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This paper deals with the problem of maintenance and production planning for randomly failing multiple-product manufacturing
system. The latter consists of one machine which produces several types of products in order to satisfy random demands
corresponding to every type of product. At any given time, the machine can only produce one type of product and then
switches to another one. The purpose of this study is to establish sequentially an economical production plan and an optimal
maintenance strategy, taking into account the influence of the production rate on the system’s degradation. Analytical models
are developed in order to find the production plan and the preventive maintenance strategy which minimizes sequentially the total
production/inventory cost and then the total maintenance cost. Finally, a numerical example is presented to illustrate the usefulness
of the proposed approach.

1. Introduction

Manufacturing companies must manage several functional
capacities successfully, such as production, maintenance,
quality, and marketing. One of the keys to success consists in
treating all these services simultaneously. On the other hand,
the customer satisfaction is one of the first objectives of a
company. In fact, the nonsatisfaction of the customer on time
is often due to a random demand or a sudden failure of pro-
duction system. Therefore, it is necessary to develop main-
tenance policies relating to production, reducing the total
production and maintenance cost. One of the first actions of
decision-making hierarchy of a company is the development
of an economical production plan and an optimal mainte-
nance strategy.

It is necessary to find the best production plan and the
best maintenance strategy required by the company to satisfy
customers. This is a complex task because there are various
uncertainties due to external and internal factors. External
factorsmay be associated with the inability to precisely define
the behaviour of the application during periods of produc-
tion. Internal factorsmay be associatedwith the availability of

hardware resources of the company. In this context, Filho [1]
treated a stochastic scheduling problem in terms of produc-
tion under the constraints of the inventory.

Establishing an optimal production planning and main-
tenance strategy has always been the greatest challenge for
industrial companies. Moreover, during the last few decades,
the integration of production andmaintenance policies prob-
lem has received much research attention. In this context,
Nodem et al. [2] developed a method to find the optimal
production, replacement/repair and preventive maintenance
policies for a degraded manufacturing system. Gharbi et al.
[3] assumed that failure frequencies can be reduced through
preventive maintenance, and developed joint production and
preventivemaintenance policies depending on produced part
inventory levels. An analytical model and a numerical proce-
dure which allow determining a joint optimal inventory con-
trol and an age based on preventive maintenance policy for
a randomly failing production system was presented by Rezg
et al. [4].

This work examined a problem of the optimal production
planning formulation of a manufacturing system consisting
of one machine producing several products in order to
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meet several random demands. This type of problem was
studied by Kenne et al. [5]. They presented an analysis of
production control and corrective maintenance problem in a
multiple-machine, multiple-product manufacturing system.
They obtained a near optimal control policy of the system
through numerical techniques by controlling both produc-
tion and repair rates. Feng et al. [6] developed amultiproduct
manufacturing systems problem with sequence dependent
setup times andfinite buffers under seven scheduling policies.
Sloan and Shanthikumar [7] presented a Markov decision
process model that simultaneously determines maintenance
and production schedules for a multiple-product, single-
machine production system, accounting for the fact that
equipment condition can affect the yield of different product
types differently. Filho [8] developed a stochastic dynamic
optimization model to solve a multiproduct, multiperiod
production planning problem with constraints on decision
variables and finite planning horizon.

Looking at the literature on integrated maintenance
policies, we noticed that the influence of the production rate
on the degradation system over a finite planning horizon was
rarely addressed in depth. Recently, Zied et al. [9–11] took into
account the influence of production plan on the equipment
degradation, in the case of a system composed of single
machine producing one type of product under randomly
failing and satisfying a random demand over a finite horizon.
In the same context, Kenne and Nkeungoue [12] proposed a
model, where the failure rate of a machine depends on its age;
hence, the corrective and preventivemaintenance policies are
machine-age dependent.

Motivated by the work in the Zied et al. [9–11], we treat
the production and maintenance problem in another context
that we consider a more complex and real industrial system,
composed of one machine that produces several products
during a finite horizon divided into subperiods. This study
displays that it has a novelty and originality relative to this
type of problem which considers the influence of several
products on the degradation degree of the considered
machine and consequently on the average number of failure
as well as on the maintenance strategy.

This paper is organized as follows: Section 2 states the
problem. Section 3 presents the notations. The production
and maintenance models are developed, respectively, in Sec-
tions 4 and 5. A numerical example and sensitivity study are
presented, respectively, in Sections 6 and 7. Finally, the
conclusion is included in Section 8.

2. Statement of the Industrial Problem

This study treated an industrial case. The problem concerns
a textile company located in North Africa specialized in
clothing manufacturing. The company’s production system
consists of a conversion of three types of fiber into yarn, then
fabric, and textiles. These are then fabricated into clothes or
other artefacts. The production machine is called the loom,
and it uses a jet of air or water to insert the weft. The loom
ensures pattern diversity and faultless fabrics by a flexible
and gentle material handling process. Fabrics can be in one
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Figure 1: Problem description.

plain color with or without a simple pattern or they can have
decorative designs.

Based on the industrial example described, this study was
conducted to deal with the problem of an optimal production
and maintenance planning for a manufacturing system. The
system is composed of a single machine which produces sev-
eral products in order to meet corresponding several random
demands. The problem is presented in (Figure 1).

The considered equipment is subject to random failures.
The degradation of the equipment increases with time and
varies according to the production rate. The machine is sub-
mitted to a preventive maintenance policy in order to reduce
the occurrence of failures. In the literature, the influence of
the production rate on thematerial degradation is rarely stud-
ied. In this study, this influence was taken into consideration
in order to establish the optimal maintenance strategy.

The model developed in this study is based on the works
of Zied et al. [9–11]. These studies seek to determine an
economical production plan followed by an optimal mainte-
nance policy but for the case of only one product.

Firstly, for a randomly given demand, an optimal pro-
duction plan was established to minimize the average total
storage and production costs while satisfying a service level.
Secondly, using the obtained optimal production plan and
considering its influence on themanufacturing system failure
rate, an optimal maintenance schedule is established to
minimize the total maintenance cost.

3. Notations

In this paper, we shall as far as possible use the notation
summarized as follows:

Cp(𝑖): unit production cost of product 𝑖,
Cs(𝑖): holding cost of one unit of product 𝑖 during Δ𝑡,
St(𝑖): setup cost of product 𝑖,
Mc: corrective maintenance action cost,
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Mp: preventive maintenance action cost,
𝐻: total number of periods,
𝑛: total number of products,
𝑝: total number of subperiods during each period,
Δ𝑡: production period duration,
𝑈
𝑖 nom: nominal production quantity of product 𝑖

during Δ𝑡,
𝜃
𝑖
: probabilistic index (related to customer satisfac-

tion) of product 𝑖,
𝑑
𝑖
(𝑘): demand of product 𝑖 during period 𝑘,

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

: inventory level of product 𝑖 at the end of
subperiod 𝑗 of period 𝑘,
𝑍(𝑈): the total expected cost of production and
inventory over the finite horizon,
Var(𝑑

𝑖
(𝑘)): the demand variance of product 𝑖 at period

𝑘,
𝜑(𝜃
𝑖
): cumulative Gaussian distribution function,

𝜑−1(𝜃
𝑖
): inverse distribution function,

Γ(𝑁): the total cost of maintenance,
𝜆
(𝑘×𝑝)−(𝑝−𝑗)

(⋅): failure rate function at subperiod 𝑗 of
the period 𝑘,
𝜆
𝑛
(⋅): nominal failure rate,

𝜙(⋅): the average number of failures,
𝑇: intervention period for preventive maintenance
actions.

Decision Variables

𝑈
𝑖,𝑗,𝑘

: production quantity of product 𝑖 during subpe-
riod 𝑗 of period 𝑘,
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

: duration of subperiod 𝑗 at period 𝑘,
𝑦
𝑖,𝑗,𝑘

: a binary variable, which is equal to 1 if product
𝑖 is produced in subperiod 𝑗 of the period 𝑘, and 0
otherwise,
𝑁: number of preventive maintenance actions during
the finite horizon.

4. Production Policy

In this section, we developed an analytical model which
minimizes the total cost of production and storage.The deci-
sion variables are the production quantities 𝑈

𝑖,𝑗,𝑘
, the binary

variable 𝑦
𝑖,𝑗,𝑘

, and the duration of subperiods 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

.
Our objective consists in determining an economical pro-
duction plan 𝑈

∗
(𝑈
∗

= 𝑈
∗

𝑖,𝑗,𝑘
, 𝑦
∗

𝑖,𝑗,𝑘
and 𝛿

∗

(𝑘×𝑝)−(𝑝−𝑗)
∀{𝑖 =

1, . . . , 𝑛}, {𝑗 = 1, . . . , 𝑝}, {𝑘 = 1, . . . , 𝐻}) for a finite time
horizon 𝐻 × Δ𝑡. The production plan must satisfy random
demands under the requirement of a given level of service,
while minimizing the cost of production and storage. The
production of each product 𝑖 will take place at the beginning
of subperiods, and delivery to the customer will be at the end
of periods.

Period 1

Δt Δt

j = 1 j = 2 j = 3

𝛿1 𝛿2 𝛿3

Period k

𝛿(k∗p)−(p−j)

Subperiod j

Figure 2: Production plan.

The state of the stock is determined at the end of each
subperiod. Figure 2 shows an example of a production plan.

4.1. Stochastic Model of the Problem. To develop this section,
the following assumptions are specifically made:

(i) holding and production costs of each product are
known and constant;

(ii) only a single product can be produced in each
subperiod;

(iii) as described in (Figure 2), we have divided the period
𝑘 into 𝑝 equal subperiods, with 𝑝 = 𝑛 (the total
number of products);

(iv) the standard deviation of demand 𝜎(𝑑
𝑖
) and the

average demand 𝑑
𝑖
for each product and each period

𝑘 are known and constant.

The model has the following basic structure:

To Minimize [(production cost) + (Holding cost)] (1)

under the constraints below:

(i) the inventory balance equation,
(ii) the service level,
(iii) the admissibility of production plan,
(iv) the maximum production capacity.

Formally

(i) The Cost Functions. Consider

Production cost

=

𝐻

∑
𝑘=1

𝑝

∑
𝑗=1

𝑛

∑
𝑖=1

𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + Cp (𝑖) × 𝑈
𝑖,𝑗,𝑘

) .

Holding cost

=

𝐻

∑
𝑘=1

𝑝

∑
𝑗=1

𝑛

∑
𝑖=1

Cs (𝑖) ×
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
× 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

.

(2)

(ii) The Inventory Balance Equation. The available stock at the
end of each subperiod 𝑗 of period 𝑘 for each product 𝑖 is
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formulated in the form of flow balance constraints (inflow =
outflow):

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

(3)

where 𝑆
𝑖,0
is the initial stock level of product 𝑖.

This equation shows that the stock of product 𝑖 at the end
of each subperiod 𝑗 of each period 𝑘 ((𝑘 × 𝑝) − (𝑝 − 𝑗)) is
determined by the state of the stock of product 𝑖 at the end of
the subperiod (𝑘 × 𝑝) − (𝑝 − 𝑗) − 1.

(iii) The Admissibility of Production Plan and Service Level
Constraints. The service level of product 𝑖 is determined by
the probability constraint on the stock level at the end of each
period 𝑘:

Prob (𝑆
𝑖,(𝑘×𝑝)

≥ 0 ) ≥ 𝜃
𝑖

∀ {𝑘 = 1, . . . , 𝐻} , {𝑖 = 1, . . . , 𝑛} .

(4)

We can transform the probabilistic constraint of stock level to
a deterministic constraint.

Formally, the function becomes

𝑘

∑
𝑠=1

𝐷 (𝑖, 𝑠) + Stock min (𝑖, 𝑘)

≤

𝑘

∑
𝑠=1

𝑝

∑
𝑗=1

(𝑦
(𝑖,𝑗,𝑠)

× 𝑈
𝑖,𝑗,𝑠

) + stock init (𝑖, 𝑠 = 0)

∀ {𝑖 = 1, . . . , 𝑛} ,

(5)

where𝐷(𝑖, 𝑠) is the estimated demand of product 𝑖 during the
period 𝑠, Stock min(𝑖, 𝑘) is the minimum stock level of prod-
uct 𝑖 required at the end of period 𝑘, and stock init(𝑖, 𝑠 = 0)

is the initial stock level of product 𝑖.

(iv) The Maximum Production Capacity. The production
quantity of the machine for each product 𝑖, {𝑖 = 1, . . . , 𝑛}, is
limited and is presented as follows:

0 ≤ 𝑈
𝑖,𝑗,𝑘

≤
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
× 𝑈
𝑖 nom

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(6)

The term ⟨⟨𝛿
(𝑘×𝑝)−(𝑝−𝑗)

/Δ𝑡⟩⟩ allows taking into account the
influence of duration of subperiods 𝛿

(𝑘×𝑝)−(𝑝−𝑗)
on the max-

imum quantity of production. If 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

tends to 0, the
maximum quantity of production tends also to 0, and if
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

tends to Δ𝑡, the maximum quantity of production
tends to 𝑈

𝑖 nom (with 𝑈
𝑖 nom Nominal production quantity of

product 𝑖 during Δ𝑡).
However, the term ⟨⟨(𝛿𝑡

(𝑘×𝑝)−(𝑝−𝑗)
/Δ𝑡) × 𝑈

𝑖 nom⟩⟩ repre-
sents the maximum production quantity of product 𝑖 during
the subperiod 𝑗 of period 𝑘.

4.2. Problem Formulation. We recall that, in this study, we
assume that the horizon is divided into 𝐻 equal periods
and each period is divided into 𝑝 subperiods with different
durations. Figure 2 shows the distribution of the production
plan for the finite horizon𝐻×Δ𝑡. Each product 𝑖 is produced
in a single subperiod 𝑗 in each period 𝑘. The demand of each
product 𝑖 is satisfied at the end of each period 𝑘.

The mathematical formulation of the proposed problem
is based on the extension of themodel described by Zied et al.
[11] for the one product case study.

Their problem is defined as follows:

Min[Cs × 𝐸 [𝑆 (𝐻)
2
]

+

𝐻−1

∑
𝑘=0

(Cs × 𝐸 [𝑆 (𝑘)
2
] + Cp × 𝐸 [𝑢 (𝑘)

2
])] ,

(7)

where Cp is unit production cost and Cs is holding cost of a
product unit during the period 𝑘.

Formally, our stochastic production problem is defined as
follows:

Min (Ζ (𝑈))

𝑈 = 𝑈
𝑖,𝑗,𝑘

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻}

(8)
with
𝑍 (𝑈)

=

𝐻

∑
𝑘=1

𝑝

∑
𝑗=1

𝑛

∑
𝑖=1

[𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + (Cp (𝑖) × 𝐸 [(𝑈
𝑖,𝑗,𝑘

)
2

]))

+ (Cs (𝑖) ×
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡

× 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

])] ,

(9)
where 𝐸[⋅] is the mathematical expectation.

Under the following constraints:

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

(10)

Prob (𝑆
𝑖,(𝑘×𝑝)

≥ 0) ≥ 𝜃
𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} ,

(11)

0 ≤ 𝑈
𝑖,𝑗,𝑘

≤
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
× 𝑈
𝑖 nom

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

(12)

𝑝

∑
𝑗=1

𝛿
(𝑘×𝑝)−(𝑝−𝑗)

= Δ𝑡 ∀ {𝑘 = 1, . . . , 𝐻} . (13)



Mathematical Problems in Engineering 5

The first constraint stands for the inventory balance equation
for each product 𝑖, {𝑖 = 1, . . . , 𝑛} during each subperiod 𝑗,
{𝑗 = 1, . . . , 𝑝}, of period 𝑘, {𝑘 = 1, . . . , 𝐻}. Equation (11) refers
to the satisfaction level of demand of product 𝑖 in each period
𝑘. Constraint (12) defines the upper production quantity of
the machine for each product 𝑖. The aim of (13) is to divide
each period 𝑘 into 𝑝 different subperiods.

The constraints below should also be taken into account:

𝑛

∑
𝑖=1

𝑦
𝑖,𝑗,𝑘

= 1 ∀ {𝑗 = 1, . . . , 𝑝} for {𝑘 = 1, . . . , 𝐻} ,

𝑝

∑
𝑗=1

𝑦
𝑖,𝑗,𝑘

= 1 ∀ {𝑖 = 1, . . . , 𝑛} for {𝑘 = 1, . . . , 𝐻} ,

(14)

𝑦
𝑖,𝑗,𝑘

∈{0, 1} ∀ {𝑖 = 1, . . . , 𝑛} ,{𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(15)

Equation (14) indicates that only one type of product will be
produced in subperiod 𝑗 of period 𝑘. Constraint (15) states
that 𝑦

𝑖,𝑗,𝑘
is a binary variable. We note that 𝑦

𝑖,𝑗,𝑘
is equal to 1

if product 𝑖 is produced in subperiod 𝑗 of the period 𝑘, and 0
otherwise.

For each subperiod 𝑗 of period 𝑘, the equation of the stock
status is determined by the first constraint. This equation
remains random because of the uncertainty of fluctuating
demand. Therefore, the variables of production and storage
are stochastic. Their statistics depend on a probabilistic dis-
tribution function of demand. It is, therefore, necessary to use
constraint (11) for decision variables. These constraints can
help us to analyse the various production scenarios to
improve the performance of the production system.

4.3. The Deterministic Production Model. We admit that a
function 𝑓

(𝑖,𝑗,𝑘)
∀{𝑖 = 1, . . . , 𝑛}, {𝑗 = 1, . . . , 𝑝}, {𝑘 = 1, . . . , 𝐻},

represents the cost of storage and productionwhich is relative
to the proposed plan and 𝐸[⋅] represents the value of the
mathematical expectation. The quantity stocked of product
𝑖 at the end of the subperiod 𝑗 of period 𝑘 is stood for by
𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

. The production quantity required to satisfy the
demand of product 𝑖 at the end of period 𝑘 is 𝑈

𝑖,𝑗,𝑘
, where

𝑗 represents the subperiod during which the product 𝑖 is
produced.

Thus, the problem formulation can be presented as
follows:

𝑈
∗
= Min [𝐸 [𝑓

(𝑖,𝑗,𝑘)
(𝑈
𝑖,𝑗,𝑘

, 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)]] . (16)

The purpose, then, is to determine the decision variables
(𝑈
𝑖,𝑗,𝑘

, 𝑦
𝑖,𝑗,𝑘

and 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

) required to satisfy economically
the various demands under the constraints seen in the
previous subsection.

The resolution of the stochastic problem under these
assumptions is generally difficult. Thus, its transformation
into a deterministic problem facilitates its resolution.

(i) Inventory Balance Equation. The stochastic inventory
balance equation is

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘) ,

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻}

(17)

with 𝑆
𝑖,0
being the initial stock level of product 𝑖.

We suppose that the means and variance of demand are
known and constant for each product 𝑖 in each period 𝑘.

Therefore,

𝐸 [𝑑
𝑖 (𝑘)] = 𝑑

𝑖 (𝑘) , Var [𝑑
𝑖 (𝑘)] = 𝜎

2
(𝑑
𝑖 (𝑘))

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .
(18)

The inventory equation 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

is statistically described
by its means:

𝐸 [𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

] = 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(19)

We note that

𝐸 [𝑈
𝑖,𝑗,𝑘

] = �̂�
𝑖,𝑗,𝑘

= 𝑈
𝑖,𝑗,𝑘

(20)

because 𝑈
𝑖,𝑗,𝑘

is constant for each interval 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

.
And

Var (𝑈
𝑖,𝑗,𝑘

) = 0

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(21)

Then, the balance equation (10) can be converted into an
equivalent inventory balance equation:

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

(22)

with 𝑆
𝑖,0
being the average initial stock level of product.

(ii) Service Level Constraint. The second step is to convert the
service level constraint into a deterministic equivalent con-
straint by specifying certain minimum cumulative produc-
tion quantities that depend on the service level requirements.

Lemma 1. Consider the following:
𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) ≥ Var (𝑑
𝑖 (𝑘)) × 𝜑

−1
(𝜃
𝑖
) + 𝑑
𝑖 (𝑘) − 𝑆

𝑖,(𝑘−1)×𝑝

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .

(23)
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Proof. We know that

Prob (𝑆
𝑖,(𝑘×𝑝)

≥ 0) ≥ 𝜃
𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} ,

(24)

𝑆
𝑖,(𝑘×𝑝)

= 𝑆
𝑖,(𝑘−1)×𝑝

+

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻}

󳨐⇒ Prob(𝑆
𝑖,(𝑘−1)×𝑝

+

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘) ≥ 0) ≥ 𝜃

𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻}

󳨐⇒ Prob(𝑆
𝑖,(𝑘−1)×𝑝

+

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) ≥ 𝑑
𝑖 (𝑘)) ≥ 𝜃

𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻}

󳨐⇒ Prob(𝑆
𝑖,(𝑘−1)×𝑝

+

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘)

≥ 𝑑
𝑖 (𝑘) − 𝑑

𝑖 (𝑘)) ≥ 𝜃
𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻}

󳨐⇒ Prob(
𝑆
𝑖,(𝑘−1)×𝑝

+ ∑
𝑝

𝑗=1
(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘)

Var (𝑑
𝑖 (𝑘))

≥
𝑑
𝑖 (𝑘) − 𝑑

𝑖 (𝑘)

Var (𝑑
𝑖 (𝑘))

) ≥ 𝜃
𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .

(25)

Noting that

𝑋 =
𝑑
𝑖 (𝑘) − 𝑑

𝑖 (𝑘)

Var (𝑑
𝑖 (𝑘))

, (26)

𝑋 is a Gaussian random variable for demand 𝑑
𝑖
(𝑘).

Hence,

Prob(
𝑆
𝑖,(𝑘−1)×𝑝

+ ∑
𝑝

𝑗=1
(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘)

Var (𝑑
𝑖 (𝑘))

≥ 𝑋) ≥ 𝜃
𝑖

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .

(27)

We recall that 𝜃
𝑖
represents the probabilistic index (related to

customer satisfaction) of product 𝑖 and Var(𝑑
𝑖
(𝑘)) represents

the demand variance of product 𝑖 at period 𝑘.
The distribution function is invertible because it is an

increasing and differentiable function.
Hence,

𝑆
𝑖,(𝑘−1)×𝑝

+

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) − 𝑑
𝑖 (𝑘) ≥ Var (𝑑

𝑖 (𝑘)) × 𝜑
−1

(𝜃
𝑖
)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .

(28)

Therefore,

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) ≥ Var (𝑑
𝑖 (𝑘)) × 𝜑

−1
(𝜃
𝑖
) + 𝑑
𝑖 (𝑘) − 𝑆

𝑖,(𝑘−1)×𝑝

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} .

(29)

(iii) The Expression of the Total Production and Storage Cost.
In this step, we proceed to a simplification of the expected
cost of production and storage.

The expression of the total cost of production is presented
as follows.

Lemma 2. Consider the following:

𝑍 (𝑈) =

𝐻

∑
𝑘=1

𝑃

∑
𝑗=1

𝑛

∑
𝑖=1

{𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + (Cp (𝑖) × 𝑈2
𝑖,𝑗,𝑘

))

+ Cs (𝑖) ×
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡

× [𝜎2 (𝑆
𝑖,0
)

+ (

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑄)))

+ (

𝑗

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑘)))

+ (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]} .

(30)

Proof. See Appendix A.
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(iv) In Summary. The deterministic optimization problem
becomes as follows.

(a) The Objective Function. Consider

𝑈
∗
= Min

𝐻

∑
𝑘=1

𝑃

∑
𝑗=1

𝑛

∑
𝑖=1

[𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + (Cp (𝑖) × 𝑈2
𝑖,𝑗,𝑘

))

+ Cs (𝑖) ×
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡

× [𝜎
2
(𝑆
𝑖,0
)

+ (

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑄)))

+ (

𝑗

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑘)))

+ (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]] .

(31)

(b) The Constraints. Consider

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

𝑝

∑
𝑗=1

(𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

) ≥ Var (𝑑
𝑖 (𝑘)) × 𝜑

−1
(𝜃
𝑖
)

+ 𝑑
𝑖 (𝑘) − 𝑆

𝑖,(𝑘−1)×𝑝

∀ {𝑖 = 1, . . . , 𝑛} , {𝑘 = 1, . . . , 𝐻} ,

0 ≤ 𝑈
𝑖,𝑗,𝑘

≤
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡
× 𝑈
𝑖 nom

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} ,

𝑝

∑
𝑗=1

𝛿
(𝑘×𝑝)−(𝑝−𝑗)

= Δ𝑡, ∀ {𝑘 = 1, . . . , 𝐻} .

(32)

5. Maintenance Strategy

5.1. Description of the Maintenance Strategy. The mainte-
nance strategy adopted in this study is known as preventive
maintenance with minimal repair. The actions of preventive
maintenance are practiced in the period 𝑞 × 𝑇 (𝑞 = 1, 2, . . .).
The replacement rule for this policy is to replace the system
with another new system (as good as new) at each period 𝑞 ×

q = 1 q = 2

j = 1j = 2 j = p

D
eg

ra
da

tio
n 

ra
te

k = 1 k = 2 k = 3

T t2T

𝜆2 𝜆2p
𝜆1

𝜆p+1

𝛿p+1

Figure 3: Degradation rate.

𝑇. At each failure between preventive maintenance actions,
only one minimal repair is implemented. If we note Mc,
the cost of corrective maintenance actions, and Mp, the cost
of preventive maintenance actions and degradation of the
machine is linear, the total cost of maintenance is expressed
as follows:

Γ (𝑁) = Mc × 𝜙
(𝑁,𝑈)

+Mp × 𝑁. (33)

To develop the analytical model, it was assumed that

(i) durations of maintenance actions are negligible;

(ii) Mp and Mc costs incurred by the preventive and cor-
rective maintenance actions are known and constant,
with Mc ≫ Mp;

(iii) preventivemaintenance actions are always performed
at the end of the subperiods of production.

The aim of this maintenance strategy is to find the optimal
number of preventivemaintenance actions𝑁∗ (𝑁 = 1, 2, . . .)

minimizing the total cost of maintenance over a given
horizon𝐻×Δ𝑡. The existence of an optimal number of parti-
tions𝑁∗ and, therefore, the optimal preventive maintenance
period 𝑇∗ is proven in the literature. It has been proven that
𝑇
∗ exists if the failure rate is increasing [13].
Before determining the analytical model minimizing the

total cost of maintenance, we need first to develop the
expression of the failure rate 𝜆

(𝑘×𝑝)−(𝑝−𝑗)
(𝑡) and then the

average number of failures expression 𝜙
(𝑈,𝑁)

, during the finite
horizon𝐻 × Δ𝑡.

5.2. Expression of Failure Rate. Recall that the key of this
study is the influence of the variation of the production rates
on the failure rate.

Figure 3 represents the general description of the evolu-
tion of the failure rate, which depends on both the production
rate and the failure rate of the previous period.

As presented in Figure 3, the failure rate is reset after each
𝑞 × 𝑇, with 𝑞 = 1, . . . , 𝑁 + 1.
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(q − 1) × T

Period k − 1 Period k Period k + m Period k + m + 1

𝛿(k×p)−(p−1)

T

𝛿k×p q × T

1

2
3

Δt

𝛿((k+m)×p)

Figure 4: The evolution of the failure rate during the interval [(𝑞 − 1) × 𝑇, 𝑞 × 𝑇].

Thus, the expression of the failure rate depending on time
and production rate can be written as follows:

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡)

= [(𝜆
(𝑘×𝑝)−(𝑝−𝑗)−1

(𝛿
(𝑘×𝑝)−(𝑝−𝑗)−1

))

× (1 − In[
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 1)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,𝑗,𝑘

𝛿
(𝑘×𝑝)−(𝑝−𝑗)

×
1

𝑈
𝑖 nom/Δ𝑡

× 𝜆
𝑛 (𝑡)]

∀𝑡 ∈ [0, 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

] , ∀ {𝑘 = 1, . . . , 𝐻} , {𝑗 = 1, . . . , 𝑝} .

(34)

The term ⟨⟨𝑈
𝑖,𝑗,𝑘

/𝛿
(𝑘×𝑝)−(𝑝−𝑗)

⟩⟩ represents the production rate
of product 𝑖 during subperiod 𝑗 of period 𝑘.

The term ⟨⟨𝑈
𝑖 nom/Δ𝑡⟩⟩ represents the nominal produc-

tion rate of product 𝑖 during Δ𝑡.
Therefore,

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡)

= [(𝜆
(𝑘×𝑝)−(𝑝−𝑗)−1

(𝛿
(𝑘×𝑝)−(𝑝−𝑗)−1

))

× (1 − In[
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 1)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,𝑗,𝑘

× Δ𝑡

𝑈
𝑖 nom × 𝛿

(𝑘×𝑝)−(𝑝−𝑗)

× 𝜆
𝑛 (𝑡)]

∀𝑡 ∈ [0, 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

] , ∀ {𝑘 = 1, . . . , 𝐻} , {𝑗 = 1, . . . , 𝑝} .

(35)

The aim of the expression (1−In[((𝑘×𝑝)−(𝑝−𝑗))/(𝑞×𝑇)]) is
to reset the failure rate after each 𝑞 × 𝑇 with 𝑞 = 1, . . . , 𝑁 + 1.

Note that

𝑞 = In[
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 2)

𝑇
] + 1, (36)

where In[𝑥] is the integer part of number 𝑥.

Lemma 3. Consider the following:

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡)

= [(𝜆
0
+

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,𝑄

× Δ𝑡

𝑈
𝑖max × 𝛿

(𝑄×𝑝)−(𝑝−𝑙)

× 𝜆
𝑛
(𝛿
(𝑄×𝑝)−(𝑝−𝑙)

)

+

𝑗−1

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,𝑘

× Δ𝑡

𝑈
𝑖max × 𝛿

(𝑘×𝑝)−(𝑝−𝑙)

× 𝜆
𝑛
(𝛿
(𝑘×𝑝)−(𝑝−𝑙)

))

× (1 − In[
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 1)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,𝑗,𝑘

× Δ𝑡

𝑈
𝑖max × 𝛿

(𝑘×𝑝)−(𝑝−𝑗)

× 𝜆
𝑛 (𝑡)]

𝑡 ∈ [0, 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

] , ∀ {𝑘 = 1, . . . , 𝐻} , {𝑗 = 1, . . . , 𝑝} .

(37)

Proof. See Appendix B.

5.3. Expression of the Average Number of Failures. In order to
reduce the complexity of the generation of the optimal num-
ber of preventive maintenance, we assume that interventions
are made at the end of subperiods.

Hence, the function of the period of intervention is
presented as follows:

𝑇 = Round [
𝐻 × 𝑝

𝑁
] , (38)

where Round[𝑥] is a round number of 𝑥.
To determine the average number of failures expression

𝜙
(𝑈,𝑁)

during the finite horizon 𝐻 × Δ𝑡, we will focus on
the calculation of the average number of failures during the
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interval [(𝑞−1)×𝑇, 𝑞×𝑇], which we designate 𝜙𝑇
(𝑈,𝑁)

. Hence,
we have to calculate the three surfaces {1}, {2}, and {3}

mentioned in Figure 4.

Therefore, the average number of failures expression
during the interval [(𝑞 − 1) × 𝑇, 𝑞 × 𝑇] is presented as fol-
lows:

𝜙
𝑇

(𝑈,𝑁)
= [

[

𝑝

∑
𝑗=((𝑞−1)×𝑇+1)−(In[((𝑞−1)×𝑇)/Δ𝑡]×𝑝)

∫
𝛿(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

In[(𝑞×𝑇)/Δ𝑡]

∑
𝑘=Insup[((𝑞−1)×𝑇+1)/Δ𝑡]+1

𝑝

∑
𝑗=1

∫
𝛿(𝑘×𝑝)−(𝑝−𝑗)

0

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

𝑞×𝑇−In[(𝑞×𝑇)/Δ𝑡]×𝑝

∑
𝑗=1

∫
𝛿(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡]

]

,

(39)

where Insup[𝑥] is the superior integer part of number 𝑥.
Thus, the average number of failures expression 𝜙

(𝑈,𝑁)

during the finite horizon𝐻 × Δ𝑡 is defined by
𝜙
(𝑈,𝑁)

=

𝑁+1

∑
𝑞=1

𝜙
𝑇

(𝑈,𝑁)
. (40)

Therefore, we have the following lemma.

Lemma 4. Consider the following:

𝜙
(𝑈,𝑁)

=

𝑁+1

∑
𝑞=1

[

[

𝑝

∑
𝑗=((𝑞−1)×𝑇+1)−(In[((𝑞−1)×𝑇)/Δ𝑡]×𝑝)

∫
𝛿(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

In[(𝑞×𝑇)/Δ𝑡]

∑
𝑘=Insup[((𝑞−1)×𝑇+1)/Δ𝑡]+1

𝑝

∑
𝑗=1

∫
𝛿(𝑘×𝑝)−(𝑝−𝑗)

0

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

𝑞×𝑇−In[(𝑞×𝑇)/Δ𝑡]×𝑝

∑
𝑗=1

∫
𝛿(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡]

]

.

(41)

Note that𝑁 = 1, 2, . . ..

5.4. Expression of the Total Cost of Maintenance. We recall
that the initial expression of the total cost of maintenance
presented in (33) is

Γ (𝑁) = Mc × 𝜙
(𝑈,𝑁)

+Mp × 𝑁. (42)

Using the average number of failures 𝜙
(𝑈,𝑁)

established in
Lemma 4, we can deduce that the analytical expression of the
total maintenance cost is expressed as follows:

Γ (𝑁) = [

[

Mc ×
𝑁+1

∑
𝑞=1

[

[

𝑝

∑
𝑗=((𝑞−1)×𝑇+1)−(In[((𝑞−1)×𝑇)/Δ𝑡]×𝑝)

∫
𝛿(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[((𝑞−1)×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

In[(𝑞×𝑇)/Δ𝑡]

∑
𝑘=Insup[((𝑞−1)×𝑇+1)/Δ𝑡]+1

𝑝

∑
𝑗=1

∫
𝛿(𝑘×𝑝)−(𝑝−𝑗)

0

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡) 𝑑𝑡

+

𝑞×𝑇−In[(𝑞×𝑇)/Δ𝑡]×𝑝

∑
𝑗=1

∫
𝛿(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗)

0

𝜆
(In[(𝑞×𝑇)/Δ𝑡]+1)×𝑝−(𝑝−𝑗) (𝑡) 𝑑𝑡]

]

+Mp × 𝑁]

]

.

(43)
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The goal is to find the optimal number of preventive main-
tenance actions 𝑁∗ that minimizes the total cost of main-
tenance Γ(𝑁). Using this decision variable, we can deduce
the optimal period of intervention 𝑇

∗, knowing that 𝑇∗ =

Round[(𝐻 × 𝑝)/𝑁
∗
].

5.5. Existence of an Optimal Solution. The following equation
determines analytically the optimal solution:

𝜕Γ (𝑁)

𝜕𝑁
= 0. (44)

Since it is difficult to solve analytically the expression of
maintenance cost, we use numerical procedure.

We start by proving the existence of a local minimum.
We have the following.
Limits at the terminals of Γ(𝑁) are

lim
𝑁→1

Γ (𝑈,𝑁) = lim
𝑁→1

(𝑀
𝑐
× 𝜙 (𝑈,𝑁)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
→constant

+ 𝑀
𝑝
× 𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→constant

)

= 𝑀
𝑐
× 𝜙 (𝑈, 1) + 𝑀

𝑝
,

lim
𝑁→+∞

Γ (𝑈,𝑁) = lim
𝑁→+∞

(𝑀
𝑐
× 𝜙 (𝑈,𝑁)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
→0

+ 𝑀
𝑝
× 𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
→+∞

)

= +∞.

(45)

Note that 𝜙(𝑈,𝑁) is the average number of failures. Mc and
Mp represent, respectively, the corrective and the preventive
maintenance costs.

Moreover,

Γ (𝑈,𝑁 + 1) − Γ (𝑈,𝑁) ≥ 0

󳨐⇒ [𝑀
𝑐
× 𝜙 (𝑈, (𝑁 + 1)) + 𝑀

𝑝
× (𝑁 + 1)]

− [𝑀
𝑐
× 𝜙 (𝑈,𝑁) + 𝑀

𝑝
× 𝑁] ≥ 0

󳨐⇒ 𝑀
𝑐
× (𝜙 (𝑈, (𝑁 + 1)) − 𝜙 (𝑈,𝑁)) + 𝑀

𝑝
≥ 0

󳨐⇒ 𝜙 (𝑈, (𝑁 + 1)) − 𝜙 (𝑈,𝑁) ≤
𝑀
𝑝

𝑀
𝑐

.

(46)

In addition,

Γ (𝑈,𝑁) − Γ (𝑈,𝑁 − 1) ≤ 0

󳨐⇒ [𝑀
𝑐
× 𝜙 (𝑈,𝑁) + 𝑀

𝑝
× (𝑁)]

− [𝑀
𝑐
× 𝜙 (𝑈, (𝑁 − 1)) + 𝑀

𝑝
× (𝑁 − 1)] ≤ 0

󳨐⇒ 𝑀
𝑐
× (𝜙 (𝑈,𝑁) − 𝜙 (𝑈, (𝑁 − 1))) − 𝑀

𝑝
≤ 0

󳨐⇒ 𝜙 (𝑈,𝑁) − 𝜙 (𝑈, (𝑁 − 1)) ≥
𝑀
𝑝

𝑀
𝑐

.

(47)

In summary, there is an optimal number of partition 𝑁
∗,

which is unique and satisfies the previous relations (46) and
(47). The following lemma ensures the existence of a local
minimum.

Lemma 5. Consider the following:

∃𝑁
∗
𝑠𝑖 𝜉
𝑁

≤
𝑀
𝑝

𝑀
𝑐

≤ 𝜉
𝑁−1

, (48)

with

𝜉
𝑁

= 𝜙 (𝑈,𝑁) − 𝜙 (𝑈, (𝑁 + 1)) . (49)

Therefore, there exists an optimal number of partition 𝑁∗,
which satisfies the following expressions:

𝑁
∗
∃𝑠𝑖

{{{{{

{{{{{

{

𝜙 (𝑈, (𝑁 + 1)) − 𝜙 (𝑈,𝑁) ≥ 0

𝜙 (𝑈,𝑁) − 𝜙 (𝑈, (𝑁 − 1)) ≤ 0

lim
𝑁→1

Γ (𝑈,𝑁) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

lim
𝑁→+∞

Γ (𝑈,𝑁) = +∞.

(50)

The resolution of this maintenance policy, using a numer-
ical procedure, is performed by incrementing the number
of maintenance intervals until an 𝑁

∗, satisfying the two
first relations in Lemma 5 and minimizing the total cost of
maintenance Γ(𝑁) described by (43).

6. Numerical Example

From the industrial example presented in Section 2, we have
considered a system producing 3 types of fiber in order
to meet three random demands according to every type of
product. Using the analytical models developed in previous
sections, we start by establishing the optimal production plan
and then we determine the optimal maintenance strategy
expressed as optimal number of preventive maintenance
minimizing the total cost of maintenance over a finite
planning horizon:𝐻 = 8 trimesters (two years). We note that
the optimal maintenance strategy is obtained while consid-
ering of the influence of the production plan on the system
degradation. We supposed that the standard deviation of
demand of product 𝑖 is the same for all periods. The data
required to run this model are given in sequence.

6.1. Numerical Example

(i) The Data Relating to Production. The mean demands (in
bobbins) as shown in Table 1:

𝑑
1
= 200, 𝜎 (𝑑

1
) = 1.5,

𝑑
2
= 110, 𝜎 (𝑑

2
) = 0.9,

𝑑
3
= 320, 𝜎 (𝑑

3
) = 1.2.

(51)

The other data are presented as shown in Table 2.

(ii) The Data Relating to System Reliability. System reliability
and costs related to maintenance actions are defined by the
following data:

(1) the law of failure characterizing the nominal condi-
tions is Weibull. It is defined by



Mathematical Problems in Engineering 11

Table 1

Demands
Trim. 1 Trim. 2 Trim. 3 Trim. 4 Trim. 5 Trim. 6 Trim. 7 Trim. 8

Product 1 201 199 198 199 201 202 200 199
Product 2 111 119 108 111 112 110 110 119
Product 3 321 322 323 319 321 317 320 319

Table 2

Initial stock level
𝑆
𝑖,0
(up)

Nominal production quantities
𝑈
𝑖 nom (up)

Unit production costs
Cp(𝑖) (um)

Unit holding costs
Cs(𝑖) (um/ut)

Satisfaction rates
𝜃
𝑖
(%)

Product 1 110 750 13 3 87
Product 2 85 530 17 5 95
Product 3 145 1150 9 2 90

Table 3: The optimal production plan.

Trimester 1 Trimester 2 Trimester 3 Trimester 4
𝛿
1

𝛿
2

𝛿
3

𝛿
4

𝛿
5

𝛿
6

𝛿
7

𝛿
8

𝛿
9

𝛿
10

𝛿
11

𝛿
12

0.85 0.71 1.44 1.19 1.20 0.61 0.81 1.18 1.01 0.43 0.74 1.83
Product 1 0 169 0 388 0 0 0 321 0 0 151 0
Product 2 150 0 0 0 185 0 134 0 0 0 0 312
Product 3 0 0 507 0 0 230 0 0 387 158 0 0

Trimester 5 Trimester 6 Trimester 7 Trimester 8
𝛿
13

𝛿
14

𝛿
15

𝛿
16

𝛿
17

𝛿
18

𝛿
19

𝛿
20

𝛿
21

𝛿
22

𝛿
23

𝛿
24

1.82 0.87 0.31 0.56 0.55 1.89 1.36 0.51 1.13 1.05 0.77 1.18
Product 1 0 212 0 0 138 0 272 0 0 130 0 0
Product 2 0 0 52 58 0 0 0 0 92 0 81 0
Product 3 554 0 0 0 0 422 0 202 0 0 0 135

(a) scale parameter (𝛽): 12 months,
(b) shape parameter (𝛼): 2,
(c) position parameter (𝛾): 0,

(2) the initial failure rate: 𝜆
0
= 0.

These parameters provide information on the evolution of the
failure rate in time.

This failure rate is increasing and linear over time. Thus,
the function of the nominal failure rate is expressed by

𝜆
𝑛 (𝑡) =

𝛼

𝛽
× (

𝑡

𝛽
)

𝛼−1

=
2

12
× (

𝑡

12
) . (52)

The preventive and corrective maintenance costs are, respec-
tively, Mp = 800mu and Mc = 1 500mu.

6.2. Determination of the Economic Production Plan. The
economic production plan obtained is presented in Table 3.

6.3. Determination of the Optimal Maintenance Plan. As
described in Figure 5, the optimal maintenance strategy is
obtained based on the optimal production plan given in the
previous section.

Figure 6 shows the curve of the total cost of maintenance
according to𝑁 (number of preventive maintenance actions).

We conclude that the optimal number of preventive mainte-
nance actions that minimizes the total cost of maintenance
during the finite horizon (two years) is𝑁∗ = 2 times. Hence,
the optimal period to intervene for the preventive mainte-
nance is 𝑇

∗ = 12 months, and the minimal total cost of
maintenance Γ∗(𝑁) = 3316mu.

7. The Economical Profit of the Study

We recall that the specificity of this study is that it considered
the impact of the production rate variation on the system
degradation and consequently on the optimal maintenance
strategy adopted in the case of multiple product. In order to
show the significance of our study we will consider, in this
section, the case of not considering the influence of the
production rate variation on the system’s degradation.That is
to say, we assume that the manufacturing system is exploited
at its maximal production rate every time. Analytically, we
will consider the nominal failure rate which depends only on
time. The results of this study are presented in Table 4.

The optimal number of preventive maintenance obtained
in the case when we did not consider the variation of produc-
tion rate is𝑁∗ = 3 times and it corresponds to a total cost of
maintenance during the finite horizon (two years), Γ∗(𝑁) =

3 704mu. We recall that in our case study when we consider
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Optimization of
production policy

Optimization of
maintenance strategy

N∗

d = di, k ( )

U∗ = Ui,j,k ( )
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1, . . ., n
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1, . . ., H
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Figure 5: Sequential production and maintenance optimization.
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Figure 6: The total cost of maintenance depending to𝑁.

Table 4: The sensitivity study based on the variation of production
rate.

Γ∗(𝑁) (um) 𝑁∗ (times)
Case 1: considering variation of
production rate 3 316 2

Case 2: not considering the variation of
production rate 3 704 3

the variation of production rate we have obtained 𝑁∗ =

2 and Γ∗(𝑁) = 3 316mu. We can easily note that we have
reduced the optimal number of preventive maintenance with
performing an economical gain estimated at 10%.

Several studies have addressed issues related to produc-
tion and maintenance problem. But, the consideration of the
materiel degradation according to the production rate in the
case of multiple-product has been rarely studied.

This study was conducted to deal with the problem of an
optimal production and maintenance planning for a manu-
facturing system.The significance of the present study is that
we took into account the influence of the production plan
on the system degradation in order to establish an optimal
maintenance strategy. The considered system is composed of
a single machine which produces several products in order to
meet corresponding several random demands.

8. Conclusion

In this paper, we have discussed the problem of integrated
maintenance to production for a manufacturing system con-
sisting of a single machine which produces several types of
products to satisfy several random demands. As the machine

is subject to random failures, preventive maintenance actions
are considered in order to improve its reliability. At failure, a
minimal repair is carried out to restore the system into the
operating state without changing its failure rate.

At first we have formulated a stochastic production
problem. To solve this problem, we have used a production
policy to achieve a level of economic output. This policy is
characterized by the transformation of the problem to a deter-
ministic equivalent problem in order to obtain the economic
production plan. In the second step, taking into account the
economic production plan obtained, we have studied and
optimized the maintenance policy. This policy is defined by
preventive actions carried out at constant time intervals. The
objective of this policy is to determine the optimal number of
preventivemaintenance and the optimal intervention periods
over a finite horizon. This policy is characterized by a failure
rate for a linear degradation of the equipment considering
the influence of production rate variation on the system
degradation and on the optimal maintenance plan in the case
of multiple products represents.

The promising results obtained in this thesis can lead to
interesting perspectives. A perspective that we are looking for
at the short term, is to consider maintenance durations. We
recall that, throughout our study, we neglected the durations
of actions of preventive and correctivemaintenance. It is clear
that the consideration of these durations impacts the optimal
maintenance plan and the established production plan. In
the medium term, it is interesting to concretely consider the
impact of logistics service on the study. It is clear that the
in-maintenance logistics are absent in most researches. The
combination of maintenance logistics and production repre-
sents a motivating perspective in this field of study.

Another interesting perspective specifying the manufac-
tured product can be explored.

Appendices

A. Expression of the Total Production and
Storage Cost

We have
𝑍 (𝑈)

=

𝐻

∑
𝑘=1

𝑝

∑
𝑗=1

𝑛

∑
𝑖=1

[𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + (Cp (𝑖) × 𝐸 [(𝑈
𝑖,𝑗,𝑘

)
2

]))

+ (Cs (𝑖) ×
𝛿𝑡
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡

× 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

])] ,
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𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Int [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘) ,

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(A.1)

Also,

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

= 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Ent [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)

∀ {𝑖 = 1, . . . , 𝑛} , {𝑗 = 1, . . . , 𝑝} , {𝑘 = 1, . . . , 𝐻} .

(A.2)

Therefore,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= 𝐸[([ 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

− Ent [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘)]

− [ 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

+ (𝑦
𝑖,𝑗,𝑘

× 𝑈
𝑖,𝑗,𝑘

)

−Ent [
𝑗

𝑝
] × 𝑑
𝑖 (𝑘) ])

2

]

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= 𝐸[([𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

]

− [Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘))])

2

]

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)
2

− 2 × [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)

× (Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))]

+ (Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))

2

]

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)
2

]

− 2 × 𝐸 [(𝑆𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1 − 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)

×(Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))]

+ 𝐸[(Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))

2

]] .

(A.3)

𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

and 𝑑
𝑖
(𝑘) are independent random variables,

so we can deduce

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)
2

]

− 2 × 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)]

× 𝐸 [(Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))]

+𝐸[(Ent [
𝑗

𝑝
] × (𝑑

𝑖 (𝑘) − 𝑑
𝑖 (𝑘)))

2

]] .

(A.4)

On the other hand, we note that

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)]

= 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)] − 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)] = 0.

(A.5)

Therefore,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)
2

]

+(Ent [
𝑗

𝑝
])

2

× 𝐸 [(𝑑
𝑖 (𝑘) − 𝑑

𝑖 (𝑘))
2

]] .

(A.6)

We know that

𝐸 [(𝑥
𝑘
− 𝑥
𝑘
)
2
] = Var (𝑥

𝑘
) ,

(Int [
𝑗

𝑝
])

2

= Int [
𝑗

𝑝
] , because 0 ≤

𝑗

𝑝
≤ 1.

(A.7)

Therefore,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

) + Ent [
𝑗

𝑝
] × Var (𝑑

𝑖 (𝑘)) .

(A.8)
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Finally,

Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

) = Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)−1

)

+ Ent [
𝑗

𝑝
] × Var (𝑑

𝑖 (𝑘)) .

(A.9)

Consequently,

(i) for 𝑘 = 1,

(a) 𝑗 = 1:

Var (𝑆
𝑖,1
) = Var (𝑆

𝑖,0
) + (Ent [ 1

𝑝
]) × Var (𝑑

𝑖 (1)) ,

(A.10)

(b) 𝑗 = 2:

Var (𝑆
𝑖,2
) = Var (𝑆

𝑖,0
) +

2

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (1)) ,

(A.11)

(c) 𝑗 = 𝑝:

Var (𝑆
𝑖,𝑝
) = Var (𝑆

𝑖,0
) +

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (1)) ,

(A.12)

(ii) for 𝑘 = 2,

(a) 𝑗 = 1:

Var (𝑆
𝑖,𝑝+1

) = [Var (𝑆
𝑖,0
) +

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (1))

+ Ent [ 1

𝑝
] × Var (𝑑

𝑖 (2))] ,

(A.13)

(b) 𝑗 = 2:

Var (𝑆
𝑖,𝑝+2

) = [Var (𝑆
𝑖,0
) +

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
]

× Var (𝑑
𝑖 (1)) + Ent [ 1

𝑝
]

× Var (𝑑
𝑖 (2)) + Ent [ 2

𝑝
] × Var (𝑑

𝑖 (2))] ,

(A.14)

(c) 𝑗 = 𝑝:

Var (𝑆
𝑖,(2×𝑝)

) = [Var (𝑆
𝑖,0
) +

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (1))

+

𝑃

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖
(𝑝))] ,

(A.15)

(iii) for any value of 𝑘,

(a) 𝑗 = 1:

Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−1)

) = [Var (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
]

× Var (𝑑
𝑖 (𝑄))

+

1

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑘))] ,

(A.16)

(b) 𝑗 = 2:

Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−2)

) = [Var (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
]

× Var (𝑑
𝑖 (𝑄))

+

2

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑘))] ,

(A.17)

(c) for any value of 𝑗,

󳨐⇒ Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)

= [Var (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑄))

+

𝑗

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑘))] .

(A.18)

On the other hand,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= 𝐸 [ (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

− 2 × 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

× 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

+ (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

− 𝐸 [2 × 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

× 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

]

+𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]] .

(A.19)

We know that

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] = (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

. (A.20)
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Hence,

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] − 2 × 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

× 𝐸 [𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

] + (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] ,

𝐸 [𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

] = 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [ 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] − 2 × (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

×𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] + (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] .

(A.21)

Consequently,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] − (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

.

(A.22)

Noting that

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

− 𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)

󳨐⇒ Var (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)

= 𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] − (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

,

(A.23)

we deduce from (A.18) and (A.23) that

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] − (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

= [Var (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑄))

+

𝑗

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑘))]

󳨐⇒ 𝐸[(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [ Var (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑄))

+

𝑗

∑
𝑙=1

Ent [ 𝑙

𝑝
] × Var (𝑑

𝑖 (𝑘)) + (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

] .

(A.24)

Consequently,

𝐸 [(𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]

= [ 𝜎2 (𝑆
𝑖,0
) +

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Ent [ 𝑙

𝑝
] × 𝜎
2
(𝑑
𝑖 (𝑄))

+

𝑗

∑
𝑙=1

Ent [ 𝑙

𝑝
] × 𝜎
2
(𝑑
𝑖 (𝑘)) + (𝑆

𝑖,(𝑘×𝑝)−(𝑝−𝑗)
)
2

] .

(A.25)

Substituting (A.25) in the expected cost expression (9),

𝑍 (𝑈) =

𝐻

∑
𝑘=1

𝑃

∑
𝑗=1

𝑛

∑
𝑖=1

{𝑦
𝑖,𝑗,𝑘

× (St (𝑖) + (Cp (𝑖) × 𝑈2
𝑖,𝑗,𝑘

))

+ Cs (𝑖) ×
𝛿
(𝑘×𝑝)−(𝑝−𝑗)

Δ𝑡

× [𝜎2 (𝑆
𝑖,0
)

+ (

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑄)))

+ (

𝑗

∑
𝑙=1

Int( 𝑙

𝑝
) × 𝜎
2
(𝑑
𝑖 (𝑘)))

+ (𝑆
𝑖,(𝑘×𝑝)−(𝑝−𝑗)

)
2

]} .

(A.26)

B. Expression of Failure Rate

Equation (A.9) is expressed as follows for the different
subperiods:

(i) for 𝑘 = 1,

(a) 𝑗 = 1:

𝜆
1 (𝑡) = (𝜆

0
) × (1 − In [

0

𝑞 × 𝑇
]) +

𝑛

∑
𝑖=1

𝑈
𝑖,1,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

1

× 𝜆
𝑛 (𝑡) ,

(B.1)

(b) 𝑗 = 2:

𝜆
2 (𝑡) = 𝜆

1
(𝛿
1
) × (1 − In [

1

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,2,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

2

× 𝜆
𝑛 (𝑡) ,
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𝜆
2 (𝑡) = (𝜆

0
+

𝑛

∑
𝑖=1

𝑈
𝑖,1,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

1

× 𝜆
𝑛
(𝛿
(1)

))

× (1 − In [
1

𝑞 × 𝑇
]) +

𝑛

∑
𝑖=1

𝑈
𝑖,2,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

2

× 𝜆
𝑛 (𝑡) ,

(B.2)

(c) 𝑗 = 𝑝:

𝜆
𝑝 (𝑡) = (𝜆

𝑝−1
(𝛿
𝑝−1

)) × (1 − In [
𝑝 − 1

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,𝑝,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

𝑝

× 𝜆
𝑛 (𝑡) ,

𝜆
𝑝 (𝑡) = [(𝜆

0
+

𝑝−1

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

𝑙

× 𝜆
𝑛
(𝛿
(𝑙)
))

×(1 − In [
𝑝 − 1

𝑞 × 𝑇
]) +

𝑛

∑
𝑖=1

𝑈
𝑖,𝑝,1

× Δ𝑡

𝑈
𝑖 nom × 𝛿

𝑝

× 𝜆
𝑛 (𝑡)] ,

(B.3)

(ii) for any value of 𝑘,

(a) 𝑗 = 1:

𝜆
((𝑘−1)×𝑝)+1 (𝑡)

= [(𝜆
(𝑘−1)×𝑝

(𝛿
(𝑘−1)×𝑝

)) × (1 − In[
((𝑘 − 1) × 𝑝)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,1,𝑘

× Δ𝑡

𝑈
𝑖 nom × 𝛿

((𝑘−1)×𝑝)+1

× 𝜆
𝑛 (𝑡)] ,

𝜆
((𝑘−1)×𝑝)+1 (𝑡)

= [(𝜆
0
+

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,𝑄

× Δ𝑡

𝑈
𝑖 nom × 𝛿

(𝑄×𝑝)−(𝑝−𝑙)

× 𝜆
𝑛
(𝛿
(𝑄×𝑝)−(𝑝−𝑙)

))

× (1 − In[
((𝑘 − 1) × 𝑝)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,1,𝑘

× Δ𝑡

𝑈
𝑖 nom × 𝛿

((𝑘−1)×𝑝)+1

× 𝜆
𝑛 (𝑡)] ,

(B.4)

(b) for any value of 𝑗,

𝜆
(𝑘×𝑝)−(𝑝−𝑗) (𝑡)

= [(𝜆
0
+

𝑘−1

∑
𝑄=1

𝑝

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,𝑄

× Δ𝑡

𝑈
𝑖 nom × 𝛿

(𝑄×𝑝)−(𝑝−𝑙)

× 𝜆
𝑛
(𝛿
(𝑄×𝑝)−(𝑝−𝑙)

)

+

𝑗−1

∑
𝑙=1

𝑛

∑
𝑖=1

𝑈
𝑖,𝑙,𝑘

× Δ𝑡

𝑈
𝑖 nom × 𝛿

(𝑘×𝑝)−(𝑝−𝑙)

× 𝜆
𝑛
(𝛿
(𝑘×𝑝)−(𝑝−𝑙)

))

× (1 − In[
(𝑘 × 𝑝) − (𝑝 − 𝑗 + 1)

𝑞 × 𝑇
])

+

𝑛

∑
𝑖=1

𝑈
𝑖,𝑗,𝑘

× Δ𝑡

𝑈
𝑖 nom × 𝛿

(𝑘×𝑝)−(𝑝−𝑗)

× 𝜆
𝑛 (𝑡)]

𝑡 ∈ [0, 𝛿
(𝑘×𝑝)−(𝑝−𝑗)

] ∀ {𝑘 = 1, . . . , 𝐻} , {𝑗 = 1, . . . , 𝑝} .

(B.5)
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