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ABSTRACT. In this paper, we consider smooth, properly immersed hypersurfaces evolv-
ing by mean curvature in some open subset of Rn+1 on a time interval (0, t0). We prove
that p - integrability with p ≥ 2 for the second fundamental form of these hypersurfaces in
some space-time region BR(y)× (0, t0) implies that theHn+2−p - measure of the first
singular set vanishes inside BR(y). For p = 2 and n = 2, this was established by Han
and Sun. Our result furthermore generalizes previous work of Xu, Ye and Zhao and of Le
and Sesum for p ≥ n + 2, in which case the singular set was shown to be empty. By a
theorem of Ilmanen, our integrability condition is satisfied for p = 2 and n = 2 if the ini-
tial surface has finite genus. Thus, the first singular set has zeroH2- measure in this case.
This is the conclusion of Brakke’s main regularity theorem for the special case of surfaces,
but derived without having to impose the area continuity and unit density hypothesis. It
follows from recent work of Head and of Huisken and Sinestrari that for the flow of closed,
k - convex hypersurfaces, that is hypersurfaces whose sum of the smallest k principal cur-
vatures is positive, our integrability criterion holds with exponent p = n + 3 − k − α
for all small α > 0 as long as 1 ≤ k ≤ n − 1. Therefore, the first singular set of such
solutions is at most (k − 1) - dimensional, which is an optimal estimate in view of some
explicit examples.

1. INTRODUCTION

A family of smooth, properly immersed hypersurfaces M = (Mt)t∈(0,t0) in Rn+1

evolves by mean curvature if
∂x

∂t
= ~H(x)

for x ∈ Mt and t ∈ (0, t0) ⊂ R. Here ~H(x) is the mean curvature vector at x ∈ Mt. Our
sign convention is ~H = −Hν, where H = div ν is the mean curvature of Mt with respect
to some choice ν of unit normal field.

Mean curvature flow was first studied in the framework of geometric measure theory by
Brakke ([B]) in 1978 and in the smooth setting by Huisken ([Hu1]) in 1984. We would also
like to mention the level set approach due to Chen, Giga and Goto ([CGG]) and to Evans
and Spruck ([ES1] - [ES3]) which will, however, not form the topic of the present paper.
While Huisken established that convex hypersurfaces asymptotically converge smoothly
to round spheres under mean curvature flow, Brakke developed a general regularity the-
ory in his monograph. In the special situation where one considers the flow of smooth
hypersurfaces possibly becoming singular in various places at time t0, his result can be
explained without too much notational preparation. We follow here, and often quote from
[E2], where a detailed account of Brakke’s work in this context can be found. All the re-
sults in [E2] are stated for properly embedded solutions, but the ones we need here actually
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only require that the solution is properly immersed.

A solution M = (Mt)t∈(0,t0) of mean curvature flow reaches a point x0 ∈ Rn+1 at
time t0 if there exists a sequence of times tj ↗ t0 and points xj ∈Mtj such that xj → x0.
We say that x0 is a singular point ofM at time t0 if it is reached by the solution at this
time, and ifM = (Mt)t∈(0,t0) has no smooth extension beyond time t0 in any neighbour-
hood of x0. All other points (which include those not reached by the solution) are termed
regular points ofM. The set of singular points ofM at time t0 we call the singular set
at time t0, and denote it by singt0M. If the singular set is nonempty, we call t0 the first
singular time since the flowM = (Mt)t∈(0,t0) is assumed to be smooth.

An important assumption in Brakke’s regularity theory is the area continuity and unit
density hypothesis (Brakke did not use this terminology), which for smooth flows can be
stated as follows: A smooth, properly immersed solution of mean curvature flow M =
(Mt)t∈(0,t0) inside an open set U ⊂ Rn+1 satisfies the area continuity and unit density
hypothesis at time t0 if the hypersurfaces Mt converge for t↗ t0 inside U in the sense of
Radon measures to an Hn- measurable, countably n - rectifiable set Mt0 of locally finite
Hn- measure.

For more detailed information on such sets we refer to [S]. In particular, they generalize
the notion of a hypersurface as they admit an approximate tangent space at almost every
point. Roughly speaking, the above hypothesis ensures that at the first singular time the
evolving hypersurfaces do not become too irregular, and form no double or even multiple
sheets in a set of positive Hn- measure. Formation of multiple sheets cannot occur in an
open set inside the evolving hypersurface due to the strong maximum principle, but mul-
tiple sheets could potentially start developing in Cantor type sets of positive Hn- measure
without interior points inside these hypersurfaces. There exist generalized surfaces with
arbitrarily small mean curvature which contain double sheeted regions, see an example in
[B], which is discussed in more detail in Chapter 5 of [E2]. We are now ready to state
Brakke’s main regularity theorem in the special case where we consider the first singular
time.

Theorem (Brakke’s Main Regularity Theorem ([B])). Let M = (Mt)t∈(0,t0) be a
smooth, properly immersed solution of mean curvature flow inside an open set U ⊂ Rn+1

which satisfies the area continuity and unit density hypothesis at time t0. Then

Hn(singt0M∩ U) = 0.

To this day, this is the strongest result about the first singular set in the general case,
that is without any additional assumptions on the initial hypersurface. In the special case
where the initial hypersurface is embedded and mean-convex, that is has positive mean
curvature, conditions which are preserved during the flow, White ([W1], [W2]) proved that
the dimension of the singular set is at most n − 1. The embeddedness assumption enters
since he considers hypersurfaces which are boundaries of regions in Rn+1. White’s result
is optimal in view of the examples of a shrinking cylinder or a shrinking torus of positive
mean curvature. One might conjecture that his estimate also holds in the general case, that
is without the assumption of mean-convexity.

In [HaSu], Han and Sun proved Brakke’s main regularity theorem in the case n = 2
under the additional assumption that the surfaces are closed but without having to impose
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the area continuity and unit density hypothesis. Their main tool is an ε - regularity re-
sult involving a space-time integral of the square norm of the second fundamental form,
a weaker version of which was first proved in [I1]. We will generalize this ε - regularity
theorem to a version involving the Lp - norm of the second fundamental form. Moreover,
we will derive Brakke’s theorem for closed, immersed, mean-convex solutions in general
dimensions without the area continuity and unit density hypothesis. For embedded solu-
tions, this result follows of course immediately from [W1] and [W2], but our alternative
argument provides an interesting technical criterion from which the conclusion of Brakke’s
theorem follows quite easily. Our first theorem introduces a p - integrability condition for
the second fundamental form which leads to an optimal estimate on the size of the first
singular set. This generalizes previous work of Xu, Ye and Zhao ([XYZ]) for the case
p ≥ n+ 2 which in turn is related to a theorem proved by Le and Sesum, see [LS1].

Theorem 1.1. LetM = (Mt)t∈(0,t0) be a smooth, properly immersed solution of mean
curvature flow inside an open ball BR(y) ⊂ Rn+1 which satisfies∫ t0

0

∫
Mt∩BR(y)

|A|p <∞

for some p ≥ 2, where |A| denotes the norm of the second fundamental form of the solution.
Then

Hn+2−p(singt0M∩BR(y)) = 0

for p ∈ [2, n+ 2] and singt0M∩BR(y) = ∅ for p ≥ n+ 2.

The validity of our condition with p = m+ 2−α, 0 ≤ m ≤ n−α and all small α > 0
implies

Hn−m+α(singt0M∩BR(y)) = 0

for these α > 0. From the definition of Hausdorff dimension we thus obtain

Corollary 1.2. LetM = (Mt)t∈(0,t0) be a smooth, properly immersed solution of mean
curvature flow inside an open ball BR(y) ⊂ Rn+1. Suppose the condition of Theorem 1.1
holds inside this ball with p = m+ 2−α for some 0 ≤ m ≤ n and all small α > 0. Then

dim (singt0M∩BR(y)) ≤ n−m.

Remark 1.3. (i) The above integrability condition with m = 1, that is p = 3 − α, would
imply

dim (singt0M∩BR(y)) ≤ n− 1,

the dimension estimate known to hold for embedded, mean-convex solutions by [W1] and
[W2]. As mentioned earlier, this upper bound on the dimension of the singular set cannot
be improved in view of known examples. We do not know yet if closed, embedded mean-
convex solutions satisfy the integrability assumption of Theorem 1.1 with p = 3−α for all
small α > 0. However, the condition of Theorem 1.1 with this exponent is easily verified
for the standard examples such as shrinking spheres, cylinders and the symmetric torus of
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positive mean curvature. An elementary calculation, for instance for the two-dimensional
shrinking cylinder with axis containing the origin, also shows that∫ t0

0

∫
Mt∩BR(0)

|A|3 =∞

for any R > 0. Therefore, we cannot conclude that the singular set has vanishing H1-
measure in this case. As expected, this matches the fact that the dimension of the singu-
lar set of the two-dimensional shrinking cylinder solution (in this case the cylinder axis)
equals 1.

(ii) If the condition of Corollary 1.2 holds with n = 2 and m = 2, which corresponds to
p = 4− α, then

dim (singt0M∩BR(y)) = 0.

In Chapter 5 of [E2], we conjectured that mean curvature flow of smooth, embedded closed,
connected surfaces in R3 would produce only a finite number of singular points (thus in
particular a zero-dimensional set singt0M) if at the first singular time the area of the evolv-
ing surfaces has not vanished entirely. The area disappears for instance for the symmetric
torus of positive mean curvature, which shrinks to a circle, that is has a one-dimensional
first singular set. Our conjecture was partly motivated by the results in [AAG] for embed-
ded closed, connected surfaces of revolution. Although it may turn out to be unrealistic
to approach this conjecture by trying to prove that embedded, closed, connected surfaces
which do not disappear at time t0 satisfy∫ t0

0

∫
Mt∩BR(y)

|A|4−α <∞

for all α ∈ (0, 1], it would nevertheless be interesting to see if this integrability condition
holds under the additional assumption of axial symmetry. Note, that the shrinking sphere
solution, which disappears at the first singular time, is special here, since it satisfies the in-
tegrability condition anyway. For the example of the symmetric initial torus with positive
mean curvature, this integral is infinite for all α ∈ [0, 1]. Closed, convex hypersurfaces
evolving by mean curvature and all closed, immersed, homothetically shrinking hypersur-
faces, even if they do not solve mean curvature flow, satisfy this integrability condition, see
Remark 1.6 (ii) below and the next item of this remark.

(iii) One easily checks by a scaling argument that closed, immersed, homothetically shrink-
ing families (Mt)t∈[0,t0) of hypersurfaces in Rn+1, that is where

Mt =

√
1− t

t0
M0

for all t ∈ [0, t0) (we assume here without loss of generality that they shrink to the origin
in Rn+1) satisfy the integrability condition of Theorem 1.1 with p = n + 2 − α for any
α ∈ (0, 1]. We do not need to assume that these families solve mean curvature flow, which
would require in addition that Mt satisfies the equation H = x · ν

2(t0−t) for all t ∈ [0, t0). For
homothetically shrinking solutions of mean curvature flow though, Corollary 1.2 applies,
predicting a zero-dimensional singular set. This matches the fact that the singular set of
these special solutions consists of the origin only.
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(iv) We can also state sufficient conditions on smooth, properly immersed, complete (non-
compact) hypersurfaces M0 which ensure that the associated family (Mt)t∈[0,t0) defined
in (iii) above satisfies the condition of Theorem 1.1 for given p ≥ 2. The required cal-
culations involve only a scaling argument, the co-area formula applied to M0 and the
evaluation of elementary one-dimensional integrals. Mean curvature flow is not used.
We leave the details as a straightforward exercise to the reader. Suppose, for instance,
that M0 satisfies the condition |A(x)| = O(|x|−β), |x| → ∞ for some β ≥ 0, and
Hn−1(M0 ∩ ∂Br(0)) = O(rs−1), r → ∞ for some s ≥ 1. From this, one can then
work out relations between n, s, β and p which imply the p - integrability condition of
Theorem 1.1 for an exponent we may want to prescribe a priori or determine a posteriori
from given n, s and β. Let us only discuss some special cases here, which correspond to
actual explicit examples. These, as well as the previous remarks, illustrate that the integra-
bility condition of Theorem 1.1 is optimal even for p > 2.

If for example β = 0 and s = l where l is an integer between 0 and n − 1, we obtain
integrability with p = n + 2 − l − α for any α ∈ (0, 1], and therefore, if the family also
moves by mean curvature, a singular set of at most l dimensions by Corollary 1.2. These
conditions on M0 are satisfied, for instance, on shrinking solutions of mean curvature flow
of the type Sn−l × Rl, 0 ≤ l ≤ n − 1, which have constant |A|, that is β = 0, and an l -
dimensional singular set. The case s = l = n and β = 0 is not interesting for us as it leads
to integrability with exponent p = 2− α, α ∈ (0, 1] which is less than 2.

On the other hand, we could consider the choice s = n which is a natural one for many
hypersurfaces, and ask for which range of exponents β we obtain integrability of |A| with
p = n+2−α for any α ∈ (0, 1]. It turns out that β > n−α

n+2−α is sufficient, so in particular
β = 1 will do. Corollary 1.2 implies that homothetic solutions starting from a hypersurface
M0 satisfying these conditions have a zero-dimensional singular set. For n = 2, the above
corresponds to the exponent p = 4− α for any α ∈ (0, 1].

The validity of our integrability condition with p = 4−α, α ∈ (0, 1] should be checked
for the homothetically shrinking solution found by Chopp in [Ch]. Some of its geometric
properties are also described in [I2]. Further examples along these lines are constructed in
[ACI]. Chopp’s solution is of the form Nt =

√
−tN, t < 0, where N ⊂ R3 is a smooth,

properly immersed, complete (non-compact) two-dimensional surface which is asymptotic
at infinity to a cone with an isolated singularity at the origin. In particular, the solution
(Nt) converges to this cone for t ↗ 0 in a suitable sense. By the above discussion (with
time interval [−1, 0) instead of [0, t0)), it is sufficient to check the conditions on the second
fundamental form and the boundary area growth of large balls intersecting N in order to
verify (4− α) - integrability for all α ∈ (0, 1]. As the solution is asymptotic to the cone at
infinity, we suspect that s = n = 2 may be the correct choice. The surface N would then
have to satisfy |A(x)| = O(|x|β), |x| → ∞ for β > 2−α

4−α . In particular, any β > 1
2 , such

as for example β = 1, which corresponds to the decay rate for cones, would be sufficient.
We could, however, not find this information for |A| in [Ch] or [I2]. The integrability con-
dition with p = 4, however, cannot hold for this example, as this would imply by Theorem
1.1 that the singular set is empty, contradicting the fact that the cone which is formed at
time 0 has an isolated singularity at the origin.
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(v) The integrability condition with p = 2 is satisfied for smooth, properly immersed sur-
faces (that is n = 2) with finite genus by results of Ilmanen ([I1]).

Corollary 1.4. LetM = (Mt)t∈(0,t0) be a smooth, properly immersed family of surfaces
in R3 (that is n = 2) evolving by mean curvature. Suppose that the initial surface has finite
genus. Then

H2(singt0M) = 0.

In the case of closed surfaces this theorem was proved in [HaSu].

In [HS1], Huisken and Sinestari proved in the case n ≥ 2 that if the evolving hypersur-
facesMt are immersed, closed and mean-convex, that is have positive mean curvature (this
follows from the mean-convexity of M0 by the maximum principle), then there is a con-
stant c1 > 0 depending only on the initial hypersurface M0 (c1 is actually the supremum
of |A|2/H2 on M0) such that

|A|2 ≤ c1H2

holds pointwise on all hypersurfaces Mt. On the other hand, the evolution equation
d

dt
µt = −H2µt

for the area element derived in [Hu1] yields∫ t0

0

∫
Mt

H2 ≤ Hn(M0) <∞.

Combining these, shows that the condition of Theorem 1.1 with p = 2 is satisfied for
closed, immersed, mean-convex hypersurfaces, and therefore one obtains

Corollary 1.5. LetM = (Mt)t∈(0,t0) be a smooth, immersed solution of mean curvature
flow in Rn+1 for n ≥ 2 consisting of closed, mean-convex hypersurfaces. Then

Hn(singt0M) = 0.

We would like to reiterate that for embedded solutions this is an immediate consequence
of White’s much stronger dimension estimate ([W1], [W2]), but the curvature integral
approach is entirely different.

Remark 1.6. In the case of immersed, closed, two-convex hypersurfaces, that is hypersur-
faces satisfying the condition κ1 + κ2 > 0 for their lowest two principal curvatures (this
condition is stronger than mean-convexity in more than two dimensions but weaker than
convexity, and it is also preserved by mean curvature flow), Head ([H]) showed that for
n ≥ 3 ∫ t0

0

∫
Mt

Hn+1−α <∞

holds for every α ∈ (0, 1]. An adaptation of Head’s calculation in combination with a
recent estimate due to Huisken and Sinestrari ( [HS3]) shows (see Chapter 3 of this paper)
that ∫ t0

0

∫
Mt

Hn+3−k−α <∞

for all α ∈ (0, 1] whenever 1 ≤ k ≤ n − 1 and the solution is closed and k - convex, that
is satisfies κ1 + · · · + κk > 0 for its smallest k principal curvatures. Since k - convex
hypersurfaces are in particular mean-convex, the discussion preceding Corollary 1.5 yields
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that the inequality |A|2 ≤ c1H2 holds pointwise on every Mt. Thus, for closed, immersed
k - convex solutions the condition of Theorem 1.1 is satisfied with p = m+ 3− k− α for
any α ∈ (0, 1] and any integer k ∈ [1, n−1]. In 1984, Huisken ([Hu1]) proved that closed,
convex initial hypersurfaces for n ≥ 2 contract smoothly to a ’round’ point in finite time.
In particular, the singular set of the solution starting from such a hypersurface consists of
just one point. The above discussion in the convex case, that is for k = 1, implies that the
condition of Theorem 1.1 is satisfied with p = n+ 2− α for any α ∈ (0, 1].

Remark 1.6 in combination with Corollary 1.2 implies the following dimension esti-
mate for closed, properly immersed k - convex solutions in the case 1 ≤ k ≤ n − 1. The
calculations leading to the relevant integrability condition are carried out in Chapter 3.

Corollary 1.7. LetM = (Mt)t∈(0,t0) be a smooth, properly immersed solution of mean
curvature flow in Rn+1. Suppose that 1 ≤ k ≤ n − 1 and that the solution hypersurfaces
are closed and k - convex, that is κ1 + · · · + κk > 0 for the first k principal curvatures
(these conditions are preserved during mean curvature flow). Then

dim (singt0M) ≤ k − 1.

This result is optimal in view of the example of a solution with initial data given by a
symmetric S2

r × S1
R which is 2 - convex for suitable R >> r > 0. Due to the preserva-

tion of its S1-symmetry and since it ’moves inward on itself’ due to the fact that its mean
curvature is positive, this solution contracts to a circle in finite time, hence resulting in a
one-dimensional singular set. Our result also matches the results of Huisken and Sinestrari
in [HS2], where it is shown that singularities of closed, two-convex solutions in dimen-
sions n ≥ 3 asymptotically look like Sn or Sn−1 × R. Their result in combination with
Head’s work on weak solutions in the two-convex case ([H]) can probably also be used to
prove our dimension estimate. Note also, that the homothetically shrinking solution of the
type Sn−k+1×Rk−1 is k - convex and has a singular set of dimension k− 1, although we
should point out that this is not a closed solution, except in the convex case where k = 1.
For technical reasons, we cannot yet deal with the mean-convex case, that is with k = n.

The proof of Theorem 1.1 is based on the following local regularity result, a weaker
form of which was proved by Ilmanen ([I1]) for p = 2. In the case p = 2, Theorem 1.8 is
due to Han and Sun ([HaSu]). For p = n + 2, it is due to Le and Sesum ([LS2]). For this
exponent, one may simply choose ρ′ = ρ0 and ρ = 0 below due to the scaling invariance of
the double integral. The restriction to p ∈ [2, n+ 2] is not essential but the case p > n+ 2
is not needed for our applications.

Theorem 1.8. There exist constants ε0 > 0 and c0 > 0 such that for any smooth, properly
immersed solution M = (Mt)t∈(0,t0) of mean curvature flow inside an open set U ⊂
Rn+1, every x0 ∈ U which the solution reaches at time t0, every ρ0 ∈ (0,

√
t0/2) for

which B2ρ0(x0) ⊂ U and all p ∈ [2, n+ 2] the assumption

sup
0≤ρ<ρ′≤2ρ0

1

(ρ′2 − ρ2)
n+2−p

2

∫ t0−ρ2

t0−ρ′2

∫
Mt∩B√

ρ′2−ρ2
(x0)

|A|p ≤ ε0

implies
sup

(t0−
ρ20
4 ,t0)

sup
Mt∩B ρ0

2
(x0)

|A|2 ≤ c0
ρ20
.
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The local smoothness estimates from [EH2] or Chapter 3 of [E2] imply that if |A|2 is
bounded on a parabolic cylinder around (x0, t0), then the norms of the covariant deriva-
tives of all orders of the second fundamental form (and therefore the entire geometry of
the evolving hypersurfaces) are bounded on a smaller parabolic cylinder, but one which
includes a space-time neighbourhood of the point (x0, t0). By a standard argument, the
solution can therefore be extended in some space-time neighbourhood of (x0, t0), and
therefore points which satisfy the above integral criterion have to be regular points of the
flow.

Theorem 1.8 then implies that there exists a constant ε0 > 0 such that for each fixed
p ∈ [2, n + 2] and each singular point x0 at time t0 there exist sequences tk ↗ t0 and
rk ↘ 0 with ∫ tk

tk−r2k

∫
Mt∩Brk (x0)

|A|p ≥ ε0 rn+2−p
k

for all k ∈ N. This, in combination with a straightforward application of Vitali’s covering
theorem (see [HaSu], [S] or [E2]), implies our main theorem.

Theorem 1.8 in the case p = 2, which was proved by Han and Sun in [HaSu], is an im-
provement of an earlier result established independently by Nakauchi in [N] and the author
in [E1], which arrives at the same conclusion as the one in Theorem 1.8, by assuming the
stronger condition

sup
(t0−ρ20,t0)

∫
Mt∩Bρ0 (x0)

|A|2 ≤ ε0

in the special case n = 2. It also improves a local regularity result in general dimensions
due to Ilmanen, see [I1].

Section 2 contains a standard mean value inequality for subsolutions of the heat operator
on hypersurfaces evolving by their mean curvature, which is then applied in the proof of
Theorem 1.8. Even in the case p = 2, our proof differs from the one in [HaSu]. In Section
3, the proofs of Theorem 1.1 and some of its above-mentioned consequences are presented.

The research for this paper has been partially supported by Project B3 of the Sonder-
forschungsbereich (Collaborative Research Centre) SFB 647 Raum-Zeit-Materie (Space-
Time-Matter) funded by the Deutsche Forschungsgemeinschaft (German Research Foun-
dation). The author would also like to thank John Head and Gerhard Huisken for very
useful discussions and Tom Ilmanen for pointing out an error in an earlier version of this
paper.

2. PROOF OF THE LOCAL REGULARITY THEOREM

In this chapter, we present the proof of Theorem 1.8, the partial regularity result dis-
cussed in the introduction. In the case p = 2, this was established in [HaSu], see also
[I1] for an earlier weaker version. Our proof, which differs from the one in [HaSu], uses
a scaling argument similar to the one employed in the Appendix of [E1], where a weaker
version of this regularity theorem for p = 2 was established. The work in [E1] is in turn
based on methods used in [CS] and [St].
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Since we shall make use of a local mean value inequality (as was also done in [E1], [I1]
and [N]), we include its statement and some comments on it here. This mean value in-
equality was first proved for subsolutions of linear parabolic equations in divergence form
by Moser ([M]). A proof can also be found in the monographs [LSU] or [L] .

In the case of mean curvature flow, which is a quasilinear parabolic system, one can
either write the solution locally as a graph, and then quote for instance a suitable chapter in
[L] or in [LSU] (this was done by Ilmanen in [I1]), or one can adapt Moser’s iteration proof
directly to the evolving hypersurfaces by using the Michael-Simon Sobolev inequality for
hypersurfaces from [MS]. The latter approach was taken in [E1]. As a further alternative,
one can replace the Moser iteration scheme by the well-known monotonicity formula of
Huisken ([Hu2]), or more precisely a weighted version of it proved in [EH1]. This method
was adopted in Chapter 4 of [E2].

Proposition 2.1. LetM = (Mt)t∈(0,t0) be a smooth, properly immersed solution of mean
curvature flow inside an open set U . Let u ≥ 0 be a smooth function defined on these
hypersurfaces satisfying the inequality(

d

dt
−∆Mt

)
u ≤ 0

inside U for all t ∈ (0, t0). Suppose x0 ∈ U is reached by the solution at time t0. Then for
all ρ ∈ (0,

√
t0) for which Bρ(x0) ⊂ U we have the estimate

sup
(t0− ρ

2

4 ,t0)

sup
Mt∩B ρ

2
(x0)

u ≤ c(n) ρ−(n+2)

∫ t0

t0−ρ2

∫
Mt∩Bρ(x0)

u.

The version in [E2] involves the L2- norm of u (called f therein) on the right hand
side, while the proof of Proposition 1.6 in Chapter 1 of [E1] contains a minor error at the
end, which results in an L2- norm inequality rather than the above stated L1- version also
claimed in Proposition 1.6 of [E1]. We take the opportunity to correct this error here. In
order to achieve this, we resort to an advanced calculus trick by which the above L1- mean
value inequality is derived from its corresponding L2- version. We found this argument in
a set of handwritten lecture notes due to Schoen [Sch], which were made available to us by
Robert Bartnik.

In order to streamline our notation, we will, for the duration of this argument, use the
symbolM to refer both to the smooth, properly immersed solution (Mt)t∈(0,t0) as well as
its space-time track

t0⋃
t=0

Mt × {t}.

For σ ∈ (0,
√
t0), denote the parabolic cylinder Bσ(x0)× (t0− σ2, t0) by Cσ(x0, t0). We

then use the abbreviations

sup
M∩Cσ(x0,t0)

f ≡ sup
(t0−σ2,t0)

sup
Mt∩Bσ(x0)

f

and ∫∫
M∩Cσ(x0,t0)

f ≡
∫
(t0−σ2,t0)

∫
Mt∩Bσ(x0)

f.
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We start with inequality (i) of Proposition 4.25 in [E2] applied at all points inC ρ
2
(x0, t0).

This implies that under our above conditions (we forgot to write down but used the assump-
tion u ≥ 0 in [E2]) we have the inequality

(1) sup
M∩C ρ

2
(x0,t0)

u ≤ c(n)

(
1

ρn+2

∫∫
M∩Cρ(x0,t0)

u2

) 1
2

.

Inequality (1) can also be obtained from the Moser iteration type proof of Proposition
1.6 in [E1] by extracting the supremum of u2ηβ (rather than u3ηβ as stated there) on the
right hand side of the mean value inequality for u4 (the third last inequality of the proof),
dividing the resulting inequality by this expression and then using the definition of η (by
scaling we assumed ρ = 1 there).

By an adjustment of the cut-off function used in the derivation of (1) (namely by choos-
ing it to be equal to 1 in Cσ(x0, t0) and equal to 0 outside Cσ+r(x0, t0)) we obtain instead

(2) sup
M∩Cσ(x0,t0)

u ≤ c(n) r−
n+2
2

(∫∫
M∩Cσ+r(x0,t0)

u2

) 1
2

for all σ, r > 0 with σ + r ≤ ρ. This leads to

(3) sup
M∩Cσ(x0,t0)

u ≤ c(n) r−
n+2
2

(
sup

M∩Cσ+r(x0,t0)

u

) 1
2
(∫∫

M∩Cρ(x0,t0)

u

) 1
2

.

We set

v =
u∫∫

M∩Cρ(x0,t0)
u
,

where we may assume without loss of generality that the denominator does not vanish.
Inequality (3) implies

(4) sup
M∩Cσ(x0,t0)

v ≤ c(n) r−
n+2
2

(
sup

M∩Cσ+r(x0,t0)

v

) 1
2

.

We now define σ0 = ρ/2 and σi+1 = σi + ri, where ri = ρ · 2−i−2 for i ∈ N ∩ {0}.
Inequality (4) then yields for all such i

(5) sup
M∩Cσi (x0,t0)

v ≤ c(n) ρ−
n+2
2

(
2
n+2
2

)i+2
(

sup
M∩Cσi+1

(x0,t0)

v

) 1
2

.

Iterating (5) for i between 0 and j − 1 with j ∈ N and using that σi < ρ for all i leads to

sup
M∩C ρ

2
(x0,t0)

v ≤
(
c(n) ρ−

n+2
2

)∑j
i=0 2−i

j∏
i=0

2
(n+2)(i+2)

2i+1

(
sup

M∩Cρ(x0,t0)

v

) 1

2j

.

Letting j →∞ and allowing for a larger constant c(n), we obtain

sup
M∩C ρ

2
(x0,t0)

v ≤ c(n) ρ−(n+2)

10



in view of the identity
∑∞
i=0 2−i = 2. By the definition of v, we thus arrive at

sup
M∩C ρ

2
(x0,t0)

u ≤ c(n) ρ−(n+2)

∫∫
M∩Cρ(x0,t0)

u.

�

Proof of Theorem 1.8. We will prove the Theorem in the following form: There exist
constants ε0 > 0 and c0 > 0 such that for any smooth, properly immersed solutionM =
(Mt)t∈(0,t0) of mean curvature flow inside an open set U ⊂ Rn+1, every x0 ∈ U which
the solution reaches at time t0, every ρ0 ∈ (0,

√
t0/2) for which B2ρ0(x0) ⊂ U and all

p ∈ [2, n+ 2] the assumption

sup
0≤ρ<ρ′≤2ρ0

1

(ρ′2 − ρ2)
n+2−p

2

∫ t0−ρ2

t0−ρ′2

∫
Mt∩B√

ρ′2−ρ2
(x0)

|A|p ≤ ε0

implies

σ2 sup
(t0−(ρ0−σ)2,t0)

sup
Mt∩Bρ0−σ(x0)

|A|2 ≤ c0

for all σ ∈ (0, ρ0]. The conclusion stated in the introduction (with c0 repaced by 4c0) then
follows directly from the one above by choosing σ = ρ0/2.

We shall modify the scaling argument used in the proof of Theorem 5.6 in [E2], a differ-
ent type of local regularity theorem, in fact we will partly even copy the text of the relevant
section of the latter proof as we did not see any need for improving our presentation in
[E2]. The proof in [HaSu] follows different lines.

By scaling the solution if necessary and by a translation in space-time we may assume
without loss of generality that ρ0 = 1, x0 = 0 and t0 = 0. Scaling about a point (x1, t1)
in space-time with t1 ∈ (0, t0] is done as follows: For fixed λ > 0 consider a new solution
defined by

Mλ
s =

1

λ
(Mλ2s+t1 − x1)

for s ∈ (− t1
λ2 ,

t0−t1
λ2 ), where we have changed variables by x = λ y+x1 and t = λ2s+ t1.

The second fundamental form Aλ of Mλ
s then satisfies |A(x)| = λ−1|Aλ(y)|, and the area

element of Mt is λn times the one of Mλ
s . Scaling the time-interval contributes a factor of

λ2. Therefore, for a given r ∈ (0,
√
t1)∫ t1

t1−r2

∫
Mt∩Br(x1)

|A|p = λn+2−p
∫ 0

− r2
λ2

∫
Mλ
s ∩B r

λ
(0)

|Aλ|p.

Since our result is a local one, we may also assume for simplicity that U = Rn+1.
Without loss of generality, we may therefore prove the following statement:

There exist constants ε0 > 0 and c0 > 0 such that for any smooth, properly immersed
solutionM = (Mt)t∈(−4,0) of mean curvature flow in Rn+1 the following holds. Suppose

11



0 ∈ Rn+1 is reached by the solution at time 0. Then for any p ∈ [2, n+ 2] the assumption

sup
0≤ρ<ρ′≤2

1

(ρ′2 − ρ2)
n+2−p

2

∫ −ρ2
−ρ′2

∫
Mt∩B√

ρ′2−ρ2
(0)

|A|p ≤ ε0

implies
σ2 sup

(−(1−σ)2,0)
sup

Mt∩B1−σ(0)

|A|2 ≤ c0

for all σ ∈ (0, 1].

We may also assume without loss of generality thatM = (Mt)t∈(−4,0] is smooth up
to and including time 0, because we can first prove the theorem with 0 replaced by −δ for
fixed small δ > 0 and then (since c0 is independent of δ) let δ ↘ 0 afterwards.

We now follow parts of the proof of Theorem 5.6 in [E2] almost verbatim: Suppose
the above statement is not correct. Then for every j ∈ N one can find a smooth, properly
immersed solutionMj = (M j

t )t∈(−4,0] which satisfies 0 ∈M j
0 and

(6) sup
0≤ρ<ρ′≤2

1

(ρ′2 − ρ2)
n+2−pj

2

∫ −ρ2
−ρ′2

∫
Mt∩B√

ρ′2−ρ2
(0)

|A|pj ≤ 1

j

for some exponent pj ∈ [2, n+ 2] but

(7) γ2j ≡ sup
σ∈(0,1]

(
σ2 sup

(−(1−σ)2,0)
sup

Mj
t ∩B1−σ(0)

|A|2
)
→∞

as j →∞ (note that γ2j <∞ sinceMj is smooth up to t = 0 by assumption). In particu-
lar, one can find σj ∈ (0, 1] for which

γ2j = σ2
j sup
(−(1−σj)2,0)

sup
Mj
t ∩B1−σj (0)

|A|2

and a point
yj ∈M j

τj ∩ B̄1−σj (0)

at a time τj ∈ [−(1− σj)2, 0] so that

(8) γ2j = σ2
j |A(yj)|2.

Since
σ2
j sup
(−(1−σj/2)2,0)

sup
Mj
t ∩B1−σj/2(0)

|A|2 ≤ 4γ2j ,

we obtain
sup

(−(1−σj/2)2,0)
sup

Mj
t ∩B1−σj/2(0)

|A|2 ≤ 4|A(yj)|2

and therefore
sup

(τj−σ2
j/4,τj)

sup
Mj
t ∩Bσj/2(yj)

|A|2 ≤ 4|A(yj)|2

because

Bσj/2(yj)× (τj − σ2
j /4, τj) ⊂ B1−σj/2(0)× (−(1− σj/2)2, 0)

as one checks easily. Let now
λj = |A(yj)|−1

12



and define

M̃ j
s =

1

λj

(
M j
λ2
js+τj

− yj
)

for s ∈ (−λ−2j σ2
j /4, 0], where we have changed variables by setting x = λjy + yj and

t = λ2js+ τj . Then M̃j = (M̃ j
s ) is a smooth solution of mean curvature flow satisfying

(9) 0 ∈ M̃ j
0 , |A(0)| = 1

and
sup

(−λ−2
j σ2

j/4,0)

sup
M̃j
s∩Bλ−1

j
σj/2

(0)

|A|2 ≤ 4

for every j ∈ N. Since
λ−2j σ2

j = γ2j →∞

by (7) and (8), we conclude that for sufficiently large j

(10) sup
(−1,0)

sup
M̃j
s∩B1(0)

|A|2 ≤ 4.

Scaling inequality (6) gives

(11) sup
0≤ρ<ρ′≤2

(
λ2j

ρ′2 − ρ2

)n+2−pj
2 ∫ − ρ2+τj

λ2
j

−
ρ′2+τj

λ2
j

∫
M̃j
s∩B√

ρ′2−ρ2
λj

(−yj)
|A|pj ≤ 1

j
.

We now choose 0 ≤ ρ < ρ′ in (11) such that ρ2+τj = 0 and ρ′2−ρ2 = ρ′2+τj = 4λ2j > 0.
Note that since σj ∈ (0, 1] and τj ∈ [−(1− σj)2, 0] we have 0 ≤ −τj < 1 so that ρ < 1.
Since ρ′2 = 4λ2j − τj < 4λ2j + 1 and as λj → 0 for j →∞ we can achieve the above with
0 ≤ ρ < ρ′ ≤ 2, that is within the admissible range of radii, as long as we choose j ∈ N
sufficiently large. This leads to

(12)

∫ 0

−4

∫
M̃j
s∩B2(−yj)

|A|pj ≤ 2n+2−pj

j

for those j ∈ N. Since −yj ∈ B̄1−σj (0) ⊂ B1(0) we have B1(0) ⊂ B2(−yj) and
therefore

(13)

∫ 0

−1

∫
M̃j
s∩B1(0)

|A|pj ≤ c(n)

j

for large enough j ∈ N.

We now invoke the evolution equation for the second fundamental form derived in
[Hu1], which for our scaled solution states that(

d

ds
−∆M̃j

s

)
|A|2 = 2|A|4 − 2|∇A|2,

where ∇ denotes covariant differentiation on the rescaled solution. A straightforward cal-
culation using the chain rule and the well-known inequality |∇|A|| ≤ |∇A| then implies

(14)

(
d

ds
−∆M̃j

s

)
|A|pj ≤ pj |A|pj+2.
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This uses also that pj ≥ 2. Combining (10) and (14) implies(
d

ds
−∆M̃j

s

)
|A|pj ≤ 4 pj |A|pj

inside the parabolic cylinderB1(0)×(−1, 0] for sufficiently large j ∈ N. We can therefore
apply the local mean value inequality of Proposition 2.1 to the functions uj = e−4pjs|A|pj
inside B1(0) × (−1, 0] for all j ∈ N chosen so large such that inequalities (10) and (13)
are satisfied. In view of (9) and (13), this yields

1 = |A(0)|pj ≤ c(n)

∫ 0

−1

∫
M̃j
s∩B1(0)

|A|pje−4pjs ≤ c(n, pj)
1

j

with a new constant c(n, pj) which is a product of the constant in (13), the factor e4pj and
the constant which appears in the mean value theorem. Since pj ∈ [2, n + 2] the final
constant only depends on n. Choosing now j ∈ N large enough so that inequalities (10)
and (13) are satisfied and such that the right hand side of the last inequality is smaller than
1 leads to a contradiction and completes our proof. �

3. PROOF OF THE PARTIAL REGULARITY RESULTS

In this chapter, we prove Theorem 1.1 and those of its consequences which were not
already derived in the introduction. The techniques involve a minor adaptation of the ones
employed in Corollary 1.3 of [HaSu] and in the proof of Lemma 5.12 in [E2].

Proof of Theorem 1.1. In view of the smoothness estimates from [EH2] or Proposition
3.22 in [E2], a bound of the form

sup

(t0−
ρ20
4 ,t0)

sup
Mt∩B ρ0

2
(x0)

|A|2 ≤ c0
ρ20

implies the higher order estimates

sup

(t0−
ρ20
16 ,t0)

sup
Mt∩B ρ0

4
(x0)

|∇mA|2 ≤ c(m,n)

ρ
2(m+1)
0

for the covariant derivatives of all orders m ∈ N of the second fundamental form. By the
evolution equations for geometric quantities under mean curvature flow (see [Hu1]), these
in turn imply local bounds on the space and time derivatives of all orders for the immer-
sions describing the evolving hypersurfaces. It then follows from standard arguments that
the solution can be extended beyond time t0 in some neighbourhood of x0. Hence, the
above local curvature bound implies that x0 is a regular point at time t0.

In view of Theorem 1.8, regular points x0 at time t0 can therefore be characterized by
the condition that for some p ∈ [2, n+2] and some ρ0 ∈ (0,

√
t0/2) for whichB2ρ0(x0) ⊂

BR(y), the inequality

(15)

∫ t0−ρ2

t0−ρ′2

∫
Mt∩B√

ρ′2−ρ2
(x0)

|A|p ≤ ε0 (ρ′
2 − ρ2)

n+2−p
2
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holds for all 0 ≤ ρ < ρ′ ≤ 2ρ0 for some fixed ε0 > 0. Points which the solution does not
reach at time t0 are regular by definition, so we do not need to consider them here.

Let p ∈ [2, n+2] be fixed but arbitrary. Then for a general point x in singt0M∩BR(y)

condition (15) with this p cannot hold for any ρ0 ∈ (0,
√
t0/2), that is the reverse inequality

must be satisfied for sequences ρk ↘ 0 and ρ′k ↘ 0 (these are allowed to depend on p)
with 0 ≤ ρk < ρ′k. In other words, there must exist sequences tk ↗ t0 and rk ↘ 0 for
which Brk(x) ⊂ BR(y) and such that∫ tk

tk−r2k

∫
Mt∩Brk (x)

|A|p ≥ ε0 rn+2−p
k

for instance by choosing tk = t0− ρ2k and r2k = ρ′2k − ρ2k for a sequence of radii ρk and ρ′k
for which (15) is violated.

In the following we are only interested in exponents p ∈ [2, n+ 2] for which∫ t0

0

∫
Mt∩BR(y)

|A|p <∞.

In order to estimate Hn+2−p(singt0M∩ BR(y)) for such a p ∈ [2, n + 2], we proceed
analogously to the proof of Corollary 1.3 in [HaSu] (which was carried out in the case
p = 2 and n = 2) or Lemma 5.12 in [E2] where we considered H2 instead of |A|p.

Let us fix δ > 0. In view of Theorem 1.8 and the above discussion about singular
points, there exists for every x ∈ singt0M ∩ BR(y) a time t(x) ∈ (0, t0] and a radius
r(x) ∈ (0, δ10 ] such that Br(x)(x) ⊂ BR(y) and the inequalities t(x) − r2(x) > t0 − δ2
and ∫ t(x)

t(x)−r(x)2

∫
Mt∩Br(x)(x)

|A|p ≥ ε0 r(x)n+2−p

hold.
The Vitali covering theorem (see [S] or Appendix C of [E2]) allows us to select a pair-

wise disjoint family of ballsBrj (xj) with xj ∈ singt0M∩BR(y), rj ∈ (0, δ10 ], Brj (xj) ⊂
BR(y) and

singt0M∩BR(y) ⊂
∞⋃
j=1

B5rj (xj),

as well as corresponding times tj ∈ (0, t0] satisfying tj − r2j > t0 − δ2 such that

∫ tj

tj−r2j

∫
Mt∩Brj (xj)

|A|p ≥ ε0 rn+2−p
j

is satisfied.
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We then estimate the Hn+2−p
δ - measure of the singular set (recall that we assume p ∈

[2, n+ 2] so the ’dimension’ of the Hausdorff - measure is not negative) by

Hn+2−p
δ

(
singt0M∩BR(y)

)
≤ 5n+2−p ωn+2−p

∞∑
j=1

rn+2−p
j

≤ c(n, p)

ε0

∞∑
j=1

∫ tj

tj−r2j

∫
Mt∩Brj (xj)

|A|p

≤ c(n, p)

ε0

∫ t0

t0−δ2

∞∑
j=1

∫
Mt∩Brj (xj)

|A|p

≤ c(n, p)

ε0

∫ t0

t0−δ2

∫
Mt∩BR(y)

|A|p,

where we used the pairwise disjointness of the balls Brj (xj) ⊂ BR(y) for j ∈ N to
arrive at the last inequality. The factor ωn+2−p is some appropriate positive normalization
constant (for n + 2 − p ∈ N the volume of the unit ball in that dimension) used in the
definition of Hausdorff - measure. Since we assumed that∫ t0

0

∫
Mt∩BR(y)

|A|p <∞,

the last expression in the string of inequalities above tends to zero as δ → 0. This implies
our result for p ∈ [2, n + 2]. If the condition of Theorem 1.1 holds for p > n + 2, it is
also valid for p = n+ 2 in view of Hölder’s inequality. Therefore, by the above estimate,
the H0- measure (which is simply the counting measure) of the singular set inside BR(y)
vanishes and hence this set is empty. �

Proof of Corollary 1.4. The argument combines results from [I1] with Theorem 1.1 for
p = 2. Let us first discuss the case of closed surfaces to illustrate the main geometric idea.
This case was established in [HaSu]: Any smooth surface M ⊂ R3 satisfies the Gauß
equation

H2 − |A|2 = 2K,

whereK = κ1κ2, the product of the principal curvatures, is the Gauß curvature ofM . The
Gauß-Bonnet theorem for closed surfaces states that∫

M

K = 4π(1− g(M)),

where g(M) is the genus of M . By the evolution equation

d

dt
µt = −H2µt

for the area element derived in [Hu1], a solution family consisting of closed hypersurfaces
satisfies the well-known inequality∫ t0

0

∫
Mt

H2 ≤ Hn(M0) <∞,

see also [Hu1]. On the other hand, integrating the Gauß-Bonnet formula for each Mt in
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time from 0 to t0 and using the fact that the genus does not change during a smooth evolu-
tion, leads to∫ t0

0

∫
Mt

|A|2 =

∫ t0

0

∫
Mt

H2 − 8π(1− g(M0)) t0 ≤ H2(M0)− 8π(1− g(M0) t0 <∞.

Theorem 1.1 is therefore applicable in this case.

For the general case, we employ a local version of the Gauß-Bonnet formula proved by
Ilmanen in [I1], which he also integrated in time and combined with the evolution equation
for the area element in the way we outlined above in the case of closed surfaces. Indeed,
it follows from his work that smooth, properly immersed solutions starting from a smooth,
properly immersed surface M0 of finite genus satisfy∫ t0

t0−r2

∫
Mt∩Br(x)

|A|2 <∞

for all x ∈ R3 and r ∈ (0,
√
t0). Theorem 1.1 applied with y = x and R =

√
t0 therefore

yields
H2(singt0M∩B√t0(x)) = 0

for all x ∈ R3. Since the countable union of sets of measure zero has again measure zero,
the conclusion of our corollary follows.

A technical remark is in order here: For ease of presentation, Ilmanen had assumed the
uniform area ratio estimate

sup
x∈R3

sup
ρ>0

H2(M0 ∩Bρ(x))

πρ2
≤ D <∞

for the initial surface M0, and then bounded the above double integral of |A|2 by an ex-
pression of the form C(D, g(M0)) r2. Since we only require the finiteness of this integral
and not the explicit form of Ilmanen’s bound, we are able to tolerate a dependence of his
constant on x. Therefore, the smoothness of M0 and the assumption that it is properly im-
mersed are sufficient to derive the finiteness of the double integral for all points in R3 and
all radii r ∈ (0,

√
t0), as one easily checks by an adaptation of Ilmanen’s argument leading

to inequalities (7) and (8) in [I1]. Alternatively, one can apply the methods in Chapter 5 of
[E2], in particular the proof of Theorem 5.4 using Theorem 5.3 as well as the conclusion
of Lemma 5.10, in order to derive inequalities (7) and (8) in [I1] from the smoothness of
M0 and the properness of its immersion only, but with constants depending on n and the
area of M0 inside Bc(n)√t0(x) for some c(n) > 1. �

Proof of Remark 1.6 for the k - convex case. We adapt Head’s calculation in [H] to k -
convex solutions of mean curvature flow. The evolution equation(

d

dt
−∆Mt

)
H = |A|2H

derived in [Hu1] in combination with the chain rule implies

(16)

(
d

dt
−∆Mt

)
Hq = q |A|2Hq − q(q − 1)Hq−2|∇H|2

17



for any q ∈ R. Combining this with the evolution equation

d

dt
µt = −H2µt

for the area element µt of the evolving hypersurfaces, yields

(17)
d

dt

∫
Mt

Hq =

∫
Mt

(
q |A|2 −H2

)
Hq − q(q − 1)

∫
Mt

Hq−2|∇H|2

on closed solutions. For q ∈ R\(0, 1), we therefore obtain the inequality

(18)
d

dt

∫
Mt

Hq ≤
∫
Mt

(
q |A|2 −H2

)
Hq

as long as H ≥ 0, which holds for any k - convex solution with 1 ≤ k ≤ n.

We now set q = n + 1 − k − α for α ∈ (0, 1]. If 1 ≤ k ≤ n − 1 then q ≥ 1, so
inequality (18) holds. In the mean-convex case, that is for k = n, we have q = 1− α with
α ∈ (0, 1]. Since we are interested in arbitrarily small positive α we would have to treat
the case q ∈ (0, 1). At this stage, we do not know how to estimate the integral involving
the gradient of H on the right hand side of (17), which in this situation has a non-negative
factor. This is the reason why we only consider the case 1 ≤ k ≤ n− 1 in the sequel.

Theorem 5.1 in [Hu1], Theorem 5.3 (i) in [HS2] (which is actually also valid in the case
n = 2 as it then agrees with the central estimate in [HS1] for mean-convex solutions) and
its generalization to closed, immersed k - convex solutions ([HS3]) implies that for any
ε > 0 there exists a constant C(ε) > 0 such that the inequality

|A|2 − 1

(n+ 1− k)
H2 ≤ εH2 + C(ε)

holds pointwise on all hypersurfaces Mt for all 1 ≤ k ≤ n. Inserting this into (18) with
q = n+ 1− k − α and using Young’s inequality, we arrive at

d

dt

∫
Mt

Hn+1−k−α ≤
(

−α
n+ 1− k

+ (n+ 2− k − α) ε

) ∫
Mt

Hn+3−k−α

+ C(ε, n, k, α)Hn(Mt)

for all ε > 0. For any α ∈ (0, 1], we can choose ε small depending on n, k and α so that

(19)
d

dt

∫
Mt

Hn+1−k−α ≤ − α

2(n+ 1− k)

∫
Mt

Hn+3−k−α + C(n, k, α)Hn(M0),

where we also used the inequality Hn(Mt) ≤ Hn(M0) for all t ∈ [0, t0), the latter being
a direct consequence of the evolution equation for the area element. Integrating (19) with
respect to time, implies∫ t0

0

∫
Mt

Hn+3−k−α ≤ C
(∫

M0

Hn+1−k−α +Hn(M0) t0

)
<∞

for all α ∈ (0, 1] where C depends on n, k and α and tends to infinity for α → 0. We re-
mind the reader that we had to use k ≤ n−1 for technical reasons to arrive at this estimate.

In view of the pointwise inequality |A|2 ≤ c1H
2 proved in [HS1], which holds on

all solution hypersurfaces in the closed mean-convex case and hence also for k - convex
18



solutions, we therefore conclude that∫ t0

0

∫
Mt

|A|n+3−k−α <∞

for all α ∈ (0, 1]. Corollary 1.2 then implies that the dimension of the singular set is at
most k − 1. �
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