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Abstract. As ontologies become ever more important for semantically-
rich information exchange and a crucial element for supporting knowl-
edge sharing in a large distributed environment, like the Web, the de-
mand for sharing them increases accordingly. One way of achieving this
ambitious goal is to provide mechanised ways for mapping and merging
ontologies. This has been the focus of recent research in knowledge en-
gineering. However, we observe a dearth of mapping methods that are
based on a strong theoretical ground, are easy to replicate in different
settings, and use semantically-rich mechanisms for performing ontology
mapping. In this paper, we aim to fill in these gaps with a method we pro-
pose for Information-Flow-based ontology mapping. Our method draws
on the proven theoretical ground of Information Flow and channel theory,
and we provide a systematic and mechanised methodology for deploying
it on a distributed environment to perform ontology mapping among a
variety of different ontologies. We applied our method at a large-scale
experiment of mapping five ontologies modelling Computer Science de-
partments in five UK Universities. We elaborate on a theory for ontology
mapping, analyse the mechanised steps of applying it, and assess its on-
tology mapping results.

1 Introduction

One of the aspects in ontology sharing is to perform some sort of mapping
between ontology constructs. That is, given two ontologies, one should be able
to map concepts found in one ontology onto the ones found in the other. Further,
some research suggest that we should also be able to merge ontologies where the
product of this merge will be, at the very least, the intersection of the two
given ontologies. These are the dominant approaches and have been studied and
applied in a variety of systems (see, for example, [31]).

There are, however, some drawbacks that prevent engineers benefiting from
such systems. Firstly, the assumptions made in making these mappings and per-
forming merging are not always exposed to the community and no technical
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details are disclosed. Secondly, the systems that perform ontology mapping are
often either embedded in an integrated environment for ontology editing or are
attached to a specific formalism. Thirdly, in most cases mapping and merging
are based on heuristics that mostly use syntactic clues to determine correspon-
dence or equivalence between ontology concepts, but rarely use the meaning of
those concepts, a.k.a. their semantics. Fourthly, most, if not all approaches, do
not treat ontological axioms or rules often found in formal ontologies. Finally,
ontology mapping as a term has a different meaning in different works merely
due to the lack of a formal account of what ontology mapping is. There is an
observed lack of theory behind most of the works in this area.

Motivated by these drawbacks we worked on a method and a theory for
ontology mapping and merging. We were determined to tackle these drawbacks so
our approach draws heavily on a proven theoretical ground but at the same time
we are providing a systematic approach for ontology mapping and mechanised
methodological steps. In particular, in this paper we propose an Information-
Flow-based method for ontology mapping (hereafter, IF-Map). We are mostly
interested in mapping ontologies, but we can extend the approach to merge them,
too. IF-Map draws on the works of Schorlemmer [34] on using Information Flow
(hereafter, IF) theory to align ontologies and the heuristics defined by Kalfoglou
(in [21], pp.95–97), to analyse prospective mappings between ontologies. On the
theoretical side, our method draws on the IF theory described by Barwise and
Seligman [3] and the work of Kent on the IF Framework [23] for the IEEE
standardisation activity and his proposed methodology for merging ontologies
[22]. The methodological part of IF-Map has also been influenced by the work
of Stumme and Maedche on the FCA-Merge method [35].

We describe a scenario for ontology mapping and the architecture we built
to perform ontology mapping in Section 2. We briefly provide mathematical
preliminaries on IF and channel theory in Section 3, before we proceed to describe
our ontology mapping method in Section 4, together with an example case of its
use. In Section 5 we do an evaluation of our method and elaborate on scalability
issues. We discuss related work in Section 6 and summerise the paper in Section 7.

2 An Architecture for Ontology Mapping

In Figure 1 we illustrate our approach to ontology mapping. In particular, the fo-
cus is on the use of IF as the underpinning mathematical foundation for establish-
ing mappings between two ontologies. We shall formalise these mappings in terms
of logic infomorphisms, which we introduce in Section 3. Actually, this figure
clearly resembles Kent’s proposed two-step process in ontology sharing [22], but
it has differences in its implementation. The solid rectangular line surrounding
Reference ontology, Local ontology 1 and Local ontology 2 denotes the
existing ontologies. We assume that Local ontology 1 and Local ontology 2
are ontologies used by different communities and populated with their instances,
while Reference ontology is an agreed understanding for favouring knowledge
sharing, and is not supposed to be populated. The dashed rectangular line sur-
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Fig. 1. The scenario for ontology mapping.

rounding Global ontology denotes an ontology that does not exist yet, but
will be constructed “on the fly” for the purpose of alignment. This is similar to
Kent’s “virtual ontology of community connections” [22]. The solid arrow lines
linking Reference ontology with Local ontology 1 and Local ontology 2
denote IF between these ontologies formalised as logic informorphisms. In this
paper we present the methodology to generate these logic infomorphisms. The
dashed arrow lines denote the embedding from Local ontology 1 and Local
ontology 2 into Global ontology. This latter is the sum of the local ontolo-
gies modulo Reference ontology and the generated logic infomorphisms. As
we mentioned earlier, this extension would be the merging part of IF-Map.
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Fig. 2. The IF-Map architecture.

In Figure 2 we illustrate the process of IF-Map. We have built a step-wise
process that consists of four major steps: (a) ontology harvesting, (b) translation,
(c) infomorphisms, and (d) display results. In the ontology harvesting step we
perform our acquisition. We acquire ontologies by using a variety of methods:
use existing ontologies, download them from ontology libraries (for example,
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from Ontolingua [11] or WebOnto [9] servers), edit them in ontology editors
(for example, in Protégé [18]), or harvest them from the Web. The latter is
ongoing research in the AKT project (http://www.aktors.org) where we are
writing scripting programs to crawl the Web and harvest RDF-encoded resources
for semi-automatically construct and populate ontologies. We will not expand
on this topic here as it is peripheral to our theme of ontology mapping. As a
result of our versatile ontology acquisition step, we have to deal with a variety
of ontology-language formats ranging from KIF [17] and Ontolingua to OCML
[30], RDF [26], Prolog, and native Protégé knowledge bases.

This introduces the second step in our process, that of translation. As we have
declaratively specified the IF-Map method in Horn logic and execute it with the
aim of a Prolog engine, we partially translate the above formats to Prolog clauses.
Our translator programs are either written in-house, or whenever available, use
public translators. For example, there are public RDF to Prolog translators1 as
well as Ontolingua to Prolog. In most of the cases though, we found it practical to
write our own translators. We did that to have a partial translation, customised
for the purposes of ontology mapping. Furthermore, as it has been reported in
a large-scale experiment with publicly available translators [6], the Prolog code
produced is not elegant or even executable. Our own translators are customised
to translate — from KIF, Ontolingua, and Protégé knowledge bases into Prolog
clauses — those constructs that are needed for IF-Map: class taxonomy, relations
and representative instances for classes. Thus, we deliberately neglect constructs
such as documentation slots, separation of own-slots and template-slots and
other object-oriented modelling primitives used in Ontology languages (such as
KIF or Ontolingua2) as they are not useful for IF-Map and their absence from the
translated Prolog code does not invalidate their meaning. For Protégé knowledge
bases we used the built-in Java API to obtain the constructs we wanted, and
for RDF we used publicly available RDF to Prolog translators. The issue of a
full-blown translation from one formalism to another is a knotty problem, and
recent research from Corrêa da Silva and colleagues [6] offer an account on the
effort involved.

The next step in our process is the main mapping mechanism: the IF-Map
method, which we describe in Section 4. We have written a Java front-end to
the Prolog-written IF-Map program so that we can access it from the Web, and
we are currently in the process of writing a Java API to enable external calls to
it from other systems. This step will find logic infomorphisms, if any, between
the two ontologies under examination, and in the last step of our process we
display them in RDF format. This step involves translating back from Prolog
clauses to RDF triples with the aim of an intermediary Java layer, where RDF
is being produced using the Jena RDF API [27]. Finally, we store the results in
a knowledge base for future reference and maintenance.

1 Like the one from Wielemaker downloadable from http://www.swi-prolog.org/
packages/rdf2pl.html

2 We briefly describe the principles we used to partially translate from Ontolingua to
Prolog in [21], pp.105–107.
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Before proceeding to an example case of deploying this architecture we shall
introduce the theoretical background of IF-Map. In the next section We ex-
pand on channel theory and logic informorphisms, and give a formal account of
ontology mapping.

3 Theoretical Preliminaries

In order to give an formal characterisation of ontology mapping we start from
the assumption that mapping ontologies presupposes flow of information, and
that we need to base any formal notion of ontology mapping on a sound math-
ematical theory of information and information flow. There is no such theory of
information yet, but there have been several efforts in establishing one [10,2,7,
3].

3.1 Channel Theory

Channel theory has been developed based on the understanding that information
flow results from regularities in a distributed system, and that it is by virtue of
regularities among the connections that information of some components of a
system carries information of other components; furthermore it is the particular
instances that carry information, so that information flow crucially involves both
types (i.e., the terminology to describe components) and instances.

Central to channel theory is the idea of a local logic. Separate interacting
communities will typically use different vocabularies, i.e., they will use differ-
ent systems of types, and the instances that these communities manage will be
classified according to these types in quite different ways. In addition, each com-
munity will have its own particular constraints that describe the local behaviour
of their instances with respect to their system of types. A local logic brings all
these ideas together:

Definition 1. A local logic is a quadruple L = (I, T, |=,�), where

1. I is a set of instances;
2. T is a set of types;
3. |= is a classification relation, a binary relation between elements of I and T ;
4. � is a consequence relation, a binary relation between subsets of T ;

There are two parts of a local logic that are of particular importance in
the channel-theory framework. The first one is the triple (I, T, |=), and is called
the classification of the local logic, because the binary relation |= determines a
classification of instances in I with respect to types in T . Thus, x |= a means
that instance x ∈ I is classified as of type a ∈ T .

The second important part is the pair (T, �), which is called the theory of
the local logic. This theory is specified by a set of sequents 〈Γ, ∆〉, i.e., pairs
where Γ, ∆ ⊆ T . The set of types Γ is to be interpreted conjunctively, the set ∆
disjunctively, so that an instance x ∈ I satisfies a sequent 〈Γ, ∆〉 provided that,
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if x is of every type in Γ , then x is of some type in ∆. Sequents that belong to
the theory of a logic are called constraints and denoted Γ � ∆. Theories of local
logics must satisfy the following conditions of regularity3:

1. Identity: a � a, for all a ∈ T ;
2. Weakening: If Γ � ∆ then Γ, Γ ′ � ∆, ∆′, for all Γ, Γ ′, ∆, ∆′ ⊆ T ;
3. Global Cut: If Γ, T ′

0 � ∆, T ′
1 for each partition4 〈T ′

0, T
′
1〉 of any T ′ ⊆ T , then

Γ � ∆, for all Γ, ∆ ⊆ T .

There is an additional element in local logics that we have deliberately left
out in Definition 1. Ideally, instances of a local logic adhere to its constraints,
although, we cannot pressupose this in general, and exceptions may occur. Local
logics also distinguish a subset N ⊆ I of normal instances that must satisfy all
constraints of the local logic. The idea of normal instance is needed if we want to
model reasonable but unsound flow of information. For the purposes of IF-Map,
though, we shall assume that all instances are normal. Such logics are said to be
sound.

For information to flow between separate components of a distributed system,
we need to link local logics that characterise components in a sensible way. This
will essentially affect the system of classifications and its associated theory, but
in a way that allows the information to flow. This latter is captured with the
idea of a logic infomorphism:

Definition 2. A logic infomorphism f : L � L′ from local logic L = (I, T, |=,�)
to local logic L′ = (I ′, T ′, |=′,�′) is a contravariant pair of functions f = 〈f�, f�〉,
where f� : T → T ′ and f� : I ′ → I, such that,

1. for x ∈ I ′ and a ∈ T , f�(x) |= a if and only if x |=′ f�(a);
2. for Γ, ∆ ⊆ T , if Γ � ∆, then f�[Γ ] �′ f�[∆]5.

The restriction of logic infomorphisms to the classification part of local logics
are called infomorphisms.

3.2 Ontologies and Ontology Morphisms

For the purposes of IF-Map described in this paper, we adopt a definition of
ontology that includes some of the core components that are usually part of an
ontology: concepts of an is-a hierarchy, which we caputre with a partial order
relation ‘�’; relations defined over these concepts; and notions of disjointness of
3 Regularity arises from the observation that, given a classification of instances to
types, the set of all sequents that are satisfied by all instances do fulfill these prop-
erties.

4 A partition of T ′ is a pair 〈T ′
0, T

′
1〉 of subsets of T ′, such that T ′

0 ∪ T ′
1 = T ′ and

T ′
0 ∩ T ′

1 = ∅; T ′
0 and T ′

1 may themselves be empty (hence it is actually a quasi-
partition).

5 f�[Γ ] and f�[∆] denote the set images of sets Γ and∆ along function f�, respectively.
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two concepts — when no instance can be considered of both concepts — and
coverage of two concept — when all instances are covered by two concepts.6

Disjointness and coverage are typically specified by means of ontological ax-
ioms. IF-Map takes these kind of axioms into account including disjointness and
coverage into the hierarchy of concepts by means of two binary relations ‘⊥’
and ‘|’, respectively. In a future, we plan do extend IF-Map to cope with full
first-order axioms.

Definition 3. An ontology is a tuple O = (C, R,�,⊥, |, σ) where

1. C is a finite set of concept symbols;
2. R is a finite set of relation symbols;
3. � is a reflexive, transitive and antisymmetric relation on C (a partial order);
4. ⊥ is a symmetric and irreflexive relation on C;
5. | is a symmetric relation on C; and
6. σ : R → C+ is the function assigning to each relation symbol its arity; the

functor (−)+ sends a set C to the set of finite tuples whose elements are in
C.

When discarding binary relations ⊥ and |, this definition is equivalent to that
of a core ontology in [35].

When an ontology O = (C, R,�,⊥, |, σ) is used in some particular application
domain, we need to populate it with instances. First, we will have to classify
objects of a set X according to the concept symbols in C by defining a binary
classification relation |=C. This will determine a classification C = (X, C, |=C).
Next, we will have to specify over which instances the relations represented by
the symbols in R are to hold, thus classifying finite tuples of objects of X to the
relation symbols in R by defining a binary classification relation |=R. This will
determine a classification R = (X+, R, |=R). Both classifications will have to be
defined in such a way that the partial order �, the disjointness ⊥, the coverage
|, and the arity function σ are respected:

Definition 4. A populated ontology is a tuple Õ = (C,R,�,⊥, |, σ) such that
C = (X, C, |=C) and R = (X+, R, |=R) are classifications and O = (C, R,�,
⊥, |, σ) is an ontology; we say the ontology is sound when, for all x, x1, . . . , xn ∈
X, c, d ∈ C, r ∈ R, and σ(r) = 〈c1, . . . , cn〉,
1. if x |=C c and c � d, then x |=C d;
2. if x |=C c and c ⊥ d, then x �|=C d;
3. if c | d, then x |=C c or x |=C d;
4. if 〈x1, . . . , xn〉 |=R r then xi |=R ci, for all i = 1, . . . , n.

Notice that we write Õ for a populated ontology and O for the respective un-
populated one.
6 Both disjointness and coverage can easily be extended to more than two concepts,
although we stay with binary relations, for the ease of presentation.
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Transformations of mathematical structures that preserve the structure that
characterises them are usually described with homomorphism (or morphisms,
for short). Thus, we study the mapping of ontologies through the morphisms of
those mathematical structures we have defined for ontologies in Definition 3. The
concept of ‘populated ontology’ is central to our approach to ontology mapping,
and we shall use it later in Proposition 1 in order to justify the following definition
of an ontology morphism:

Definition 5. Given two ontologies O = (C, R,�,⊥, |, σ) and O′ = (C ′, R′,
�′,⊥′, |′, σ′), an ontology morphism 〈f�, g�〉 : O → O′ is a pair of functions
f� : C → C ′ and g� : R → R′, such that, for all c, d ∈ C, r ∈ R, and σ(r) =
〈c1, . . . , cn〉,
1. if c � d, then f�(c) �′ f�(d);
2. if c ⊥ d, then f�(c) ⊥′ f�(d);
3. if c | d, then f�(c) |′ f�(d);
4. if σ′(g�(r)) = 〈c′

1, . . . , c′
n〉, then c′

i �′ f�(ci), for all i = 1, . . . , n.

3.3 Information Flow between Ontologies

Our approach to ontology mapping is built upon the assumption that, in the
context of channel theory, local logics characterise ontologies.

Hence, a populated ontology Õ = (C,R,�,⊥, |, σ) determines a local logic
L = (X, C, |=C,�) whose theory (C,�) is given by the smallest regular conse-
quence relation (i.e., the smallest relation closed under Identity, Weakening, and
Global Cut) such that, for all c, d ∈ C

c � d iff c � d
c, d � iff c ⊥ d
� c, d iff c | d

The characterisation of an ontology as a local logic justifies the IF-Map
method presented in next section, which stems from our intention — explained
in Section 2 — to map an unpopulated ontology O = (C, R,�,⊥, |, σ) to a pop-
ulated one Õ′ = (C′,R′,�′,⊥′, |′, σ′), by looking at the information flow. For
this reason we “formally” populate the concept types given in C and the relation
types given in R to obtain classifications C = (Y, C, |=C) and R = (Z, R, |=R)
(notice that, unlike a populated ontology, the instances of R need not to be
finite tuples of instances of C), and further establish infomorphisms f : C� C′

and g : R� R′, such that their type-level components f� and g� constitute an
ontology morphism; because in that case we know that the populated ontology
Õ′ will be a sound extension of O, in the sense that the images of Õ′’s instances
conform to O, as stated in the following proposistion:

Proposition 1. Let O = (C, R,�,⊥, |, σ) be an (unpopulated) ontology, and
let Õ′ = (C′,R′,�′,⊥′, |′, σ′) be a populated ontology with classifications C′ =
(X ′, C ′, |=C′), R′ = (X ′+, R′, |=R′). Let C = (Y, C, |=C) and R = (Z, R, |=R)
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be two classifications whose types are the concept and relation types of O. If
Õ′ is sound and f : C � C′ and g : R � R′ are informorphisms, such that
(f�, g�) : O → O′ is an ontology morphism, then, for all x, x1, . . . , xn ∈ X,
c, d ∈ C, r ∈ R, and σ(r) = 〈c1, . . . , cn〉,

1. f�(x) |=C c and c � d imply f�(x) |=C d;
2. f�(x) |=C c and c ⊥ d imply f�(x) �|=C d ;
3. c | d implies f�(x) |=C c or f�(x) |=C d;
4. g�(〈x1, . . . , xn〉) |= r implies f�(xi) |= ci, for all i = 1, . . . , n.

Proof.

1. Suppose f�(x) |=C c and c � d. Since f is an infomorphism, x |=C′ f�(c).
Furthermore, c � d implies f�(c) �′ f(d) because 〈f�, g�〉 is an ontology
morphism; consequently, x |=C′ f�(d). Finally, since f is a infomorphism,
f�(x) |=C d.

2. Analogous to 1.
3. Analogous to 1.
4. Suppose g�(〈x1, . . . , xn〉) |= r. Because g is an infomorphism, 〈x1, . . . , xn〉 |=

g�(r). Let σ(g�(r)) = 〈c′
1, . . . , c′

n〉. By the soundness of Õ′, xi |= c′
i, for all

i = 1, . . . , n, and since 〈f�, g�〉 is an ontology morphism, xi |= f�(ci), for all
i = 1, . . . , n. Consequently, and because f is a infomorphism, f�(xi) |= ci,
for all i = 1, . . . , n.

In the next section we describe the ontology mapping method based on the
above characterisation of ontologies as local logics, and ontology morphisms as
logic infomorphisms.

4 The IF-Map Method

We propose a method for mapping ontologies that draws on the mathematical
foundations of information-flow, and we shall use a small easy-to-follow example
to illustrate the core parts of IF-Map.

4.1 Reference and Local Ontology

Let us assume that we want to map two ontologies, a reference ontology with
a local ontology. We follow the scenario given in Section 2 and assume that the
reference ontology has no instances defined, just concept types and constraints
over those types. The local ontology, however, has instances classified under its
concept types according to a classification relation.



Information-Flow-Based Ontology Mapping 1141

Let Reference be the ontology O = (C, R,�,⊥, |, σ), with

– concepts C = {building,vehicle,car};
– relations R = {hasParkingSpaceFor};
– arities σ(hasParkingSpaceFor) =

〈building, vehicle〉; and
– partial order �, disjointness ⊥, and coverage |

as defined by the given lattice.

|
��

��
��

��
��

��

building

��
��

��
��

� vehicle

car

�����

⊥
Let the Local be the ontology O′ = (C ′, R′,�′,⊥′, |′, σ′), with

– concepts C ′ = {house,cottage,automobile};
– relations R′ = {hasGarageFor,hasShelterFor};
– arities σ′(hasGarageFor) = 〈house, automobile〉,

σ′(hasShelterFor) = 〈cottage, automobile〉; and
– partial order �′, disjointness ⊥′, and coverage

|′ as defined by the given lattice.

|′
���

��� �������

house automobile

��
��

��
��

��

cottage

���
��

⊥′

Local, unlike Reference, is populated with instances X = {cabrio, bcn,
4wd ,mall , skye, coupe}, which are classified as follows,

|=C′ house cottage automobile
cabrio 0 0 1
bcn 1 0 0
4wd 0 0 1
mall 1 1 0
skye 1 1 0
coupe 0 0 1

This table contains the following information: cabrio, 4wd and coupe are auto-
mobiles, bcn is a house in Barcelona, mall and skye are specific kinds of house,
cottages in Mallorca and the Isle of Skye, respectively. It specifies the classifica-
tion C′ = (X, C ′, |=C′).

4.2 Characterisation as Local Logics

In order to automatically find mappings between Reference and Local that
conform to the definition of ontology morphism given in Definition 5, we will
need to look for logic infomorphisms between the local logics that characterise
these ontologies. First we shall concentrate on the concepts symbols and leave
the relation symbols for Section 4.4.

Reference, which is not populated, is characterised by the following local
logic. Its regular theory (C,�) has concept symbols as types, and � is the smallest
consequence relation closed by Identity, Weakening, and Global Cut that includes
the following constraints:
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building,vehicle � ∅ car � vehicle ∅ � building,vehicle

Recall that the comma on the left-hand side of these constraints has conjunctive
force whereas on the right-hand side it has disjunctive force. Following this,
we can give a declarative reading of the above constraints: nothing is both a
building and a vehicle; all cars are vehicles; and everything is either a building
or a vehicle.

We will need to provide the theory with a set of instances and a classification
of these instances with respect to the types. Now, every regular theory determines
a classification as follows:

1. We take as instances Y all those sequents 〈Γ, ∆〉 that
– form a partition of the set of concepts (Γ ∪ ∆ = C and Γ ∩ ∆ = ∅); and
– are not constraints of the theory (Γ �� ∆)

For the theory given above, these sequents are 〈{vehicle,car}, {building}〉,
〈{building}, {vehicle,car}〉, and 〈{vehicle}, {building,car}〉.

2. We then classify these instances according to the concepts that occur in the
left-hand side component of the sequent:

|=C building vehicle car
〈{vehicle,car}, {building}〉 0 1 1
〈{building}, {vehicle,car}〉 1 0 0
〈{vehicle}, {building,car}〉 0 1 0

The local logic that characterises Reference, i.e., the ontology given by O,
is L = (Y, C, |=C,�). The generation of instances by means of sequents and their
classification may not seem obvious, but it turns out that classifications gener-
ated in this way satisfy a fundamental Representation Theorem (see [3]) stating
that a local logic that is generated from the structure given in a classification is
equivalent to the local logic constructed from its theory as described above.

Local is populated, and hence has already instances and a classification re-
lation. We only need to derive the theory of the local logic that characterises its
concept hierarchy as specified in the lattice above. Therefore, its regular theory
(C ′,�′) has concept symbols as types, and �′ is the smallest consequence rela-
tion closed by Identity, Weakening, and Global Cut that includes the following
constraints:

house,automobile �′ ∅ cottage �′ house ∅ �′ house,automobile

The local logic that characterises Local is, thus, L′ = (X, C ′, |=C′ ,�′).

4.3 Generation of Ontology Morphisms via Infomorphisms

To map the ontologies, we must find an ontology morphism from O to O′, which
means that there must exist a logic infomorphism f = 〈f�, f�〉 from local logic
L to local logic L′. This amounts to first look for an infomorphism between their
respective classifications:
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– a map of concepts f� : C → C ′ (concept-level);
– a map f� from instances cabrio, . . . , coupe to the formally created instances

of the reference ontology (instance-level);

Note that an ontology morphism, as defined in Definition 5, only captures
the concept-level of the infomorphism, i.e. f�. But f� has to map the concepts
in a way that it respects the hierarchy. One possible way would be:

f�(building) = house f�(vehicle) = automobile f�(car) = automobile

However, we should point out that the automatic generation of these maps is
growing exponentially. But we can use the constraint that the map has to respect
the concept hierarchy and limit the number of possible maps. Once the map is
fixed, there is at most one acceptable way to map the instances in order for f
to be an infomorphism.

We do that by building the following table that represents an infomorphism7:
we label rows by the instances in X = {cabrio, . . . , coupe} of Local, and columns
by Reference’s concepts C = {building,vehicle,car}. We put under each of these
concepts the values of the column of Local’s classification table that corresponds
to the image along the map of ontologies f� (i.e., under building we put the
column of house):

building vehicle car
cabrio 0 1 1
bcn 1 0 0
4wd 0 1 1
mall 1 0 0
skye 1 0 0
coupe 0 1 1

Each row should identify (taking into account the classification table of
Reference) the formal instances to which each local instance should be mapped
onto. Hence, we have the following instance-component of our infomorphism:

f�(cabrio) = 〈{vehilce,car}, {building}〉
f�(bcn) = 〈{building}, {vehilce,car}〉
f�(4wd) = 〈{vehilce,car}, {building}〉
f�(mall) = 〈{building}, {vehilce,car}〉
f�(skye) = 〈{building}, {vehilce,car}〉
f�(coupe) = 〈{vehilce,car}, {building}〉

We can also interpret the above table (and its resulting mapping of instances) as
that: cabrio is classified as both a vehicle and a car, according to Reference. No
other classification is possible without violating the definition of infomorphism.
If cabrio was a vehicle but not a car, Local would have been classifying its
instances in a way that does not conform to Reference and the fixed map of
concepts.
7 Infomorphisms can themselves be represented by means of classification tables; this
draws on theoretical work based on Chu spaces [19,1,32].
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4.4 Relations and Their Arities

In order to constrain the search space when infomorphisms are generated in an
automated way, we use ontological relations to guide the classification process
that will result in the ontology mapping, namely by looking for infomorphisms
g : R→ R′ in a similar fashion as before. So, in our example case, we have the
following relation defined in Reference:

hasParkingSpaceFor : building × vehicle

that is, the binary relation hasParkingSpaceFor holds over building and vehicle.
Similarly, in Local we have the following two binary relations:

hasGarageFor : house × automobile hasShelterFor : cottage × automobile

These Local relations could be used to classify pairs of local instances:

hasShelterFor hasGarageFor
〈bcn, cabrio〉 0 0
〈bcn, 4wd〉 0 0

〈bcn, coupe〉 1 1
〈mall , cabrio〉 1 0
〈mall , 4wd〉 0 0

〈mall , coupe〉 1 0
〈skye, cabrio〉 0 0
〈skye, 4wd〉 1 0

〈skye, coupe〉 0 0

That is, the house in Barcelona has a garage (also considered a shelter) only
for a coupe, the cottage in Mallorca has a shelter for a cabrio and a coupe, and
the cottage in the Isle of Skye has shelter for a 4wd. We then take these pairs and
classify them according to the concepts of Reference to determine the mapping
of these ontologies:

1. Generate a classification of the above pairs with respect to Reference’s
relation, by taking any of the two columns of the table above; this gives us
two possibilities to explore, suppose we choose:

hasParkingSpaceFor
〈bcn, cabrio〉 0
〈bcn, 4wd〉 0

〈bcn, coupe〉 1
〈mall , cabrio〉 1
〈mall , 4wd〉 0

〈mall , coupe〉 1
〈skye, cabrio〉 0
〈skye, 4wd〉 1

〈skye, coupe〉 0

This is the column corresponding to hasShelterFor, hence
g�(hasParkingSpaceFor) = hasShelterFor.
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2. The arity of relation hasParkingSpaceFor forces to classify the instances as in
Figure 3 (a).

3. Then we need to complete the table according to the definition of infomor-
phism. This is done as follows: columns have to correspond to columns of
Local’s classification table. The only possible completion is shown in Fig-
ure 3 (b).
Hence, f�(building) = house and f�(vehicle) = automobile. Rows have to
correspond to rows of Reference’s classification table. The only possible
completion is shown in Figure 3 (c).

building vehicle car
cabrio 1
bcn 1
4wd 1
mall 1
skye 1
coupe 1

❀

building vehicle car
cabrio 0 1
bcn 1 0
4wd 0 1
mall 1 0
skye 1 0
coupe 0 1

❀

building vehicle car
cabrio 0 1 1
bcn 1 0 0
4wd 0 1 1
mall 1 0 0
skye 1 0 0
coupe 0 1 1

(a) (b) (c)

Fig. 3. Completing the classification table.

Hence, f�(car) = automobile, which completes one possible valid ontology
mapping.

The steps described above constitute the core part of the IF-Map method.
We complement it with heuristic-based techniques to help us kick-start the in-
fomorphism generation.

4.5 Kick-Start for the IF-Map Method

Our definition of ontology morphism (Definition 5) enforces an arity-
compatibility check to ensure that the local instances are mapped onto appropri-
ate reference types. When automating this step though, we have to be careful for
undesired assignments. These arise when the prospective relations to be mapped
share the same types but do not have the same semantics. For instance, assume
that Reference has relation hasJobTitle defined over concepts employee and
string and Local has relation authoredBy defined over string and employee8. The
infomorphism generation will map Local’s employee to Reference’s string and
Local’s string to Reference’s employee, which will inevitably map hasJobTitle
relation to authoredBy by virtue of sharing the same types.

To tackle this problem we are thinking of two possible ways: (a) we provide a
partial map of concepts from one ontology to concepts of the other or (b) classify
some representative instances from the Local to their Reference counterparts.
8 Note that here Reference and Local do not denote the same ontologies used in the
mapping example.
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This way, we can say that Reference’s employee maps onto Local’s employee and
Reference’s string maps onto string and only this mapping between these types
is possible. This will constrain the infomorphism generation and the offending
infomorphisms will not appear. To do this partial mapping automatically we
employ a set of heuristics (originally described in [21], pp.95–97). In particular,
these heuristics are working on a purely syntactic match fashion but they use
the is-a hierarchy and type checking to find types that are shared by relations
in both ontologies. The algorithm goes like that:

1. find relation names from both ontologies that are syntactically equivalent
(i.e., publishedBy from Reference matches publishedBy from Local);

2. check if their argument types match (since we are dealing with binary
relations, both argument types have to match, for instance employee for
Reference and Local; paper for Reference and Local);

3. use these types to fix a partial map to start the infomorphism generation;
4. if 2 fails, then use the is-a hierarchy to traverse the hierarchy of types and find

syntactically common types that subsume or are subsumed by the common
relations’ argument types (we traverse the is-a hierarchy in both directions:
we check for parent and child nodes of the starting node);

5. those that are found syntactically equivalent will be used as in 3 for partially
fixing the initial map of the two ontologies;

6. if step 2 yields only one argument type match, use it and do 4 for the other
argument type;

Note that this algorithm relies on the existence of common relation names in
both ontologies. This is based on the assumption that, since the role of reference
ontologies within a community is to favour the sharing of knowledge expressed
by means of different local ontologies, many of the names of concepts and rela-
tions used to express the reference ontology are syntactically equivalent to the
ones used in the local ontologies to express the same (or similar) concepts and
relations.

In case this fails, the algorithm cannot be initiated and then we turn to the
second solution proposed above, which is to let the knowledge engineer classify
representative instances manually. This solution though, requires familiarisation
of the engineer with both the reference and local ontologies.

5 Evaluation of IF-Map

We applied the algorithmic steps described in the illustrative example of Sec-
tion 4 in a large-scale experiment that we conducted in the context of the AKT
project. We have not finished our experiments yet, but we have done enough to
assess IF-Map. The setting of the experiment is as follows: in the AKT project,
five participating universities are contributing their own ontologies representing
their own important concepts in the domain of computer-science departments
in the UK. There is also a reference ontology, AKT Reference, which was built
collaboratively by interested participants from all five sites. So, we had to deal
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with five local ontologies and a reference ontology. The local ontologies were pop-
ulated whereas the reference ontology was not. That is in-line with the IF-Map
scenario as we described in Section 4. Furthermore, since local ontologies are
maintained locally, by five different sites, it anticipated to use a variety of for-
malisms and tools for ontology design, development, and deployment. IF-Map’s
architecture (see Section 2) allows for different formalisms to be used as input.

Fig. 4. Results of ontology mapping in Web accessible RDF format.

We applied IF-Map to map AKT Reference to Southampton’s and Edin-
burgh’s local ontologies. These local ontologies are populated with a few thou-
sand instances (ranging from 5k to 18k) and a few hundreds of concepts. There
are a few axioms defined, and both have relations. The AKT Reference ontology
is more compact, it has no instances and approximately 65 concepts with 45 rela-
tions. There are a few axioms defined as well. In Figure 4 we include a screenshot
of our Web accessible RDF results page for some relations and concepts. In this
page, we show a small fraction of the results from mapping concepts and rela-
tions from AKT Reference to to their counterparts in Southampton’s ontology.
As we can see, apart from mapping concepts, like AKT Reference’s document
to Southampton’s publication we also map relations: AKT Reference’s hasap-
pellation to Southampton’s title. The arities of these relations allow this sort
of mapping, whereas in other ontologies this would have been inappropriate,
when for example title refers to title of a paper. These mappings were generated
automatically; IF-Map initiated these experiments with the semantically-rich
heuristics we described in 4.5.
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The algorithms we have implemented so far are of exponential complexity in
the number of concepts. Although the implementation of IF-Map as it currently
stands can still be improved by using more sophisticated algorithms for ontology
morphism generation, we are basing the IF-Map method on an incremental con-
struction of ontology morphisms, in order to tackle large-scale ontologies: first,
only certain manageable fragments of the ontologies are mapped, and next, these
fixed maps are used to guide the generation of larger fragments, in the manner
explained in Section 4. We are currently investigating heuristics for the auto-
matic identification of such fragments.

6 Related Work

IF-Map, amid its well-defined purpose of ontology mapping and, extensionally,
merging, taps on a number of areas and uses techniques discussed in diverse
communities. Therefore, it is impossible to compile an exhaustive list of refer-
ences to related work but we have deliberately expanded the scope of references
to cover as many representative works as possible. At the same time though,
we were careful to identify works that are related somehow with IF-Map’s core
characteristics: use of formal definitions of ontology mapping, use of Informa-
tion Flow theory, expressed in a declarative and executable language in a domain
and tool independent manner, applied as a method and as a theory for ontology
mapping, and being — under circumstances — fully automatic. Not all of the
references we cite here meet these criteria; some provide features that IF-Map
does not support and others focus on a single criterion of the list given above.
Nevertheless, the diversity of works reported in this section demonstrates the im-
portance of the topic in a number of communities. Space reasons and this paper’s
scope prevents us from getting into great detail when describing related work
hereinafter, but we aim to give a flavour of the current landscape in ontology
mapping research across different communities.

Among the few formal approaches in ontology mapping and merging is that
of FCA-Merge [35]. It is based on Formal Concept Analysis [16] and it is aimed,
mainly, at merging ontologies, hence, FCA-Merge. Its developers, Stumme and
Maedche, incorporate natural language techniques in their FCA-based method
to derive a lattice of concepts. The lattice is then explored manually by a knowl-
edge engineer who will build the merged ontology with semi-automatic guidance
from FCA-Merge. In particular, FCA-Merge works as follows: the input to the
method are a set of documents from which concepts will be extracted and the
ontologies that will be merged. These documents should be representative of the
domain at question and be related to the ontologies. They also have to cover
all concepts from both ontologies as well as separating them well enough. These
strong assumptions have to be met in order to obtain good results from the FCA-
Merge. Once the concepts will be extracted, the authors construct the concepts
lattice and from there provide semi-automatic support for knowledge engineers
to derive the final merged ontology.
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Formal Concept Analysis has also been used by the database community in
their federated databases domain. In particular, Schmitt and Saake employ For-
mal Concept Analysis techniques to assist database schema integration [33]. The
focus of their work is to merge different inheritance hierarchies by decomposing
overlapping class extensions into base extensions and use Formal Concept Anal-
ysis techniques to inform algorithms for integrating the databases schemata. In
the Scalable Knowledge Composition (SKC) project, Jannink and colleagues [20]
presented the use of a rule-based algebra for encapsulating and composing on-
tologies. Ontologies are clustered in contexts, and the authors use a rule-based
algebra to define interfaces to link the extracted contexts with the original on-
tologies.

Fridman Noy and Musen have developed two systems for performing on-
tology merging and alignment in the Protégé-2000 [18] ontology development
environment: SMART [13] and its successor PROMPT [14]. These tools use lin-
guistic similarity matches between concepts for initiating the merging or align-
ment process and then use the underlying ontological structures in Protégé-2000
environment (classes, slots, facets) to inform a set of heuristics for identifying
further matches between the ontologies. A similar tool has been developed by
McGuinness and colleagues for the Ontolingua ontology editor: Chimaera [28].
As in PROMPT, this tool is interactive and the engineer is in charge of making
decisions that will affect the merging.

From the machine learning perspective we report the works of Lacher and
Groh [25] and Doan and colleagues [8] where their systems employ machine
learning algorithms in conjunction with similarity measures to yield prospec-
tive mappings between ontology concepts. Other works worth citing here are
Chalupsky’s OntoMorph [5] translation system for symbolic knowledge, Kiryakov
and colleagues’ OntoMap portal [24] for mapping linguistic ontologies, the OB-
SERVER system [29] by Mena and colleagues for information integration, Gan-
gemi and colleagues’ [15] ONIONS methodology for medical ontologies, Visser
and Tamma’s heterogeneity categorisation [36], and the reports from Pinto and
colleagues [31] and Fridman Noy and Hafner in [12].

7 Summary

In this paper we presented a novel method and a theory for ontology mapping.
We formalised the notion of ontology, ontology morphism, ontology mapping
and linked them to the formal notions of local logic and logic infomorphism
stemming from IF theory. We then applied them in a mechanised manner, IF-
Map, to map diverse ontologies. The first results are promising for the application
of IF-Map in large-scale ontology mapping efforts and are continue researching
fruitful extensions of it, such as, ontology merging, reasoning about ontology
evolution, and inclusion of ontological axioms.
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