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Abstract

This paper proposes an alternative folk theorem for repeated games
with private monitoring and communication, extending the technique
of Compte (1998) to the case where private signals are correlated.

1 Introduction

We have observed a significant progress in repeated games with private mon-
itoring in the last few years. It started with a series of papers which proved
a folk theorem with communication, such as Ben-Porath and Kahneman [3],
Compte [5], and Kandori and Matsushima [11]. Since there are a variety
of Economic environments in which private monitoring is the natural as-
sumption and players can communicate, these results are very important
contributions to the theory of long term relationships, especially given that
repeated games with private monitoring are very difficult to analyze with-
out communication. These folk theorems, however, do not cover all the
interesting cases because of the specific assumptions on private monitoring
structure. This paper proves a folk theorem based on a new assumption on
private monitoring to expand the range of environments to which the folk
theorem result applies.

Some of these papers are based on and extends the technique from the
preceding literature on repeated games with public monitoring. For ex-
ample, Kandori and Matsushima [11] is a natural extension of Fudenberg,
Levine, and Maskin [9]. Compte [5] is based on the idea of Abreu, Mil-
grom and Pearce [1]. These two ideas are distinct and complementary, the

∗I would like to thank Galit Ashkenazi-Golan, George Mailath, and Michihiro Kandori
for their useful comments.
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former emphasizing the use of transfer as costless punishment and the lat-
ter emphasizing efficient statistical test which makes the cost of punishment
negligible.12 This paper belongs to the second group. It proposes an alterna-
tive (Nash-threats) folk theorem for repeated games with private monitoring
and communication, extending the technique of Compte [5].

The contribution of this paper is twofold. First, it extends the idea of
Compte [5] to the case where private signals are correlated. To employ a
better statistical test, players store their private information for T periods
and release them at the end of each T-period block. Compte [5] (also Mat-
sushima [14]) assumes that private signals are essentially independent so
that players do not learn anything about the other players’ private history
until the end of each block.3 This is because otherwise some player may
realize in the middle of the T periods that punishment is unlikely to be
triggered and start deviating. To avoid this, more harsh punishment needs
to be used so that players do not have an incentive to deviate even after
such history. But then, the expected punishment in each period becomes
too large to approximate efficiency. Even almost independence does not
solve this problem. Since the length of each block needs to go to infinity
to obtain an exact folk theorem, even a slight correlation of private signals
may become a serious obstacle to this type of construction. I provide a way
to circumvent this problem, while keeping the spirit of Compte [5]’s original
construction.

Second, the number of the players can be two. Ben-Porath and Kahne-
man [3] assumes that, for each player, there are at least two players who
observe the player’s action perfectly. These monitors have no incentive to
lie because they are severely punished when their messages do not coin-
cide. This logic requires at least three players. In Compte [5] and Kandori
and Matsushima [11], punishment is sometimes based on transfer between
two players. Transfer from player i to player j is based on other players’
messages and not on i or j’s. This is to keep the transfer for each player
independent of her own message so that revelation constraints are trivially
satisfied. This trick also requires at least three players. In this note, transfer

1Review strategy (Radner [16] and, more recently, Matsushima [14]) is also based on
the same idea.

2However, this distinction is not clear-cut. Kandori and Matsushima [11] devotes one
section to AMP-type strategy for repeated prisoners’ dlemma and Compte [5] also uses
transfer in his proof.

3However, Compte [5] allows correlation of private signals off the equilibrium path
where players deviate from the equilibrium action. Matsushima [14] also allows a correla-
tion between private signals caused by unobserved macro shock.
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is based on every player’s announcement. In particular, a player’s message
can affect her transfer. However, it is still optimal for each player to be
honest because she expects that her announcement would “look odd” with
the other players’ announcement and get punished accordingly if she lies.

There are other related folk theorems besides the above three papers.
Fudenberg and Levine [8] proves Nash-threat folk theorem when players’
private signals are highly correlated (“approximate common knowledge”).
It focuses on the two player case for the reason stated above. Ashkenazi-
Golan [2] assumes that all the relevant deviations are perfectly observable
by some player with positive probability as in Ben-Porath and Kahneman
[3]. Her folk theorem is also a Nash-threat folk theorem unlike Ben-Porath
and Kahneman’s, but she does not need two monitors for each deviation,
which allows her folk theorem to apply to the two players case. Finally,
McLean, Obara and Postlewaite [15] also proves a folk theorem when private
signals are correlated and can be treated like a public signal when they are
aggregated. At least three players are required for this result.

I also should mention that many folk theorem results without commu-
nication were obtained recently. However, most of them assumes almost
perfect monitoring (Bhaskar and Obara [4], Ely and Välimäki [6], Hörner
and Olszewski [10], Mailath and Morris [12]4). One exception is Matsushima
[14], which allows private monitoring to be noisy. However it assumes a cer-
tain type of independency between private signals as in Compte [5].

The next section presents the model briefly. Section 3 introduces the
assumptions on monitoring structure, which are then compared to the as-
sumptions in other literature. Section 4 presents the main result and Section
5 discusses some extension.

2 Model

The set of the players is I = {1, 2, ..., n} , n ≥ 2. In each period, player i
chooses an action from a finite action set Ai and receives a private signal
si from a finite set Si. Both ai and si is private information. In the end of
each period, players send their message m = (m1, ...,mn) ∈

Qn
i=1Mi simul-

taneously, which becomes pubic information. Let p (s|a) be a joint signal
distribution on S =

Qn
i=1 Si given a ∈ A. It is assumed that p (s|a) has a full

support on Si for every a.5 Signal distribution on SM =
P
j∈M Sj for player

4See also Mailath and Morris[13]
5This is weaker than the assumption of full support on S. These two assumptions are

equivalent when private signals are conditionally independent, as assumed in Compte [5].
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i given a ∈ A (and si ∈ Si) is denoted by pM (sM |a) (pM (sM |a, si)). In par-
ticular, p−i (s−i|a) is used whenM = I/ {i} . Let gi (a) =

P
ui (ai, si) p (s|a)

be player i’s expected stage-game payoff and g∗ be a Nash equilibrium pay-
off profile. Let V = co {g (a) , a ∈ A} be the feasible payoff set, which is
assumed to be full dimensional, and define V ∗ with respect to g∗ as follows;

V ∗ = {v ∈ V : ∀i, vi ≥ g∗i } .

Note that V ∗ would be different for a different choice of g∗.
Private history and public history at period t is (ai,1, si,1, ..., ai,t−1, si,t−1)

and (m1, ...,mt−1) respectively. Player i’s strategy σi consists of action strat-
egy σai and message strategy σmi . Player i’s action strategy σai is a collec-
tion of t-period behavior strategies (σai,t, t = 1, 2, ..., ), which maps t−period
private and public history into 4Ai. Player i’s message strategy σmi is a
collection of t-period behavior strategies (σmi,t, t = 1, 2, ..., ), which maps
t + 1−period private history and t−period public history into Mi. Later I
use some public randomization device, thus strategies also need to depend
on the realization of a randomization device. But it is not made explicit here
to save notations. It will be mentioned when public randomization is neces-
sary.6 The players discount future by discount factor δ ∈ (0, 1) and maximize
their discounted average payoff E

£
(1− δ)

P∞
t=1 δ

t−1gi (at)
¤
as usual.

Let Λ = {λ ∈<n| kλk = 1} be the space of weights and Λε+ = {λ ∈Λ|∃i, λi ≥ ε} .
For each weight λ ∈Λ, let aλ be an action profile to maximize the weighted
sum of the players’ payoff with respect to λ, that is,

aλ = argmax
a∈A

λ· (g1 (a) , ..., gn (a)) .

For each λ, let Iλ ⊂ I be the subset of the players with a strictly positive
weight.

3 The Assumptions on Monitoring Structure

In this section, a few conditions on the monitoring structure are introduced.
All the conditions are stated with respect to some fixed action profile as
they are not required for all the action profiles for the folk theorem.

First, I assume that each player’s deviation can be statistically detectable
at relevant action profiles. Let Qi (a) be the convex-hull of probability vec-
tors {p−i (·|a0i, a−i) |a0i 6= ai} on S−i given a ∈ A. Then this assumption,

6Note, however, that it is possible to generate any public randomization device en-
dogenenously through communication by, for example, redefining i’s message space as
Mi × [0, 1] for each i ∈ I
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given a ∈ A and i ∈ I, can be formally stated as follows.

p−i (·|a) /∈ Qi (a) (A1)

This is standard and satisfied in any paper, including Compte [5] and Kan-
dori and Matsushima [11].

It is possible to use an alternative condition here. Let RM (a, si) be the
convex-hull of conditional probability vectors {pM (·| (a0i, a−i) , s0i) | (a0i, s0i) 6= (ai, si)}
forM ⊂ I given a ∈ A and si ∈ Si. Then this alternative condition for a ∈ A
and i ∈ I can be stated as follows.

There exists si ∈ Si and M ⊂ I/ {i} such that (A1’)

pM (·|a, si) /∈ RM (a, si)

This is neither stronger nor weaker than A1. This M is called monitor
of player i at a ∈ A. This is different from the “monitor” in Compte [5],
which is based on unconditional probabilities.(See footnote 5 for definition).
It is unbiased (monitor of i does not include i) as in Compte [5], but not
independent, that is, player i’s private signal contains some information
about the private signals of the players in M. Compte [5] assumes that
p−i (·|a) = p−i (·|a, si), which cannot be satisfied here. Thus this condition
is complementary to Compte’s.

Both assumption guarantees that a is enforceable, through payoffs con-
tingent on s−i for A1 and through payoffs contingent on s for A1’, while the
truth-telling constraints for i are satisfied.

Lemma 1 (1) If (A1) is satisfied at a ∈ A for i ∈ I, then there exists
xi : S−i → < such thatX

s−i

p−i (s−i|a) · xi (s−i) >
X
s−i

p−i
¡
s−i|

¡
a0i, a−i

¢¢
· xi (s−i)

for all a0i 6= ai

(2) If (A1’) is satisfied at a ∈ A for i ∈ I, then there exists xi : S → < such
that X

s

p (s|a) · xi (s) >
X
s

p
¡
s|
¡
a0i, a−i

¢¢
· xi (ηi (si) , s−i) (1)

for all a0i 6= ai and ηi

and X
s

p (s|a) · xi (s) ≥ p (s|a) · xi (ηi (si) , s−i) (2)

for all ηi
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where ηi is a mapping from Si to Si.

Proof. Since (1) is proved in Compte [5] and others, I focus on (2).
Suppose that A1’ is satisfied at esi. Set xi (s) = 0 when si 6= esi. When
si = esi, xi (esi, s−i) is defined so as to satisfyPs−i

p (s−i|a, esi) · xi (esi, s−i) >
0 >

P
s−i
p (s−i| (a0i, a−i) , s0i)·xi (esi, s−i) for all (a0i, s0i) 6= (ai, si) . This can be

done by hyperplane theorem. Then (1) is clearly satisfied for all all a0i 6= ai
and ηi because player i can expect a positive expected payoff only when she
plays ai and truthfuly reveals esi. It is also clear that (2) is satisfied for all
ηi because player i’s expected payoff from lying is at most 0 conditional on
any si ∈ Si.

To enforce any action profile which satisfies either (A1) or (A1)’, xi (s−i)
or xi (s) can be used as continuation payoffs (by scaling them up if neces-
sary). Information revelation constraints are satisfied automatically for the
former because it does not depend on si. For the latter, truthful information
revelation on the equilibrium path is guaranteed by (2). In the following, it
is assumed that either (A1) or (A1’) is satisfied at all the action profiles.

The next condition, which is a stronger form of (A1’), is the focus of this
paper.

Assumption. Existence of Contingent Monitor

For any si ∈ Si, there exists M ⊂ I/ {i} such that (A2)

pM (·|a, si) /∈ RM (a, si)

This means that there exists a monitor for every realization of the private
signal for i at a. Monitor can be different for different private signals. Again
it requires that player i’s information is correlated with her monitor’s private
signals. I say that there exists a contingent monitor for i at a or i has a
contingent monitor at a when this condition is satisfied for i at a.

The following lemma can be derived from this assumption.

Lemma 2 Suppose that there exists a contingent monitor for player i ∈ I
at a ∈ A. Then, for any π ∈ (0, 1) , there exists qi (s) ∈ (0, 1) such that, for
every si ∈ Si,

π =
X
s−i

qi (s) pi (s−i|a, si)

<
X
s−i

qi (s) pi
¡
s−i|

¡
a0i, a−i

¢
, s0i
¢
for all

¡
a0i, s

0
i

¢
6= (ai, si)
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Proof. There exists such qi (s) to satisfy the above strict inequali-
ties by hyperplane theorem. Such qi (s) can be chosen so that the con-
ditional expectation of qi is π ∈ (0, 1) for each si by adding an appropri-
ate constant to qi (s). If this qi (s) is not in [0, 1] , then redefine qi (s) aseqi (s) = (qi (s) + nπ)

1
n+1 . Then eqi (s) still satisfies all the equalities and

inequalities, and lies between 0 and 1 if n is large enough.

This qi (s) can be interpreted as a probability of “bad signal” given the
announced private signal profile s. Then this lemma implies that the prob-
ability of a bad signal increases for any deviation from a and/or misrepre-
sentation of the private signal by player i.

This condition (A2) is not stronger than any existing sufficient condition
for the folk theorem. Note first that only one monitor is needed for each
player. Compte [5] assumes that there are at least two independent monitors
M and M 0 for each player which are unbiased and do not overlap (i /∈
M,M 0 and M ∩M 0 = ∅).7 This requires at least three players. Kandori and
Matsushima [11] also needs at least three players because player i’s deviation
needs to be statistically distinguished from player j’s deviation through the
private signals of an independent monitor (= all the other players). Ben-
Porath and Kahneman [3] also needs at least three players as explained in
the introduction. Also note that these assumptions do not presume any type
of almost public monitoring or almost common knowledge (Fudenberg and
Levine [8], Mailath and Morris [12], and McLean, Obara and Postlewaite
[15]).

On the other hand, A2 is not weaker than the sufficient conditions for the
folk theorem with communication in these papers. Thus the folk theorem
in the next section is complementary to other folk theorems.

Finally, existence of contingent monitor is similar to Condition IV (Con-
ditional Independnce) in Matsushima [14], but different. Matsushima [14]
allows a certain type of correlation between private signals to prove a folk
therem for repeated Prisoner’s dillemma with private monitoring without
communication. He assumes that p (s|a) takes the following form;

p (s|a) =
nY
i=1

qi (si|a, θ) f (θ|a)

where θ ∈ Ξ is some unobservable macro shock. Thus private signals are
conditionally independent given (a, θ) . Then Condition IV at a says that

7 In Compte, monitor of player i at a is defined as a subset M of the players such that
pM (·|a) /∈ QMi (a) where QMi (a) = co {pM (·|a0i, a−i) |a0i 6= ai} .
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{
Qn
i=1 qi (si|a, θ) |ai ∈ Ai, θ ∈ Ξ} is linearly independent for every i. To com-

pare this assumption with my assumption, consider any two player repeated
game. Then M = I/ {i} for any si ∈ Si for (A2); that is, the contin-
gent monitor for i must be all the other players. Then it can be checked
that Condition IV implies (A2) because independency is stronger than the
convexity-type condition like (A2). In particular, |Ai| × |Ξ| ≤ |Si| is re-
quired for Condition IV, but not for (A2). The example in the next section,
which satisfies (A2) but not Condition IV, illustrates this point clearly. An-
other difference is that (A2) needs to be satisfied for only one player, while
Condition IV is satisifed for all the players.

In addition to this, (A2) has an additional flexibility in terms of the
selection of contingent monitor when there are more than two players.

4 Folk Theorem

To prove the folk theorem, T-public equilibrium is employed as in Compte
[5] and Kandori and Matsushima [11]. It is a sequential equilibrium in
which players send a meaningful message only every T periods.8 Player i’s
action strategy σai only depends on the public message announced in every
T−period. Player i’s announcement strategy σmi depends on both public
history and the most “recent” private history after the last meaningful public
message is sent. Let E (δ, T ) be the set of all T-public equilibrium payoffs
given δ.

The main theorem of this paper is as follows.

Theorem 3 Suppose that, for any λ ∈Λ0+, there exists aλ at which a con-
tingent monitor exists for some i∈Iλ. Then, for any smooth compact set W
in the interior of V ∗, there exists δ and T such that W ⊂ E (δ, T ) for all
δ ∈ (δ, 1).

The following example is covered by this folk theorem. It does not follow
from any existing folk theorem.

Example. Prisoner’s Dilemma
Consider the following standard prisoners’ dilemma game.

C D
C 1,1 -l,1+g
D 1+g,-l 0,0

8Players announce meaningless random messages until the end of each T-period block.
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Suppose that there exists some unobservable random variable y, which
takes either y or y and satisfies

0 < π (y|DD) < π (y|DC or DC) < π (y|CC) < 1

Each player’s private signal si, i = 1, 2 is a noisy observation of y. As-
sume that they are conditionally independent given y. Also assume that
pi (si = y|y, ai = C) = 1 − ε0, pi (si = y|y, ai = D) = 1 − ε00, and ε0 < ε00 <
1/2. That is, private signal is more informative when C is chosen.

When ε0

ε00 is small enough, (A2) is satisfied for both players at (C,C) .
(A2) is satisfied for player 1 (2) at (C,D) ((D,C)). Thus the folk theorem
is obtained for this example.

Remark. Note that existence of contingent monitor is required for only
one player. If it is satisfied for some player, then no strong assumption is
needed for the rest of the players. For example, suppose that there is some
player i such that |Ai| × |Si| ≤ |S−i| . Then, for a generic distribution of
private signal profile, {p−i (·|a, si) : ai ∈ Ai, si ∈ Si} for any a ∈ A is linearly
independent, thus satisfies (A2). Thus the following corollary is obtained.

Corollary 4 Suppose that (i) |Aj | ≤ |S−j | for all j ∈ I, and (ii) there
exists some player i ∈ I such that |Ai| × |Si| ≤ |S−i|. Then the above folk
theorem holds for a generic distribution of private signal profile and any full
dimensional stage game payoff matrix.

Proof. (i) implies that (A1) is satisfied for a generic p (·|a) for all j ∈ I.
(ii) implies that (A2) is satisfied for a generic p (·|a) for i ∈ I for any action
profile a ∈ A. Finally, V is full dimensional for a generic stage game payoff
matrix. Thus all the assumptions for the folk theorem above are satisfied.

Remember that Compte [5] assumes independent private signals, which
is a nongeneric assumption. Kandori and Matsushima [11] assumes that
player i’s deviation and player j’s deviation is distinguishable by the rest
of the players. For this condition to be satisfied for generic private signal
distributions, they need |Ai|+ |Aj |− 1 ≤ |S−ij | for all pair of i, j 6= i.

Now I prove the folk theorem. The first part of the proof (until Lemma 6)
is directly borrowed from Compte [5], thus very sketchy. Interested readers
should refer to Compte [5].

Consider the following T-period game with side transfer; stage game G is
played T times and each player announces accumulated private signalsmi =
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(si,1, ..., si,T ) at the end of the Tth period on which the side transfer xi (m) is
based.9 Let σa,Ti be i0s T-period action strategy, σm,Ti be i’s announcement

strategy and σTi =
³
σa,Ti ,σm,Ti

´
be i’s T-period strategy. Define player i’s

payoff from this game given δ0 ∈ (0, 1) as

gT,δ0i

¡
σT
¢
+E

£
xi (m) |σT

¤
where

gT,δ0i

¡
σT
¢
= sup

δ∈[δ0,1]

(1− δ)
PT
t=1 δ

t−1E
£
gi (a) |σT

¤
1− δT

You can regard gT,δ0i

¡
σT
¢
as an average payoff within the first T periods

and xi (m) as continuation payoffs in the original repeated game with com-
munication.

A strategy is called stationary if it specifies the same action independent
of private history during the T periods. Player i’s stationary strategy to con-
tinue playing ai is denoted σTi (ai) . I say v ∈ <n is generated by

¡
σT (a) , x

¢
if

vi = gi (a) +E
£
xi (m) |σT (a)

¤
and

¡
σTi (ai)

¢n
i=1

is a Nash equilibrium, that is

vi = gi (a) +E
£
xi (m) |σT (a)

¤
≥ gT,δ0i

¡
σT 0i ,σ

T
−i (a)

¢
+E

£
xi (m) |σT 0i ,σT−i (a)

¤
for all T-period strategies σT 0i and for all i

Now consider the following linear programming problem for each weight
λ ∈Λ,

k (λ,δ0, T ) = max
v,a,x,σT

λ · v

s.t. v is generated by
¡
σT (a) , x

¢
0 ≥

nX
i=1

λi · xi (m) ,∀m ∈ ST ,

Compte [5] showed that this problem provides the tight upper bound of T-
public equilibrium payoffs in the direction of λ.10 Let k (λ,T ) = limδ0→1 k (λ,δ0, T )

9Thus player i’s message space needs to be at least as large as STi .
10This techinique was first introduced by Fudenberg and Levine [7] to a variety of

dynamic games with public information.
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and D (λ,T ) = {v|λ · v ≤k (λ,T )} .11 Finally, let Q (T ) = ∩λ∈ΛD (λ,T ) . It
is intuitively clear that E (δ, T ) ⊂ Q (T ) . Compte [5] proves that every
payoff profile in Q (T ) is eventually supported by T-public equilibrium as
δ → 1.

Proposition 5 (Compte 1998) If Q (T ) is full dimensional, then Q (T ) =
limδ→1E (δ, T ).

Given this result, I only need to show that Q (T ) contains any smooth
compact set in the interior of V ∗ for appropriate T . More precisely, I need
to show that, for any ε > 0, there exist T and δ such that k (λ,δ, T ) is within
ε of k∗ (λ) = maxv∈V

Pn
i=1 λivi for any λ ∈ Λ0+. Note that, among all the

relevant extreme payoff profiles, the static Nash equilibrium payoff can be
easily achieved with 0 transfer without any assumption. Therefore the ques-
tion is whether it is possible to implement some constant strategy σT

¡
aλ
¢
for

some aλ when λ has a strictly positive component (λ ∈ Λ0+), while keeping
the expected “efficiency loss” from the transfer (|E [

Pn
i=1 λi · xi (m)]|) neg-

ligible to achieve k (λ,δ, T ) + ε >
Pn
i=1 λigi

¡
aλ
¢
= k∗ (λ) for any δ ∈ (δ, 1)

and λ ∈ Λ0+. The following lemma does just that.12

Lemma 6 Suppose that, for any λ ∈Λ0+, there exists aλ at which a con-
tingent monitor exists for some i. Then, for any ε > 0, there exist T and δ
such that k (λ,δ, T ) + ε > k∗ (λ) for any δ ∈ (δ, 1) and λ ∈ Λε+.

Proof. See Appendix.

Once this lemma is proved, then the proof of the folk theorem is complete.
Below I provide a rough sketch of the proof of Lemma 6. For each λ, aλ

is played for T−periods. Suppose that λi ≥ ε for i ∈ I and there exists a
contingent monitor for i at aλ. First consider the incentive of j 6= i. Since
either (A1) or (A1’) is satisfied for j, there exists xj (s−j) or xj (s) to enforce
aλ. For convenience, assume that (A1’) is satisfied. Now define j’s transfer
as follows

xj (m) =
TX
t=1

xj (st) .

Then aλ is enforced period by period. In order to make sure that this transfer
does not create efficiency loss, transfer this amount to player i. That is, add
−λj

λi
xj (m) to player i’s transfer.

11Note that k (λ,δ0, T ) is monotonically increasing in δ0.
12Nash equilibrium profile is used when λi ≤ ε for all i even if some λi is strictly positive.

This is not a problem since V ∗ can be asymptotically covered as ε→ 0.
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Next consider player i0s incentive. When player i deviates or misrepre-
sents her private signal, she may gain not only from the stage game payoff,
but also from the transfers just defined (−

P
j 6=i

λj
λi
xj (m)) period by period.

The similar problem arises in Compte [5]. The difference is that xj in his
paper depends on neither i0s signal nor j’s signal, thus information revelation
constraint is never a problem. This is based on the assumption that there
are at least two distinct monitors for each player, which makes it possible
to find a monitor of j which does not include i or j.

Taking this effect from xj (m) into account, I can compute player i’s
maximum deviation gain from her equilibrium behavior with respect to gi
and xj (m) within each period. Let’s call it g. Note that g is in the order of 1T
(for large enough δ). This is because one period deviation gain from gi and
xj (m) decreases in the order of 1

T (xj (m) decreases because j’s deviation
gain within a period decreases). Note also that, since λi ≥ ε, g can be
defined as a uniform bound with respect to all λ ∈ Λε+.

Now I define player i0s additional transfer exi (m) as follows (thus player
i0s exact transfer is exi (m) −Pj 6=i

λj
λi
xj (m)). When st is announced as a

signal from period t, 1 is assigned to player i with probability qi (st) and
0 is assigned with probability 1 − qi (st) . This qi (·) comes from Lemma 2
and satisfies E

£
qi (s) |aλ, si

¤
= π ∈ (0, 1) ∈ for every si ∈ Si. Since this

information needs to be shared by all the players, a public randomization
device needs to be used here. Let’s denote the obtained T-digit code of 1
and 0 by c. Player i is disciplined by punishment if and only if c = (1, ..., 1).
With some abuse of notation, this additional transfer for player i exi (c) is
defined by

exi (c) = −4i < 0 when c = (1, ..., 1)

= 0 otherwise

The expected probability of punishment on the equilibrium path is

E
£
qi (s1) ...qi (sT ) |σT (a (λ))

¤
= E [qi (s) |a (λ)]T (i.i.d. over time)

= πT

Note that player i’s belief about the punishment is not affected by her private
history because E

£
q (s) |aλ, si

¤
= π for any si ∈ Si on the equilibrium path.

This is where our Lemma 2 becomes critical. In Compte [5], independence
of private signals are invoked here. If this condition is not satisfied, then
player i may become confident, after observing a certain sequence of private
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signals, that punishment is very unlikely to be triggered in the end, and
start deviating.

Let’s check all the incentive constraints of player i. I need to check only
one period deviation constraints on and off the equilibrium path. If player
i deviates in period t, E [qi (st) |a (λ)] goes up from π to some π0 > 0. Let
4π be the minimum increment by any kind of profitable deviation (which
requires choosing nonequilibrium action). Then the probability of the pun-
ishment increases by at least πT−1 (π0 − π) whether i is on the equilibrium
path or off the equilibrium path. Since g is the upperbound of deviation
gain in each period, all the one period deviation constraints boil down to

g ≤ 4iπ
T−1 ¡π0 − π

¢
(3)

Now 4i is defined so that this inequality is satisfied with equality. Since g
is a bound for one period deviation, thus in the order of 1T (for large enough
δ), such 4i if T is large enough..

Then it turns out that, since single-period deviation is almost negligible
in its impact when T is large, the expected efficiency loss associated with
this punishment scheme can be made as small as possible by choosing T
and δ large enough.13 In fact an upper bound of the efficiency loss can be
explicitly computed here. The expected efficiency loss is simply

4iπ
T

but this is bounded above by
gπ

π0 − π
(4)

because (3) holds with equality. This is bounded by 1
T×constant as δ → 1,

which can be made as small as possible by choosing large T. Thus, for any
ε > 0, it is possible to choose T and δ so that (4) is less than ε uniformly
over all λ ∈ Λε+ and δ ∈ (δ, 1) .

5 Discussion

It is possible to extend this theorem to (mutual) minmax folk theorem. If
Compte [5]’s assumption is satisfied at the minmax action profile or there
exists a contingent monitor for all the players at the minmax action profile,
then the minmax folk theorem which corresponds to Theorem 1 in Compte
13This idea originates in Abreu, Milgrom and Pearce [1] and used extensively in Compte

[5].
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[5] is obtained. To see why a contingent monitor is needed for every player,
let amm be the mutual minmax profile. Then the minimax payoff for player
i is vi = maxai gi

¡
ai, a

mm
−i
¢
. The problem is that this maximum payoff given

amm may become larger than vi when transfer is introduced. Such transfer
need not to be used in the proof if there exist a contingent monitor for every
player and their incentive is based on reward rather than transfer.

6 Appendix

Proof of Lemma 6

Fix ε > 0. For each λ ∈ Λε+, there is some player i such that λi ≥ ε. In
the following, such player is always called i.

For all the players but player i, xj (m) , j 6= i can be defined as ex-
plained in Section 4 and always playing aλ and announcing their private
signals truthfully becomes incentive compatible. This xj (m) =

PT
t=1 xj (st)

satisfies, for all aj ∈ Aj ,

(1− δ)

1− δT

³
gj

³
aj , a

λ
−j

´
− gj

³
aλ
´´
≤ E

h
xj (s) |aj , aλ−j

i
−E

h
xj (s) |aλ

i
where δ0 is set to be δ (δ is to be chosen later). Since (1−δ)

1−δT ≈
1
T for large δ,

these xj (s) , henceforth xj (m) , can be taken to be the same order as 1
T as

T →∞.
In the following, I focus on incentive of player i. First, The following

expression characterizes the maximum deviation gain of player i in each
period taking into account the effect of the transfer from j to i,

max
ai,ηi

⎧⎨⎩(1− δ)

1− δT
.gi

³
ai, a

λ
−i

´
−
X
j 6=i

λj
λi
E
h
xj (ηi(si), s−i) |ai, aλ−i

i⎫⎬⎭ (5)

−

⎧⎨⎩(1− δ)

1− δT
gi

³
aλ
´
−
X
j 6=i

λj
λi
E
h
xj (s) |aλ

i⎫⎬⎭ .
This depends on the choice of λ ∈ Λε+ and aλ. Let g (δ, T ) be the maximum
of (5) with respect to all λ and aλ. This is possible because λi = ε and the
number of the players and actions are finite. Not that this upper bound is
valid for any δ ∈ (δ, 1) .
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Introduce a random variable c as explained in Section 4 and define exi (m)
as follows exi (m) = −4i < 0 when c (m) = (1, ..., 1)

= 0 otherwise

Player i’s transfer is the sum of exi (m) and −Pj 6=i
λj
λi
xj (m) .

It is enough to check all the one-period deviations at every history of
player i.When player i deviates, the probability of punishment increases by
at least

min
a,ηi

³
E
h
qi (ηi (si) , s−i) |

³
ai, a

λ
−i

´i
− π

´
× Pr(the code is 1 in all the other periods)

≥ min
a,ηi

³
E
h
qi (ηi (si) , s−i) |

³
ai, a

λ
−i

´i
− π

´
× πT−1

≥ 4π × πT−1

where 4π > 0 is the minimum of mina,ηi
¡
E
£
qi (ηi (si) , s−i) |

¡
ai, a

λ
−i
¢¤
− π

¢
with respect to all λ ∈ Λε+ and aλ.

Since any deviation gain per period is at most g (δ, T ) , all the one-period
deviation constraints are satisfied if

g (δ, T ) ≤ 4π × πT−14i

is satisfied. Set 4i so that this inequality holds with equality, which is
possible if T and δ is large enough.

The expected efficiency loss on the equilibrium path, which arises fromexi (m) , is simply
λiπ

T4i = λi
πg (δ, T )

4π
.

This efficiency loss can be made smaller than ε because g (δ, T ) can be made
as small as possible by taking T and δ large enough.

Therefore, given ε > 0, I can find T , δ, aλ, and σT
¡
aλ
¢
such that, for

any λ ∈ Λε+, all the incentive constraints are satisfied and

k (λ,δ, T ) ≥ k (λ,δ, T )

≥
nX
j=1

λj

n
gj

³
aλ
´
+E

h
xj (m) |σT

³
aλ
´io

≥ k∗ (λ)− λi
πg (δ, T )

4π

≥ k∗ (λ)− ε

for all δ ∈ (δ, 1) . Hence the lemma is proved.¥
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