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A SVM-based cursive character recognizer
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Abstract

This paper presents a cursive character recognizer, a crucial module in any cursive word recognition system based on a segmentation and
recognition approach. The character classification is achieved by using support vector machines (SVMs) and a neural gas. The neural gas is
used to verify whether lower and upper case version of a certain letter can be joined in a single class or not. Once this is done for every
letter, the character recognition is performed by SVMs. A database of 57 293 characters was used to train and test the cursive character
recognizer. SVMs compare notably better, in terms of recognition rates, with popular neural classifiers, such as learning vector quantization
and multi-layer-perceptron. SVM recognition rate is among the highest presented in the literature for cursive character recognition.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Off-line cursive word recognition has many applications such
as the reading of postal addresses and the automatic process-
ing of forms, checks and faxes [1,2]. The main approaches
[3,4] for off-line cursive word recognition can be divided into
segmentation-based and holistic one. The former is based on
the word segmentation into letters [5,6] and the recognition of
individual letters; the latter tries to recognize the word image
as a whole [2].

In the segmentation-based strategy for cursive word recog-
nition, no method is available to achieve a perfect segmenta-
tion. Hence the word is first oversegmented, i.e. fragmented
into primitives that are characters or parts of them, to ensure
that all appropriate letter boundaries have been dissected. To
find the optimal segmentation, a set of segmentation hypothe-
ses is tested by merging neighboring primitives and invoking
a classifier to score the combination. Finally, the word with
the optimal score is generally found by applying dynamic pro-
gramming techniques [7].
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A crucial module in the segmentation-based approach is a
cursive character recognizer for scoring individual characters.
It has to cope with the high variability of the cursive letters
and their intrinsic ambiguity (letters like e and l or u and n can
have the same shape).

In this paper, we present a cursive character recognizer
where the character classification is achieved by using support
vector machines (SVMs) and a neural gas (NG). The NG is
used to verify when the upper and lower case versions of a
letter can form a common class. This happens when the two
characters (e.g. o and O) are similar in shape and their vectors
in the feature space occupy neighboring or even overlapping
regions. By grouping the characters in this way, the number
of classes is reduced and a more suitable representation of the
data is obtained. The classifier, based on SVMs, provides for
the character the class attribution. To our best knowledge, the
use of SVMs in the cursive character recognition represents
a novelty.

The paper is organized as follows: in Section 2 the
method for extracting features for character representation
is presented; a review of SVM and NG is provided in
Sections 3 and 4, respectively; in Section 5 reports some
experimental results; in Section 6 some conclusions are
drawn.
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2. Feature extraction

Most character recognizers do not work on the raw image,
but on a suitable compact representation of the image by means
of a vector of features. Since cursive characters present high
variability in shapes, a feature extractor should have negligible
sensitivity to local shifts and distortions. Therefore feature ex-
tractors that perform local averaging are more appropriate than
others that yield an exact reconstruction of the pattern (e.g.
Zernike polynomials, moments) as shown in Ref. [8]. The fea-
ture extractor, fed with the binary image of an isolated cursive
character, generates local and global features. The local features
are extracted from subimages (cells) arranged in a regular grid
covering the whole image, as shown in Fig. 1. A fixed set of
operators is applied to each cell. The first operator is a counter
that computes the percentage of foreground pixels in the cell
(gray feature) with respect to the total number of foreground
pixels in the character image. If ni is the number of foreground
pixels in cell i and M is the total number of foreground pixels
in the pattern, then the gray feature related to cell i is ni/M .
The other operators try to estimate to which extent the black
pixels in the cell are aligned along some directions. For each
direction of interest, a set of N, equally spaced, straight lines
are defined, that span the whole cell and that are parallel to
the chosen direction. Along each line j ∈ [1, N ] the number
nj of black pixels is computed and the sum

∑N
j=1 n2

j is then
obtained for each direction. The difference between the sums
related to orthogonal directions is used as feature. In our case,
the directions of interest were 0o and 90o and the computation
of the directional feature becomes easier. If we indicate with h

Fig. 1. The image of the character is divided in cells of equal size, arranged
in a 4 × 4 grid. The dashed lines indicate the parts of the cells which are
overlapped.

Fig. 2. Global features. The dashed line is the baseline, the fraction of h below
is used as first global feature. The second global feature is the ratio w/h.

and w, respectively, the height and the width in pixels of the
cell, the directional feature d is given by

d = 1

2

⎛
⎝1 + 1

hw2

h∑
j=1

n2
j − 1

h2w

w∑
i=1

n2
i

⎞
⎠ , (1)

where nj and ni indicate, respectively, the number of the black
pixels along the j th row and the ith column.

We enriched the local feature set with two global features
giving information about the overall shape of the cursive char-
acter and about its position with respect to the baseline of the
cursive word. As shown in Fig. 2, the baseline is the line on
which a writer implicitly aligns the word in the absence of
rulers. The first global feature measures the fraction of the char-
acter below the baseline and detects eventual descenders. The
second feature is the width/height ratio.

The number of local features can be arbitrarily determined
by changing the number of cells or directions examined in each
cell. Since classifier reliability can be hard when the number of
features is high (curse of dimensionality, [9]), we use simple
techniques for feature selection in order to keep the feature
number as low as possible. Directional features corresponding
to different directions were applied and the one having the
maximal variance was retained. Therefore the feature set was
tested changing the number of cells and the grid giving the best
results (4 × 4) was selected.

In the reported experiments we used a feature vector of 34 el-
ements. Two features are global (baseline and width/height ra-
tio) while the remaining 32 are generated from 16 cells, placed
on a regular 4×4 grid; from each cell, the gray feature and one
directional feature are extracted. An implementation, in C lan-
guage, of the feature extraction process is available on request.

3. SVM for classification

Firstly we recall the definition of Mercer kernel [10].

Definition 1. Let X be a nonempty set. A function G : X×X →
R is called a Mercer kernel (or positive definite kernel) if and
only if is symmetric (i.e. G(x, y) = G(y, x) ∀x, y ∈ X) and∑n

j=1
∑n

k=1 cj ckG(xj , xk)�0 for all n�2, x1, . . . , xn ⊆ X

and c1, . . . , cn ⊆ R. Each Mercer kernel G(·) can be repre-
sented as: G(x, y)=〈�(x), �(y)〉 where 〈·, ·〉 is the inner prod-
uct and � : X → F, F is called feature space.
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An example of Mercer kernel is the Gaussian G(	x, 	y) =
exp(−‖	x−	y‖2

�2 ) where � ∈ R, 	x, 	y ∈ Rn.
Support vector machine (SVM) [11,12] is an algorithm that,

after projecting data in the Feature space, computes an optimal
separating hyperplane.

3.1. Optimal separating hyperplane

In what follows, we assume we are given a set D of patterns
	xi ∈ Rn with i = 1, . . . , �. Each pattern 	xi belongs to either
of two classes and thus is given a label yi ∈ {−1, +1}. The
patterns with output +1 are called positive patterns, while the
others are called negative patterns. The goal is to establish
the equation 	w · 	x + b ( 	w, 	x ∈ Rn, b ∈ R) of the optimal
hyperplane that divides D leaving all points of the same class
on the same side while maximizing the distance between the
two classes and the hyperplane. This can be expressed by the
constraints: yi(〈 	w · 	xi〉 + b)�1, i = 1, . . . , �.

In most practical problems, a separating hyperlane may not
exist. Due to presence of noise, an overlapping between classes
may exist. Hence it has to allow that the constraints can be
violated by some examples [11,12]. Using slack variables �i �0
the constraints can be relaxed in:

yi · (〈 	w · 	xi〉 + b)�1 − �i , i = 1, . . . , �. (2)

Therefore we can construct a classifier, SVM solving the fol-
lowing optimization problem:

minimize
1

2
‖ 	w‖2 + C

�∑
i=1

�i

subject yi · (〈 	w · 	xi〉 + b)�1 − �i , i = 1, . . . , �,

�i �0, i = 1, . . . , �.

The classifier controls at the same time the margin (‖w‖) and
the number of training errors. The regularization constant C�0
determines the trade-off between the two terms. The conditional
optimization problem can be solved by introducing Lagrange
multipliers �i �0 and a Lagrangian function L

L( 	w, b, �) = 1

2
‖ 	w‖2 + C

�∑
i=1

�i

−
�∑

i=1

�i (yi(〈	xi · 	w〉 + b) − 1 + �i ). (3)

The Lagrangian L has to be minimized with respect to the pri-
mal variables 	w and b and maximized with respect to the dual
variables �i , i.e. a saddle point has to be found. The condition at
the saddle point implies that the derivatives ofL with respect to
the primal variables must vanish, that is �L( 	w,b,�)

�b
=�L( 	w,b,�)

� 	w
= 0. These conditions lead to

�∑
i=1

�iyi = 0, 	w =
�∑

i=1

�iyi 	xi . (4)

Hence the solution vector 	w is an expansion in terms of patterns
of the training set whose �i �= 0. These patterns are called
support vectors (SV). Kuhn–Tucker theorem implies that �i

must satisfy the Karush–Kuhn–Tucker conditions:

�i · [yi〈	xi · 	wi〉 + b − 1] = 0, i = 1, . . . , �. (5)

This condition implies that the SV lie on the margin. All re-
maining samples of the training set are irrelevant for the opti-
mization since their �i is null. Therefore Eq. (4) can be written
as

	w =
�∑

�i∈SV

�iyi 	xi . (6)

Plugging Eq. (4) into L, one eliminates the primal variables
and the optimization problem becomes:

maximize
�∑

i=1

�i − 1

2

�∑
i=1

�∑
j=1

�i�j yiyj 〈	xi · 	xj 〉

subject to 0��i �C, i = 1, . . . , �,
�∑

i=1

�iyi = 0.

Therefore the hyperplane function can be written as

f (x) =
�∑

i=1

�iyi〈	xi · 	xj 〉 + b. (7)

3.2. SVM construction

To construct SVMs, an optimal hyperplane in some feature
space has to be computed. Hence it is adequate to substitute
each training example 	xi with its corresponding image in the
feature space �(	xi). The weight vector (4) becomes an expan-
sion of vectors in the feature space

	w =
�∑

i=1

�iyi�(	xi). (8)

Therefore the weight vector is not directly computable when
the mapping � is unknown. Since �(	xi) occur only in scalar
products, scalar products can be substituted by an appropriate
Mercer kernel G(·), leading to a generalization of the hyper-
plane function (7)

f (x) =
�∑

i=1

�iyi〈�(	xi) · �(	xj )〉 + b

=
�∑

i=1

�iyiG(	xi, 	xj ) + b (9)
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and the following quadratic problem to optimize:

maximize
�∑

i=1

�i − 1

2

�∑
i=1

�∑
i=1

�i�j yiyjG(	xi, 	xj )

subject to �i �0, i = 1, . . . , �,
�∑

i=1

�iyi = 0.

The threshold b can be computed by exploiting the fact that for
all SVs 	xi with �i < C, the slack variable �i is zero, therefore

�∑
j=1

yj�jG(	xi, 	xj ) + b = yi . (10)

3.3. Multiclass SVMs

In order to use SVM when the number of classes K is larger
than 2, a few different strategies have been suggested [13].
In our experiments we have adopted one-versus-rest (o-v-r)
method [14,15]. The method learns one classifier for each of
the K classes against all the other classes. More formally, the
method consists in training K SVM classifiers fj by labelling
all training points having yi = j with +1 and yi �= j with −1
during the training of the j th classifier. In the test stage, the
final decision function F(·) is given by

F(	x) = arg max
j

fj (	x). (11)

4. Neural gas

NG is a unsupervised version of vector quantization. In NG
model no topology of a fixed dimensionality is imposed on the
network. NG consists of a set of M units: A= (c1, c2, . . . , cm).
Each unit ci has an associated reference vector 	wci

( 	wci
∈ Rn)

indicating its position or receptive field center in input space.
The learning algorithm of NG is the following:

(1) Initialize the set A to contain units ci , with 	wci
∈ Rn, cho-

sen randomly according to input distribution p(	�). Besides,
initialize the time parameter t, to 0.

(2) Generate at random an input 	� according to p(	�).
(3) Order all elements of A according to the distance of their

reference vectors to 	� e.g. find the sequence of indices
S = (i0, i1, . . . , iM−1) such that 	wi0 is the reference vector
closest to 	�, 	wi1 is the second vector closest to 	�, etc. Let
ki(	�, A) the rank associated with 	wi .1

(4) Adapt the reference vectors according to

� 	wi = �(t)h�(ki(	�, A))(	� − 	wi),

where

h�(ki(	�, A)) = exp

(
− ki

�(t)

)
,

1 	wi stands for 	wci . This convention is also adopted in the following
formulae.

�(t) = �i

(
�f

�i

)t/tf

,

�(t) = �i

(
�f
�i

)t/tf

.

(5) Increase the time parameter t : t = t + 1.
(6) If t < tf continue with step 2.

For the time dependent parameters suitable initial values �i , �i
and final values �f , �f have to be chosen. For the above-
mentioned parameter in our work, we adopted the values sug-
gested in Refs. [16–18].

5. Experiments and results

The combined use of NG and SVM is shown to improve the
performance of a cursive character classifier.

The letters are present in the database in both upper and lower
case version. In some cases, the two versions are different and
must be considered as separate classes. In some other cases,
the two versions are similar and can be joined in a single class.
NG is used to measure the overlapping in the feature space of
the vectors corresponding to the two versions of each character.
When the overlapping is high enough, upper and lower case
versions of the letter are joined in a single class. This improves
the performance of the SVM over such classes and results in a
better accuracy of the overall character classifier.

Section 5.1 describes the database used in the experiments,
Sections 5.2 and 5.3 show how the optimal class representation
was found and the recognition experiments, respectively.

5.1. The character database

The cursive characters used to train and test the recognizer
were extracted from the handwritten words belonging to two
different data sets. The first one is the CEDAR2 database
[19]. The second one is a database of handwritten samples col-
lected by the United States Postal Service. In both cases, the
data were collected in a postal plant by digitizing handwrit-
ten addresses. The characters were extracted from the words
through a segmentation process performed by the system in
which the recognizer is embedded. Before being segmented,
the words were desloped and deslanted following the scheme
described in Ref. [20]. The resulting character database C-Cube
[21] contains 57 293 elements. C-Cube can be downloaded
from ccc.idiap.ch. The letter distribution, shown in Fig.
3, reflects the prior distribution of the postal plants where the
handwritten words were collected. For this reason, some letters
are very frequent while others are almost absent. The database
was split with a random process into training, validation and

2 Center of Excellence in Document Analysis and Recognition, State
University of New York at Buffalo (USA).
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Fig. 3. Letter distribution in the test set.
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Fig. 4. Value of 	 for each letter.

test set3 containing, respectively, 25 440, 12 720 and 19 133
characters.

5.2. Optimal number of classes finding

Clustering allows to verify whether vectors corresponding
to the upper and lower case versions of the same letter are
distributed in neighboring regions of the feature space or not.
The more the two versions of the letter are similar in shape the
more their vectors are overlapping (e.g. like o and O) and can
be joined in a single class. On the other hand, when the two
versions of a character are very different (e.g. g and G), it is
better to consider them as separate classes.

Clustering was performed by means of NG. We trained differ-
ent NG maps, selecting the one with minimal empirical quan-
tization error [18]. The map neurons were labelled with a kNN
technique, namely each node was labelled with the classes of
the k closest feature vectors. Then the neurons were divided
into 26 subsets collecting all the nodes showing at least one
version of each letter � among the k classes in the label. For
each subset, the percentage 	� of nodes having upper and lower
case versions of the letter � in the label was calculated. The
results are reported, for every subset, in Fig. 4. The percent-

3 The training (data58train.ptg) and the test set (data58test.ptg) can be
downloaded from ccc.idiap.ch. The first two thirds of the first file was used
for training, the remaining third for the validation set.

Table 1
SVM recognition rates on the test set, in absence of rejection, for some class
numbers

Class number Performance (%)

52 89.20
38 90.05
26 89.61

Table 2
SVM, LVQ, MLP recognition rates on the test set, in absence of rejection

Model Class number Performance (%)

SVM 38 90.05
LVQ 39 84.52
MLP 26 71.42

age can be interpreted as an index of the overlapping of the
classes of the upper and lower case versions of the letter. This
information can be used to represent the data with a number of
different classes ranging from 26 (upper and lower case always
joined in a single class) to 52 (upper and lower case always
in separate classes). For example, a class number equal to 46
means that, for the six letters showing the highest values of 	
(i.e. c, x, o, w, y, z) upper and lower case versions are joined
in a single class.

5.3. Recognition experiments

The percentage 	 was used to look for the optimal number of
classes. The letters showing the highest values of 	 were repre-
sented by a single class containing both upper and lower case
versions. We trained SVMs with different number of classes.
In each trial we used the gaussian kernel and the variance �
and the regularization constant C were selected by means of
crossvalidation [22]. In Table 1, for different class numbers,
the performances on the test set, measured in terms of recogni-
tion rate in absence of rejection, are reported. The performance
is shown to be improved by decreasing the number of classes
when this is higher than an optimal value, in this case 38. A
further reduction of the number of classes results in a lower
accuracy. The 	 parameter is then reliable in estimating the op-
timal number of classes. In Fig. 5 the confusion matrix of the
SVM classifier is shown.

We compared SVM against learning vector quantization
(LVQ) [23,24] and multi-layer-perceptron (MLP) [25]. SVM
and LVQ trials were performed using, respectively, SVMLight
[26] and LVQ-pak [27] software packages. In LVQ trials the
learning sequence LVQ1 + LVQ2 + LVQ3 was adopted and
the number of codevectors and learning rates were setup using
crossvalidation. In MLP trials learning rates and the number of
hidden neurons were setup by crossvalidation. LVQ, MLP and
SVM recognition rates, in absence of rejection, are reported in
Table 2. As shown in Fig. 6, SVM recognizes better than LVQ,
25 letters on 26. The cumulative probability functions of the
correct classification for LVQ and SVM are reported in Fig.
7. The probabilities of classification of a character correctly
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Fig. 6. LVQ (gray points) and SVM (black points) recognition rate, in absence
of rejection, for each letter.

in the top, top two and top three positions4 for LVQ are,
respectively, 84.52%, 93.30% and 95.76%; whereas for SVM
are 90.05%, 95.73% and 97.31%.

It is difficult to compare results in handwriting recognition
due to different databases used in the experimentations. That
being said, SVM recognition rate (89.01%) compares significa-
tively better with other results5 [28–34] on cursive character
recognition. Finally, SVM recognition rate is comparable with

4 For MLP are, respectively, 71.42%, 82.56% and 88.60%.
5 The best result [28] is 89.01%.
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Fig. 7. Cumulative probability function of the correct classification of SVM
(black curve) and LVQ (gray curve) classifiers.

the result (90.24%) obtained by Liu and Blumenstein [35] on a
smaller test (∼ 2000 characters) than the one (∼ 19 000 char-
acters) used in our experiments.

6. Conclusion

We have presented a cursive character recognizer, a crucial
module in cursive word recognition systems based on a seg-
mentation and recognition strategy. The character classification
is achieved by using support vector machines (SVMs) and a
neural gas (NG). NG allows to obtain a suitable representa-
tion of classes, SVMs perform the character recognition. The
optimal representation of classes is obtained by evaluating the
overlapping in the feature space of the vectors corresponding



F. Camastra / Pattern Recognition 40 (2007) 3721–3727 3727

to upper and lower case versions of each letter. When the de-
gree of overlapping is high enough, the two versions can be
joined in a single class resulting in an improvement of the clas-
sifier performance. SVMs, tested on a large database (∼ 19 000
characters), compare favorably with LVQ (more than 5.50%)
and MLP (more than 18%). Moreover, SVM recognition rate is
among the highest presented in the literature for cursive char-
acter recognition. Finally, the database of cursive characters is
available for further comparisons and investigations.
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