance, then
begins and ends again.  This may indicate repetition.
Second, an XYcycle means that person X speaks a
complete utterance, then person Y does.  Third, XiY
means that person X interrupts person Y.  We chose
these sequence patterns because other chains were
either too specific to be generally applicable (e.g.
specific types of interruption), or were too short to be
very meaningful (e.g. X begins then ends a speech
event).  We measure both the ProNet detection of
these chains, and their frequency of occurrence within
the ComLog.

CHUMS
In the context of this discussion, we developed

CHUMS (Clustering Hypothesized Underlying
Models in Sequence; Kiekel, Cooke, Foltz, Gorman,
& Martin, 2002) for measuring stability of
communication patterns, in terms of relative amount
of speech among team members.  We separate the
ComLog into one-minute intervals, and take the
relative proportion of speech by each team member,
within each minute.  Minutes were chosen as our time
unit, because it was long enough to capture behavior
patterns, but short enough to reveal changes over time.
Then we perform all pairwise χ2 tests, among the
proportion models at each minute.  Proportions of
speech quantities make up a multinomial model.
Pearson χ2 is an approximation test that is frequently
used on multinomial data.  We perform agglomerative
cluster analysis on the minutes, using p-values as a
distance metric, and alpha as a stopping rule.  This
approach allows us to see how many distinct patterns
were present in the team’s communication quantity
behavior, at the one-minute level.



We measure communication pattern stability
using the number of distinct models identified by
CHUMS.  Having more patterns means that teams
used more communication strategies during the
mission, so their communication is less stable over
time.

Dominance
We defined a measure representing the

influence a team member’s communication flow
exhibits over the communication flow of other team
members, in terms of amount of speech.  Building on
work by Budescu (1984), we defined a dominance
measure based on the cross-correlations of speech
quantity in the ComLog, among all pairs of speakers.
Correlations among sequences of speech quantity
were computed for each lag, among each pair of
speakers.  This constitutes the set of cross-correlation
functions.  Then, because we were not concerned with
directionality of influence, we squared each
correlation.  Since we were working with R2, Fisher’s
R to Z’ transformation was not required, before
performing arithmetic computations.  Next, we took
the weighted average of each squared cross-
correlation function, with weighting being the inverse
of the lag.  This gives greater emphasis to influence
revealed at early lags (i.e. speech events that are
closer in time).

This process leaves us with a squared
correlation for each pair of speakers, representing the
capacity of each speaker’s speech quantity behavior to
predict each other speaker’s.  To obtain a relative
dominance value for each speaker pair, we computed
ratios of squared cross-correlations.  So, for speakers
X and Y, we took the correlation of X predicting Y
(R2

xy), divided by Y predicting X (R2
yx), to obtain a

dominance ratio.  These ratios indicate dominance of
each team member over each other.

In the above ratio, the dominance value ranges
from 0 to 1 if  Y is dominant (i.e. if R2

yx is larger than
R2

xy), but from 1 to positive infinity if X is dominant.
To convert this to a symmetrical scale, we took the
natural log of the dominance ratio.  This yields a
pairwise dominance measure ranging from negative
infinity to 0 when Y is dominant, and from 0 to
positive infinity when X is dominant.  However, due
to the variance stabilizing aspect of log
transformations, the distribution of the pairwise
dominance measure is approximately normal, with a
mean of 0.  Under these conditions, it is appropriate to
perform arithmetic operations.  To get a total

dominance score for each team member, we averaged
the log of the ratios.  The three dominance scores are
Adom, Pdom, and Ddom.

Predictions
One would expect teams to detect the glitch,

and form new communication patterns as a work
around.  For the mission that includes the glitch
(Mission 6), teams should show more communication
patterns, and hence more CHUMS models.  Teams
compensating for the glitch should show that the
passage of information normally sent directly from
DEMPC to AVO would be diverted through PLO.
We would expect increases from Mission 5 to 6, for
DPcycles, PDcycles, and PAcycles.  DAcycles should
drop.

The largest source of information flow is the
DEMPC, who plans the route, so DEMPC should tend
to have a high Dominance score.  When DEMPC is
cut out, either by physical absence or glitch, his or her
influence should drop.  Therefore, DEMPC
dominance should be lower for distributed teams, and
should decrease during the glitch.

RESULTS
CHUMS Results

Distributed teams had more CHUMS models
than co-located teams for Missions 2, 4, and 5
(respectively t(89) = 2.08, p = .04; t(89) = 3.00, p =
.003; t(89) = 2.95, p = .004).  The number of models
increased from Mission 5 to the glitch (mission 6)
(t(89) = 2.03, p = .045), particularly for co-located
teams (see Figure 1 for means that have not been
corrected for repeated measures.  Standard errors were
not included because these means are not the adjusted
means used in the hypothesis tests).  Co-location’s
impact drops and reverses from Missions 5 to the
glitch (mission 6) (t(89) = -2.61, p = .011), and the
reversal becomes more extreme from 6 (the glitch
mission) to 7 (t(89) = -2.62, p = .010).

Dominance Results
AVO is reactive in Co-located teams, but

dominant in distributed teams (F(1, 16.78) = 16.41, p
= .001, see Figure 2a).  DEMPC is moderately
dominant for Co-located, but reactive for Distributed,
F(1, 16.51) = 12.84, p = .002.  During the glitch, Co-
located teams become AVO-dominated (t(89) = 2.08,
p = .040), and PLO-reactive (t(89) = -1.88, p = .063,
Figure 2b).  Also, DEMPC is dominant in Mission 6



(t(89) = 2.05, p = .043), but reactive in all other
mission.
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Figure 1.  Uncorrected Co-location*Mission means
for CHUMS Models.  (Mission 6 contains the glitch).
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Figure 2.  Uncorrected Co-location*Mission means
for Adom (a, top) and Pdom (b, bottom).  (glitch at
Mission 6).

ProNet Results
Several ProNet sequence counts were higher

in Co-located teams, but this is somewhat obfuscated
by the fact that Co-located teams made more
utterances in general, t(16.23) = 3.82, p = .001.  This
does not impact inter-mission contrasts.  Co-location
effects on AiD dropped between each mission, from 4
down to 7 (respectively, t(89) = -2.13, p = 0.036; t(89)
= -2.64, p = 0.010; t(89) = -2.25, p = 0.027).  PiA co-
location differences also dropped from Missions 4
down to 7 (respectively, t(89) = -1.82, p = 0.072; t(89)
= -3.07, p = 0.003; t(89) = -3.37, p = 0.001).

Turning to glitch effects, between Missions 5
and 6 (the glitch mission), DAcycles decrease
(Wald(1) = 3.15, p = .076), DPcycles increase (t(89) =
1.82, p = .073), and PAcycles increase (t(89) = 2.11, p
= .038).  Also, PDcycles decrease (Wald(1) = 3.30, p
= .069).

DISCUSSION and CONCLUSION
ProNet chain counts were particularly good at

discriminating glitch effects, because they identify
specific sequences of communication events.
Apparently to compensate for the glitch, DEMPC
spoke more to PLO and less to AVO, creating an
alternate communication route.  PLO spoke more to
AVO, apparently passing information from DEMPC.
Contrary to our expectation, PLO appears to have
passively received DEMPC’s input, since PDcycles
decreased.

Results of other methods were entirely
consistent with these interpretations.  It is generally
found that the glitch was linked to weakened co-
location effects, and all teams behaved more like
distributed teams.  CHUMS measures showed that 1)
distributed teams had more models, and hence less
stable communication, 2) the glitch was correlated
with more distributed-like (i.e. less stable)
communications, and therefore 3) teams created
additional communication patterns during the glitch.
Dominance measures implied that, though DEMPC is
less able to exert predictive speech patterns in
distributed teams, this disadvantage disappears during
the confusion of the glitch.  Also, during the glitch,
Co-located teams become more AVO-dominated, and
PLO-reactive, the reverse of the general pattern.  This
suggests that PLO is passively replying to the added
information.

In addition to concurrent validity, some of the
findings lend external validity to the measures, by
replicating findings in the literature.  For instance, on



ProNet-based interruption counts, the effects of the
medium (i.e., co-located vs. distributed) diminish with
experience (e.g. Walther, 1996).

These findings reveal the power of
communication measures for assessing team
cognition.  The ComLog  file from which these
measures were derived is a simple record of when
team members are speaking.  Yet, these data lend
themselves to a recombination into three quite distinct
measures of team cognition, each tapping into a
different construct: stability, dominance, and
information passage.  Moreover, using these
measures, we were able to decipher high-level
findings, such as observing how teams work around a
communication glitch in order to retain information
passage.  With additional research, automatic
measures of team cognition should be able to yield
very powerful diagnosis and prediction of team
behavior.
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