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Abstract : When U is a balanced open subset of a reflexive Banach space E with P(nE) =
Pw(nE) for every positive integer n, we show that the predual of the space of weakly uni-
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1. Introduction

If E and F are locally convex spaces, always assumed complex and Haus-
dorff, let L(E;F ) denote the vector space of all continuous linear operators
from E into F . A locally convex space E is said to have the approximation
property (AP for short) if given a compact set K ⊂ E and a neighborhood of
zero V in E, there is a finite rank operator T ∈ L(E;E) such that Tx−x ∈ V
for every x ∈ K. Given a locally convex space E, we say that E has the
bounded approximation property (BAP for short) if there exists an equicon-
tinuous net of finite rank operators on E which converges pointwise to the
identity of E. It is easy to see that the BAP implies the AP. But, in [16]
Figiel and Johnson gave an example of a separable Banach space with the AP
which fails to have the BAP. Hence, in general the AP does not imply the
BAP. (See also Casazza [10].)

Let U be an open subset of a Banach space E, let G∞(U) denote the pred-
ual of the space of all bounded holomorphic mappings H∞(U) constructed by
Mujica in [23], and let Gb(U) denote the predual of the space of all holomor-
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phic mappings of bounded type Hb(U) constructed by Galindo, Garcia and
Maestre in [17]. If U is a bounded balanced open subset of E then Mujica
[23] proved that E has the AP if and only if G∞(U) has the AP, and in [24]
he proved that E has the AP if and only if Gb(U) has the AP whenever U
is a balanced open subset of E. In [13] the author proved that a separable
Banach space E has the BAP if and only if G∞(U) has the BAP, where U is
the open unit ball of E.

In this work our main purpose is to obtain characterizations of the BAP for
the space of weakly uniformly continuous type holomorphic mappings, a gen-
eralization of the class of weakly uniformly continuous holomorphic mappings,
and for the preduals of these classes. Also, we obtained characterizations of
the BAP for the preduals of some classes of holomorphic mappings and ho-
mogeneous polynomials.

The paper is organized as follows: In Section 2 we establish our notation
and terminology. In section 3 we show that a Banach space E has the BAP
if and only if Gb(U), U balanced open subset of E, has the BAP if and
only if the predual of the space of m-homogeneous continuous scalar-valued
polynomial on E, Q(mE), has the BAP for every m ∈ N (or, equivalently, for
some m ∈ N).

In Section 4 we extend the work of Boyd, Dineen and Rueda [9] to a
more general class of holomorphic mappings, called the space of holomorphic
mappings of weakly uniformly continuous type and denoted by Hwu(U ;F ), to
obtain characterizations for the BAP. We know that, if a Banach space E (even
separable and reflexive) has the BAP, in general, the space of n-homogenous
polynomials P(nE) does not have the BAP (see [5, Proposition 5.2]). Here,
giving a linearization theorem for the space Hwu(U ;F ), and using this result,
we show that the predual of Hwu(U), Gwu(U), has the BAP if and only if
E has the BAP if and only if, for every positive integer n, P(nE) has the
BAP, where E is a reflexive Banach space with P(nE) = Pw(nE), for every
positive integer n. As a consequence of this, with the same conditions on E,
in particular, we obtain that if U is a balanced open subset of E then the
predual of the space of weakly uniformly continuous holomorphic mappings
on U , Gwu(U), has the bounded approximation property if and only if E has
the bounded approximation property if and only if P(nE) has the bounded
approximation property for every positive integer n.

In the last section we consider the predual of spaces of bounded holomor-
phic mappings on Banach spaces and study the problem in connection with the
following problem posed by Mujica: When U is the open unit ball of E, does
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G∞(U) have the BAP, whenever E has the BAP? (See [23, 5.9 Problem].)
Recently in [13] the author answered the problem in positive for separable
Banach spaces, but the general case still remains open.

2. Notation and terminology

The symbol C represents the field of all complex numbers, N represents
the set of all positive integers, and N0 = N ∪ {0}. Unless stated otherwise E
and F denote locally convex spaces, always assumed complex and Hausdorff.
The letter U denotes a nonvoid open subset of E.

For a Banach space E the symbol UE represents the open unit ball of E
and the symbol Bλ

E , 1 ≤ λ < ∞, represents a subset of E consisting of the
elements of norm ≤ λ. In case of λ = 1 we write BE instead of B1

E which is
the closed unit ball of E.

The symbol τc denotes the compact-open topology, and given a subset A
of E, A

τc will denote the τc-closure of A in E. The symbol Λ stands for a
directed set.

Let L(E;F ) denote the vector space of all continuous linear operators from
E into F . When F = C we write E

′
instead of L(E; C).

We denote by E
⊗

F the tensor product of E and F .
An operator T in L(E;F ) is said to have a finite rank if T (E) is finite di-

mensional. Observe that the subspace of all finite rank operators T ∈ L(E;F )
can be identified with the space E

′⊗
F .

Let P(E;F ) denote the vector space of all continuous polynomials from
E into F , let P(mE;F ) denote the subspace of all m-homogeneous members
of P(E;F ). Let Pw(mE;F ) (resp. Pwu(mE;F )) denote the subspace of all
members of P(mE;F ) which are weakly (resp. weakly uniformly) continu-
ous on bounded subsets of E, for every m ∈ N0. It is shown in [3] that
Pw(mE;F ) = Pwu(mE;F ) for every Banach space E and F , and for every
m ∈ N. If F = C then we denote P(mE; C) (resp. Pw(mE; C)) by P(mE)
(resp. Pw(mE)).

A polynomial P ∈ P(mE;F ) is called of finite type if it is generated by
linear combination of functions φm

⊗
y (φ ∈ E

′
, y ∈ F ), where φm

⊗
y(x) =

φm(x)y for all x ∈ E. Let Pf (mE;F ) denote the subspace of all members of
P(mE;F ) which are of finite type, for every m ∈ N0.

Let H(U ;F ) denote the vector space of all holomorphic mappings from U
into F and let Hb(U ;F ) denote the vector space of all f ∈ H(U ;F ) such that
f(A) is bounded in F for each U -bounded set A. We recall that a set A ⊂ U
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is said to be U -bounded if A is bounded and there exists a neighborhood of
zero V in E such that A + V ⊂ U . Note that U -bounded sets coincide with
the bounded sets when U = E. If F = C then we denote H(U ; C) (resp.
Hb(U ; C)) by H(U) (resp. Hb(U)).

Let Hwu(U ;F ) denote space of all f ∈ H(U ;F ) such that f is weakly uni-
formly continuous on A for each U -bounded set A. We endow Hwu(U ;F ) with
the topology of uniform convergence on U -bounded sets, which is a Fréchet
space whenever U is an open subset of a Banach space E (see [2, Proposition
1.4]). When F = C we write Hwu(U) instead of Hwu(U ; C).

We refer to [15] or [22] for the properties of polynomials and holomorphic
mappings on infinite dimensional spaces, to [21] for the theory of Banach
spaces, and to [19, 20] for the theory of locally convex spaces. We also refer to
[2], [3] and [4] for the properties of Pw(mE;F ), Pwu(mE;F ) and Hwu(U ;F )
on infinite dimensional spaces.

3. The bounded approximation property for the predual of
the space of holomorphic mappings of bounded type

Let U = (Un)n∈N be an increasing countable open cover of an open subset
U of a locally convex space E. Let H∞(U ;F ) denote the locally convex space

H∞(U ;F ) = {f ∈ H(U ;F ) : f(Un) is bounded in F for every n},

endowed with the topology of uniform convergence on all the sets Un. If F = C
then we denote H∞(U ; C) by H∞(U).

If we take U = (Un)n∈N as a fundamental sequence of open U -bounded
sets, obviously we have H∞(U ;F ) = Hb(U ;F ).

In [17] Galindo, Garcia and Maestre constructed a complete (LB)-space
Gb(U), U is a balanced open subset of a Banach space E, and a mapping
δU ∈ Hb(U ;Gb(U)) with the following universal property: For each Banach
space F and each mapping f ∈ Hb(U ;F ), there is a unique mapping Tf ∈
L(Gb(U);F ) such that Tf ◦ δU = f . The space Gb(U) is called predual of
Hb(U). Now, let U be an open subset of a locally convex space E, and let U =
(Un)n∈N be an increasing countable open cover of U . The result of Galindo,
Garcia and Maestre was generalized by Mujica in [24] where he constructed
a complete (LB)-space G∞(U) and a mapping δU ∈ H∞(U ;G∞(U)) with the
following universal property: For each complete locally convex space F and
each mapping f ∈ H∞(U ;F ), there is a unique operator Tf ∈ L(G∞(U);F )
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such that Tf ◦ δU = f , where the space G∞(U) is defined in the following way:
For every sequence α = (αn) of strictly positive numbers, let

Bα
U = {f ∈ H∞(U) : ‖f‖Un

≤ αn for every n}.

Then G∞(U) is defined as the closed subspace of all linear functionals u ∈
H∞(U)

′
such that u|Bα

U
is τc-continuous for every α, which is called predual

of H∞(U).

In an earlier work, when E is a Banach space, Ryan [29] constructed a
Banach space Q(mE), m ∈ N, and a mapping δm ∈ P(mE;Q(mE)) with
the following universal property: For each Banach space F and each P ∈
P(mE;F ), there is a unique operator TP ∈ L(Q(mE);F ) such that TP ◦ δm =
P , where the space Q(mE) is defined as the closed subspace of all linear
functionals v ∈ P(mE)

′
such that v|BP(mE)

is τc-continuous, which is called
predual of P(mE). (See also [25], or [23, Theorem 2.4 and Theorem 4.1].)

There is a close relation between Q(mE) and G∞(U). In [11], parallelling
to [8, Proposition 4] the author gives a result ([11, Proposition 5.1]), without a
proof, asserting that {Q(mE)}∞m=0 is an S-absolute decomposition for G∞(U),
where U = (Un)n∈N is an increasing countable open cover of bounded balanced
open subsets of a balanced open subset U of a Banach space E (for the def-
inition and details about Schauder decompositions and S-decompositions see
[15, § 3.3]). But in the last section we will observe that these conditions on
U = (Un)n∈N are not enough to have this conclusion. On the other hand,
putting an additional condition on U = (Un)n∈N, we see that [11, Proposition
5.1] is true in this case, which we include here a complete proof of it.

For the proof we will need the following lemma. We remark that the
proofs of the following lemma and the next proposition follow the patterns
of the proofs of the corresponding results by C. Boyd in [8]. In what follows
the sum

∑∞
n=0 Pnf(0)(x) will denote the Taylor series expansion of a function

f ∈ H(U), U ⊂ E open, about 0 with Pnf(0) ∈ P(nE) for each n ∈ N, and
the symbol S will denote the set of all scalar sequences (αn)∞n=1 such that
lim supn →∞ |αn|

1
n ≤ 1.

Lemma 1. Let U be an open balanced subset of a Banach space E and
let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U such
that U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. Let

α = (αn) be any sequence of strictly positive numbers, let (βn)n∈N ∈ S and
let gf :=

∑∞
j=0 βjP

jf(0) for each f ∈ Bα
U . Then there exists a sequence of
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strictly positive numbers α′ = (α′n) such that

sup
f∈Bα

U

‖gf‖Un
≤ sup

f∈Bα
U

∞∑
j=0

|βj |
∥∥P jf(0)

∥∥
Un
≤ α′n ,

for every n ∈ N. In particular, gf ∈ Bα′
U for every f ∈ Bα

U .

Proof. Let α = (αn) be any sequence of strictly positive numbers with

Bα
U = {f ∈ H∞(U) : ‖f‖Un

≤ αn for every n}.

It is easy to see that gf ∈ H(U) for every f ∈ Bα
U . Let us fix an integer n ∈ N

and take an element t of Un. Then by hypothesis t ∈ Un+1 and furthermore
ξUn ⊂ Un+1, for every |ξ| ≤ ρn. Now applying the Cauchy inequalities (see,
e.g., [22, Corollary 7.4]) we get that

‖Pmf(0)(ρnt)‖ ≤ sup
|ξ|=ρn

‖f(ξt)‖ ≤ sup
t∈Un+1

‖f(t)‖ ≤ αn+1 ,

for every m ∈ N and for every f ∈ Bα
U . So

‖Pmf(0)‖ρnUn
≤ ‖f‖Un+1

≤ αn+1

for every m ∈ N and for every f ∈ Bα
U . Since (βj)j∈N ∈ S we can find C > 0

such that

|βj | ≤ C

(
1 + ρn

2

)j

for every j. Hence we obtain that

‖gf‖Un
≤

∞∑
j=0

|βj |
∥∥P jf(0)

∥∥
Un
≤ Cαn+1

∞∑
j=0

(
1 + ρn

2ρn

)j

= α′n ,

for every f ∈ Bα
U . Since n is an arbitrary integer, we have that

sup
f∈Bα

U

‖gf‖Un
≤ sup

f∈Bα
U

∞∑
j=0

|βj |
∥∥P jf(0)

∥∥
Un
≤ α′n ,

for every n ∈ N, which shows that gf ∈ Bα′
U for every f ∈ Bα

U .



bounded approximation property 163

Proposition 1. Let U be an open balanced subset of a Banach space E
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U
such that U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N.

Then {Q(nE)}∞n=0 is an S-absolute decomposition for G∞(U).

Proof. Let α = (αn) be any sequence of strictly positive numbers with

Bα
U = {f ∈ H∞(U) : ‖f‖Un

≤ αn for every n}.

Since (1, 22, . . . , j2, . . . ) ∈ S it follows by Lemma 1 that there exists a sequence
of strictly positive numbers α′ = (α′n) such that

∞∑
j=0

j2
∥∥P jf(0)

∥∥
Un
≤ α′n ,

for every f ∈ Bα
U and every n ∈ N. Therefore for every m and every f ∈ Bα

U
we have∥∥∥∥∥∥m2

∞∑
j=m

P jf(0)

∥∥∥∥∥∥
Un

≤
∞∑

j=m

j2
∥∥P jf(0)

∥∥
Un
≤ α′n for every n ∈ N .

Thus for every m and every f ∈ Bα
U , the function m2

∑∞
j=m P jf(0) belongs

to Bα′
U .

Let φ ∈ G∞(U) and for each n ∈ N0 let φn

(∑∞
k=0 P kf(0)

)
:= φ(Pnf(0)),

f ∈ H∞(U). For each n ∈ N let us define

Bn :=

{
P ∈ P(nE) : ‖P‖ = sup

‖x‖≤1
|P (x)| ≤ 1

}
.

Since each Uj is bounded, for every n ∈ N there exists a sequence of strictly
positive numbers γn = (γn

j ) such that Bn ⊂ Bγn

U . Then it follows that φn|Bn =
φ|Bn is τc-continuous and therefore φn ∈ Q(nE) for every n ∈ N. Since φ is
τc-continuous on Bα

U and the Taylor series expansion of f ∈ Bα
U about 0

converges to f in the τc-topology, we have that∥∥∥∥∥φ−
m−1∑
k=0

φk

∥∥∥∥∥
Bα
U

= sup
f∈Bα

U

∣∣∣∣∣
(

φ−
m−1∑
k=0

φk

)
(f)

∣∣∣∣∣
= sup

f∈Bα
U

∣∣∣∣∣∣φ
 ∞∑

j=m

P jf(0)

∣∣∣∣∣∣ ≤ 1
m2

‖φ‖
Bα′
U

→ 0 as m →∞ .
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Thus φ =
∑∞

n=0 φn ∈ G∞(U).
As (β1, 22β2, . . . , n

2βn, . . . ) ∈ S for (βn)n∈N ∈ S, it follows by Lemma 1
that there exists a sequence of strictly positive numbers α′′ = (α′′n) such that∥∥∥∥∥∥

∞∑
j=0

j2βjP
jf(0)

∥∥∥∥∥∥
Un

≤
∞∑

j=0

j2βj

∥∥P jf(0)
∥∥

Un
≤ α′′n,

for every f ∈ Bα
U and every n ∈ N, where β0 = 0. Hence, in particular

B
′
:=
{
j2βjP

jf(0) : f ∈ Bα
U , j ∈ N

}
⊂ Bα′′

U

with {j2βjP
jf(0) : f ∈ Bα

U} ⊂ P (jE) for every j ∈ N. Let φη → 0 in G∞(U)
(for the topology of uniform convergence on the subsets Bα

U of H∞(U) for
every α). Since

‖(φη)j‖{P jf(0)}{f∈Bα
U}

= sup
f∈Bα

U

∣∣φη(P jf(0))
∣∣ ≤ 1

j2βj
‖φη‖B′

then (φη)j → 0 in Q(jE) for every j ∈ N. Hence {Q(nE)}∞n=0 is a Schauder de-
composition for G∞(U). Furthermore, for

∑∞
n=0 φn ∈ G∞(U) and (βn)n∈N ∈

S we have that∥∥∥∥∥
∞∑

n=k

βnφn

∥∥∥∥∥
Bα
U

≤
∞∑

n=k

|βn| ‖φn‖Bα
U

=
∞∑

n=k

sup
f∈Bα

U

|φ(βnPnf(0))|

=
∞∑

n=k

1
n2

sup
f∈Bα

U

∣∣φ(n2βnPnf(0))
∣∣ ≤ ‖φ‖B′

∞∑
n=k

1
n2

.

Therefore {Q(nE)}∞n=0 is an S-decomposition for G∞(U), and taking k = 0 it
is seen that the S-decomposition is absolute.

We remark that the hypothesis of Proposition 1 is sufficient for the proof
of [11, Theorem 5.2], so with this result [11, Theorem 5.2] still remains true.

There is also a relation concerning the BAP between Q(mE) and G∞(U),
which we prove below. Before let us give a technical lemma whose proof is a
modification of the proof of [14, Lemma 9] (see also [7] for related results).

Lemma 2. Let E and F be Banach spaces, and let 1 ≤ λ < ∞. If

BP(mE;F ) ⊂ Bλ
Pf (mE;F )

τc
for some m ∈ N, then BL(E;F ) ⊂ B

c(λ,m)
E′⊗F

τc

, where

c(λ, m) = m− 1 + mm+1

m! λ.
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Proof. Since c(λ, 1) = λ the case m = 1 is our hypothesis. Then we let
m > 1 and suppose that BP(mE;F ) ⊂ Bλ

Pf (mE;F )

τc
. Let T ∈ BL(E;F ), let K

be a compact subset of E and let ε > 0. Let a ∈ K with a 6= 0 and choose
ϕ ∈ E′, ϕ 6= 0, such that ϕ(a) = 1 and ‖ϕ‖ = ‖a‖−1. Consider the set

K1 :=
⋃

εi=∓1
i=1,...,m

(ε1K + · · ·+ εmK) ,

which is a compact set in E. Let us define

T
∨◦ ϕm−1(x1, . . . , xm) :=

1
m

[
T (x1)ϕ(x2) · · ·ϕ(xm)

+ · · ·+ T (xm)ϕ(x1) · · ·ϕ(xm−1)
]

for every (x1, . . . , xm) ∈
m times︷ ︸︸ ︷

E × · · · × E . Since ‖a‖m−1 T ◦ϕm−1 ∈ BP(mE;F ), by
hypothesis there is a Pm ∈ BPλ

f (mE;F ) such that

∥∥∥Pm(x)− ‖a‖m−1 T ◦ ϕm−1(x)
∥∥∥ <

m!
m
‖a‖m−1 ε

for every x ∈ K1.

Thus, for every (x1, . . . , xm) ∈
m times︷ ︸︸ ︷

K × · · · ×K, we have that∥∥∥∥ ∨
Pm (x1, . . . , xm)−

(
‖a‖m−1T

∨◦ ϕm−1
)

(x1, . . . , xm)
∥∥∥∥

=

∥∥∥∥∥ 1
m!2m

∑
εi=∓1

ε1 · · · εm

[
Pm

(
m∑

i=1

εixi

)
− ‖a‖m−1 T ◦ ϕm−1

(
m∑

i=1

εixi

)]∥∥∥∥∥
<

1
m!2m

∑
εi=∓1

m!
m
‖a‖m−1 ε = ‖a‖m−1 ε

m
.

Then, in particular we obtain∥∥∥∥∥ ∨
Pm (x, a, . . . , a)−

(
∨

‖a‖m−1 T ◦ ϕm−1

)
(x, a . . . , a)

∥∥∥∥∥ < ‖a‖m−1 ε

m
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for every x ∈ K. This will imply that∥∥∥∥ ∨
Pm (x, a . . . , a)−

(
‖a‖m−1 1

m
T (x) + ‖a‖m−1 m− 1

m
ϕ(x)T (a)

)∥∥∥∥
=
∥∥∥∥ ∨
Pm (x, a . . . , a)− ‖a‖m−1

(
m− 1

m

)
ϕ(x)T (a)− ‖a‖m−1 1

m
T (x)

∥∥∥∥
< ‖a‖m−1 ε

m

for every x ∈ K, or equivalently∥∥∥∥ m

‖a‖m−1

∨
Pm (x, a . . . , a)− (m− 1)T (a)ϕ(x)− T (x)

∥∥∥∥ < ε (*)

for every x ∈ K.
Therefore, if we define a linear operator Tf by

Tf (x) :=
m

‖a‖m−1

∨
Pm (x, a . . . , a)− (m− 1)T (a)ϕ(x) , x ∈ E,

then Tf ∈ E′ ⊗ F , and since
∥∥∥∥ ∨
Pm ( . , a . . . , a)

∥∥∥∥ ≤ ‖a‖m−1 mm

m! ‖P
m‖ (see [23,

Theorem 2.2]) we have that

‖Tf‖ =
∥∥∥∥ m

‖a‖m−1

∨
Pm ( . , a . . . , a)− (m− 1)T (a)ϕ

∥∥∥∥
≤ mm+1

m!
λ + m− 1 .

Hence letting c(λ, m) = m − 1 + mm+1

m! λ we have that Tf ∈ B
c(λ,m)
E′⊗F , and

therefore the proof by (*).

In case of Banach spaces we have another equivalent formulation for the
definition of the BAP. We say that a Banach space E has the λ-BAP if given
a compact set K ⊂ E and ε > 0, there is a finite rank operator T ∈ L(E;E)
so that ‖T‖ ≤ λ and ‖Tx− x‖ < ε for every x ∈ K. We say that E has the
BAP if E has the λ-BAP for some λ. Note that, in case of Banach spaces, this
definition coincides with that definition of the BAP given in the introduction
for the locally convex spaces.

Considering the above definition and using [13, Proposition 1], from the
previous lemma, in particular, we obtain the following useful result.
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Corollary 1. Let E be a Banach space and let 1 ≤ λ < ∞. If BP(mE;F )

⊂ Bλ
Pf (mE;F )

τc
, for every Banach space F and for some m ∈ N, then E has

the c(λ, m)-BAP, where c(λ, m) = m− 1 + mm+1

m! λ.

Corollary 1 is applied in the proof of the following result which asserts that
a Banach space E has the BAP if and only if, for each m ∈ N (or, equivalently
for some m ∈ N), the predual of P(mE) has the BAP if and only if the predual
of H∞(U) has the BAP.

Proposition 2. Let U be a balanced open subset of a Banach space E
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U
such that U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N.

Then the following statements are equivalent:

(a) E has the BAP.

(b) Q(mE) has the BAP, for every m ∈ N.

(c) Q(mE) has the BAP, for some m ∈ N.

(d) G∞(U) has the BAP.

Proof. The equivalence of (a) and (b) follows from [13, Proposition 2],
and the equivalence of (b) and (d) follows from Proposition 1 and [12, Propo-
sition 2.7].

Since the implication (b) ⇒ (c) is trivial we show that (c) implies (a) to
complete the proof. Suppose that, for some m ∈ N, Q(mE) has the λ-BAP,
for some λ ≥ 1. Then by applying [13, Proposition 1], [23, Theorem 2.4] and
[23, Proposition 3.1] we see that BP(mE;F ) ⊂ Bλ

Pf (mE;F )

τc
, for every Banach

space F . Now it follows from Corollary 1 that E has the c(λ, m)-BAP, and
hence we have (a).

Observe that if Q(mE) has the BAP for some m ∈ N then, it actually has
the BAP for every m ∈ N (and hence G∞(U) has the BAP) by Proposition 2.
Therefore the above proposition improves [13, Proposition 2] in some sense.

Previous proposition, by [24, Proposition 7.1], in particular, yields the
following result for the predual of holomorphic mappings of bounded type
Hb(U) constructed by Galindo, Garcia and Maestre in [17].

Corollary 2. A Banach space E has the BAP if and only if Gb(U) has
the BAP, for every balanced open subset U of E.

We note that the results similar to Proposition 2 and Corollary 2 were
obtained by Mujica in [24] for the approximation property.
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4. The bounded approximation property for weakly uniformly
continuous type holomorphic mappings

Paralleling to a work of Aron and Schottenloher [5], in [9] Boyd, Dineen and
Rueda gave some characterizations for the AP in connection with the space of
weakly uniformly continuous holomorphic mappings. We now introduce a new
class of holomorphic mappings, which will coincide with the space of weakly
uniformly continuous holomorphic mappings in some particular cases. Let U
be an open subset of a Banach space E, and let U = (Un)n∈N be an increasing
countable open cover of U . Let Hwu(U ;F ) denote the locally convex space

Hwu(U ;F ) =
{

f ∈ H(U ;F ) :
f is weakly uniformly

continuous on Un for every n

}
,

endowed with the topology of uniform convergence on all the sets Un, which
we call space of holomorphic mappings of weakly uniformly continuous type.
When F = C we write Hwu(U) instead of Hwu(U ; C).

It is clear that Hwu(U ;F ) = Hwu(U ;F ) if U = (Un)n∈N is a fundamental
sequence of open U -bounded sets.

Given a locally convex space E, let E
′
c denote the dual of E, endowed

with the topology of uniform convergence on all convex, balanced, compact
subsets of E. For locally convex spaces E and F the ε-product was intro-
duced by L. Schwartz in [32] as the locally convex space EεF := Lε(E

′
c;F ),

endowed with the topology of uniform convergence on equicontinuous subsets
of E

′
. There are several results relating the approximation property with the

ε-product. We mention [5], [6], [9], [28], [31]. Besides, the notion of ε-product
can be used to yield topological isomorphisms which are useful to study of
approximation properties in connection with certain classes of holomorphic
mappings. The following proposition states a result in this direction (for re-
lated results see [9] and [31]).

Proposition 3. Let E and F be locally convex spaces with F is quasi-
complete, let U be an open subset of E, and let U = (Un)n∈N be an increasing
countable open cover of bounded, balanced, open subsets of U . Then

(a) Hwu(U ;F ) is topologically isomorphic to Hwu(U)εF .

(b) Pw(nE;F ) is topologically isomorphic to Pw(nE)εF for each n ∈ N.

The proof of this proposition is an obvious modification of the proof of
[9, Theorem 3], and is therefore omitted.
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Let Lw,s(nE;F ) denote the space of symmetric continuous n-linear map-
pings from E into F which are weakly uniformly continuous on the bounded
subsets of E×. . .×E. The next result is inspired by the ideas of Boyd, Dineen
and Rueda in [9], which is established there for the AP.

Proposition 4. Let E be a Banach space such that E
′

has the BAP.
Then Lw,s(nE) has the BAP for all n ∈ N.

Proof. In the proof of [9, Proposition 8] by using [20, § 43, 3(7), p. 243]
and [30, Exercise 4.5] we get the proof.

Let us recall that every complemented subspace of a locally convex space
with the BAP has the BAP. Now, as a consequence of Proposition 3 and
Proposition 4 we can give the following tensor characterizations of the bounded
approximation property for Hwu(U) and Pw(nE), n ∈ N.

Theorem 1. Let U be a balanced, open subset of a Banach space E,
and let U = (Un)n∈N be an increasing countable open cover of bounded open
subsets of U . The following conditions are equivalent:

(a) E
′
has the BAP.

(b) For each n ∈ N, Pw(nE) has the BAP.

(c) For each n ∈ N, given a polynomial P ∈ Pw(nE;F ) there is an equicon-
tinuous net in F

⊗
Pw(nE) which converges to P for the topology of uni-

form convergence on the equicontinuous subsets of F
′
c , for every quasi-

complete locally convex space F (equivalently for every complete locally
convex space F ).

(d) Hwu(U) has the BAP.

(e) Given a mapping f ∈ Hwu(U ;F ) there is an equicontinuous net in
F
⊗
Hwu(U) which converges to f for the topology of uniform con-

vergence on the equicontinuous subsets of F
′
c , for every quasi-complete

locally convex space F (equivalently for every complete locally convex
space F ).

Proof. The implications (b) ⇔ (c), (d) ⇔ (e) follow from Proposition 3
and [12, Proposition 2.8]. The implication (d) ⇒ (b) follows from the fact that
Pw(nE) is a complemented subspace ofHwu(U) for every m ∈ N, since each Un

is bounded. And since U is balanced and each Un is bounded then, by using
[15, (3.42)] one can see that {Pw(nE)}∞n=0 is an S-absolute decomposition for
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Hwu(U) (see [15, Proposition 3.36, p. 197]). Hence by [12, Proposition 2.7] we
get the implication (b) ⇒ (d).

On the other hand, since Pw(nE) and Lw,s(nE) are isomorphic the impli-
cation (a) ⇒ (b) follows from Proposition 4, and since E

′
is a complemented

subspace of Hwu(U) we have that (d) ⇒ (a).
The fact that the condition (e) (resp. (c)) for every complete locally convex

space F is equivalent to the corresponding condition for every quasi-complete
locally convex space F follows from [12, Proposition 2.8] since (Hwu(U)

′
c)
′
c =

Hwu(U) (resp. Pw(nE)
′
c)
′
c = Pw(nE)) and Hwu(U)

′
c (resp. Pw(nE)

′
c) is a

complete locally convex space (see [19, § 21, 6 (4), p. 265]).

Remark 1. In the above theorem some implications are true for more
general settings:

(a) The implications (d) ⇔ (e) , (b) ⇔ (c) are true, in general, for
any increasing countable open cover of an open subset U of a Banach
space E.

(b) The implication (d) ⇒ (b) is true when each Un is bounded, and U is
need not to be balanced.

By [24, Proposition 7.1], from Theorem 1 in particular we obtain the
following result for weakly uniformly continuous holomorphic mappings,
which parallels to the aforementioned work of Boyd, Dineen and Rueda
given in [9].

Corollary 3. Let U be a balanced open subset of a Banach space E with
P(nE) = Pw(nE), for every n ∈ N. The following statements are equivalent:

(a) E
′
has the BAP.

(b) P(nE) has the BAP for each n ∈ N.

(c) Hwu(U) has the BAP.

We note that in the preceding corollary, for every n ∈ N, P(nE) = Pw(nE)
holds if, in particular, E is the Tsirelson space which is a reflexive Banach
space with a Schauder basis (see [1]). Also, in [15, Corollary 2.37 and Propo-
sition 2.41] it is given conditions under which P(nE) = Pw(nE), for every
n ∈ N (see also [15, Proposition 2.49]).

In a series of papers Mujica [23],[24], and Mujica and Nachbin [26] gave
linearization theorems for certain classes of spaces of holomorphic mappings.
Using the linearization technique given in [24] (or in [26]) we prove the fol-
lowing result for weakly uniformly continuous type holomorphic mappings.
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Theorem 2. Let U be an open subset of a locally convex space E, and let
U = (Un)n∈N be an increasing countable open cover of U . Then there are a
complete, barelled, (DF)-space Gwu(U) and a mapping δU ∈ Hwu(U ;Gwu(U))
with the following universal property: For each complete locally convex
space F and each mapping f ∈ Hwu(U ;F ), there is a unique mapping Tf ∈
L(Gwu(U);F ) such that Tf ◦ δU = f . This property characterizes Gwu(U)
uniquely up to a topological isomorphism.

Proof. We proceed as in the proof of [26, Theorem 2.1]. If U = (Un)n∈N is
a countable open cover of U , and α = (αn)n∈N is a sequence of strictly positive
numbers then we set Bα

Uwu = {f ∈ Hwu(U) : ‖f‖Un
≤ αn for every n}, which

is a τc-compact subset of Hwu(U) by the Ascoli Theorem. Now we let Gwu(U)
be the space of all linear forms on Hwu(U) which when restricted to each
Bα
Uwu are τc-continuous for every α. We endow this space with the topology of

uniform convergence on all the sets Bα
Uwu. Observe that Gwu(U) is a complete,

barelled DF-space. The evaluation mapping δU : x ∈ U → δx ∈ Gwu(U) is
defined by δx : f ∈ Hwu(U) → f(x) ∈ C for every x ∈ U , and we see that
δU ∈ H(U ;Gwu(U)). But actually δU ∈ Hwu(U ;Gwu(U)). To see this we use
an argument given in the proof of [9, Theorem 3]. Let n be any positive
integer and consider a neighborhood of zero, in Hwu(U),

W = {f ∈ Hwu(U) : |f(x)| ≤ 1 for all x ∈ Un}.

Then δU (Un) ⊂ W ◦, where W ◦ denotes the polar of W , and hence the weak
topology coincides with the topology induced by Hwu(U)

′
c on δU (Un). Since

(Hwu(U)
′
c)
′
= Hwu(U), a fundamental system of weak neighborhoods of zero

in Hwu(U)
′
c restricted to δU (Un) has the form

V0 = {φ ∈ Hwu(U)
′

: |φ(fi)| < ε, i = 1, . . . , n},

for some finite set (fi)n
i=1 ⊂ Hwu(U) and ε > 0. Since each fi is weakly

uniformly continuous on Un, there exists a weak neighborhood of zero W0

in E such that |fi(x)− fi(y)| < ε whenever x, y ∈ Un, x − y ∈ W0, for all
i = 1, . . . , n. But |fi(x)− fi(y)| = |δx(fi)− δy(fi)| and thus, δx − δy ∈ V0

for all x, y ∈ Un such that x − y ∈ W0. This proves that δU is weak-weak
uniformly continuous on Un, and consequently δU ∈ Hwu(U ;Gwu(U)).

From this point on the argument used in the proof of [26, Theorem 2.1]
works for our case also.

From the preceding theorem, by [24, Proposition 7.1], in particular we
obtain the following:
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Proposition 5. Let U be an open subset of a locally convex space E.
Then there are a complete, barelled, (DF)-space Gwu(U) and a mapping
δU ∈ Hwu(U ;Gwu(U)) with the following universal property: For each com-
plete locally convex space F and each mapping f ∈ Hwu(U ;F ), there is a
unique mapping Tf ∈ L(Gwu(U);F ) such that Tf ◦ δU = f . This property
characterizes Gwu(U) uniquely up to a topological isomorphism.

A useful tool to determine that whether or not a given space has the
(bounded) AP is the S-absolute decomposition of spaces. By an easy mod-
ification of the proof of Proposition 1, we obtain the following S-absolute
decomposition for Gwu(U).

Proposition 6. Let U be an open, balanced subset of a Banach space E
with P(nE) = Pw(nE), for every n ∈ N, and let U = (Un)n∈N be a sequence
of bounded, balanced, open subsets of U such that U =

⋃∞
n=1 Un and ρnUn ⊂

Un+1, with ρn > 1, for every n ∈ N. Then {Q(nE)}∞n=0 is an S-absolute
decomposition for Gwu(U).

As a consequence of the previous results for the preduals we obtain the
main result of this section:

Proposition 7. Let U be a balanced open subset of a reflexive Banach
space E with P(nE) = Pw(nE), for every n ∈ N, and let U = (Un)n∈N be a
sequence of bounded, balanced, open subsets of U such that U =

⋃∞
n=1 Un

and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. The following conditions are
equivalent:

(a) E has the BAP.

(b) P(nE) has the BAP for each n ∈ N.

(c) Gwu(U) has the BAP.

Proof. Since E is reflexive the implications (a) ⇔ (b) follows from [20,
§ 43, 8(4), p. 261] and Theorem 1. On the other hand by Proposition 2 we
have that E has the BAP if and only if Q(nE) has the BAP for each n ∈ N,
and by Proposition 6 and [12, Proposition 2.7], if and only if Gwu(U) has the
BAP, proving the implications (a) ⇔ (c).

We remark that there are separable reflexive Banach spaces E with a
Schauder basis (hence, with the BAP) such that P(2E) does not have the AP
(see [5, Proposition 5.2]) (hence, does not have the BAP). Thus Proposition
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7, being a positive result in this direction, shows that the condition that
P(nE) = Pw(nE), for every n ∈ N, is a necessary condition in order to P(nE),
n ∈ N, to have the bounded approximation property. We do not know if this
assumption can be replaced by a weaker assumption, or, if this condition is the
weakest condition for which P(nE), n ∈ N, has the (bounded) approximation
property.

Now, by [24, Proposition 7.1], Proposition 7, in particular, yields the fol-
lowing characterization of the BAP for the predual of spaces of weakly uni-
formly continuous holomorphic mappings.

Corollary 4. Let U be a balanced open subset of a reflexive Banach
space E with P(nE) = Pw(nE), for every n ∈ N. Then E has the BAP
if and only if Gwu(U) has the BAP if and only if P(nE) has the BAP for
each n ∈ N.

5. The bounded approximation property and the predual of the
space of bounded nolomorphic mappings on banach spaces

Let E and F be complex Banach spaces and let U be an open subset
of E. Let H∞(U ;F ) denote the Banach space of all bounded holomorphic
mappings, with the norm of supremum. When F = C we write H∞(U)
instead of H∞(U ; C).

Similarly to the constructions established in [24] and [26], Mujica [23]
constructed a Banach space G∞(U) and a mapping δU ∈ H∞(U ;G∞(U))
with the following universal property: For each Banach space F and each
mapping f ∈ H∞(U ;F ), there is a unique operator Tf ∈ L(G∞(U);F ) such
that Tf ◦ δU = f , where the space G∞(U) is defined as the closed subspace of
all linear functionals u ∈ H∞(U)

′
such that u|BH∞(U)

is τc-continuous, which
is called predual of H∞(U) .

In [23] Mujica asks whether G∞(UE) has the BAP, whenever E has the
BAP [23, 5.9 Problem]. We have no answer to this question yet when E is a
non-separable Banach space (for the separable case see [13] for a solution). In
the previous sections we have used the S-absolute decompositions to obtain
characterizations for the BAP concerning the preduals G∞(U) and Gwu(U).
But there is no way to use this method to prove that G∞(U) has the BAP
whenever E has the BAP as the following observation shows.

Remark 2. Let U be a bounded, balanced, open subset of a separable
reflexive Banach space E with P(nE) = Pw(nE), for every n ∈ N. Then, the
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sequence {Q(nE)}∞n=0 can not be an S-absolute decomposition for G∞(U).
Indeed, by hypothesis, for each n ∈ N, Q(nE) is a reflexive Banach space (see
the proof of [27, Theorem 2.5] or [25, Theorem 3.1]). Now, if {Q(nE)}∞n=0 were
an S-absolute decomposition for G∞(U), by [18, Theorem 3.2] this would
imply that G∞(U) is a reflexive Banach space. But as pointed out in [23,
Remark 2.2] G∞(U) is a separable Banach space also, and since H∞(U) =
G∞(U)

′
[23, Theorem 2.1], this would imply that H∞(U) is separable, which

is a contradiction (see [33, p. 93]).

Therefore, to prove the question that whether or not G∞(U) has the BAP
whenever E (necessarily non-separable) has the BAP, we can not appeal to S-
absolute decompositions used in Propositions 2 and 7. Furthermore, Remark
2 shows that Proposition 1 is false in the case U = UE and Un = UE for all
n ∈ N. Also, the following example, shown to us by the referee, shows that
Proposition 1 is false, in general, even if the sequence U = (Un)n∈N is strictly
increasing.

Example 1. Consider a complex Banach space E of dimension bigger
than one. Take x0 ∈ E such that ‖x0‖ = 1 and take U = UE and let

Un =
n− 1

n
Dx0 ∪ (UE\Cx0) , n = 1, 2, 3, . . . ,

where D is the open unit ball in C. Clearly U = (Un)n∈N is strictly increasing
countable cover of bounded balanced open subsets of UE . But, since the
closure in norm of Un coincides with the closed unit ball of E for all n, we
have H∞(U) = H∞(UE) algebraically and topologically. Hence {Q(nE)}∞n=0

is not an S-absolute decomposition for G∞(U) = G∞(UE) by the remark
above.

On the other hand, in [13], by following a different way, the author proved
that a separable Banach space E has the BAP if and only if G∞(UE) has the
BAP. Below we will give a slight improvement of this result.

Recall that a subspace of E is said to be 1-complemented if it is comple-
mented subspace of E with the projection of norm 1. If U is a bounded open
subset of a Banach space E, then by [23, Proposition 2.3] we know that E
is topologically isomorphic to a complemented subspace of G∞(U), and E is
isometrically isomorphic to a 1-complemented subspace of G∞(UE). One can
easily show that if E has the λ-BAP, 1 ≤ λ < ∞, then every complemented
subspace of E with the projection P has the λ ‖P‖-BAP. Therefore, for a
separable Banach space E we can summarize the results of [13, Proposition 2
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and Proposition 3] and Proposition 2 as follows, in particular, by showing that
a separable Banach space E has the λ-BAP if and only if G∞(UE) has the
λ-BAP if and only if Q(mE) has the λ-BAP for every m ∈ N.

Proposition 8. Let E be a separable Banach space E and let 1 ≤ λ < ∞.
The following are equivalent.

(a) For each Banach space F , BH∞(UE ;F ) ⊂ Bλ
H∞(UE)

⊗
F

τc
.

(b) G∞(UE) has the λ-BAP.

(c) Q(mE) has the λ-BAP, for every m ∈ N.

(d) For each Banach space F and for every m ∈ N, BP(mE;F ) ⊂ Bλ
Pf (mE;F )

τc
.

(e) E has the λ-BAP.

(f) For each Banach space F and for each open subset V ⊂ F , BH∞(V ;E) ⊂
Bλ
H∞(V )

⊗
E

τc
.

Proof. The implications (a) ⇔ (b), (e) ⇔ (f) are direct consequences of
[13, Proposition 3], and the implications (c) ⇔ (d) follow from [23, Theorem
2.4 and Proposition 3.1] and [13, Proposition 1]. The implication (b) ⇒ (c)
follows from [23, Proposition 2.6] while (d) ⇒ (e) is trivial.

Now we show that (e) ⇒ (b). Suppose that (e) holds. Then it follows from
[13, Corollary 3] that G∞(UE) has the λ′-BAP for some λ′ ≥ 1. It is easily
seen that λ′ must satisfy λ′ ≥ λ. Hence, from the implications (a) ⇒ (f) and
(e) ⇒ (f) we conclude that λ′ = λ.

In [13] actually we show that G∞(UE) has the BAP whenever E has the
BAP (see [13, Corollary 3]), and in Proposition 2 we see that, for every m ∈ N,
Q(mE) has the BAP whenever E has the BAP. But, in each of these results
we did not give any estimation for the λ. It is just given a result in [13]
stating that for every m ∈ N, Q(mE) has the λm-BAP if and only if E has the
BAP. Hence Proposition 8 sharpens [13, Corollary 3], Proposition 2, and also
[13, Proposition 2].
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