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Stochastic resonance in a superparamagnetic particle
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Abstract

The stochastic resonance (SR) effect in a single-domain particle is investigated for the case where the exciting field is

imposed not parallel to the anisotropy axis but at an arbitrary angle. We show that despite the fact that for the

transverse case there is no SR at all, the intermediate cases yield signal-to-noise ratios much higher than the well-

investigated longitudinal case. The frequency range over which the effect is observable is estimated.

r 2002 Elsevier Science B.V. All rights reserved.
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The phenomenon of stochastic resonance (SR) is

inherent to noise-driven multistable systems. As it

always happens with the effects related to Brownian

motion, it has a very wide range of applicability [1].

Manifestation of SR is simple. Let a bistable system

containing a source of fluctuations (e.g. being in contact

with a heat bath) be subjected to an oscillating field of a

frequency O favouring the transitions between the

equilibrium states. It turns out then that under

enhancement of the noise intensity the signal-to-noise

ratio (SNR) determined from the spectral density

function QðoÞ at o ¼ O; passes through a distinctive

maximum.

In magnetism, the SR effect turns up in several

situations. In particular, in a single-domain ferromag-

netic particle with uniaxial anisotropy. In the absence of

interaction with the neighbours the particle orientation-

dependent energy is

U ¼ �mHðehÞ � KV ðenÞ2; ð1Þ

where e; n and h are the unit vectors of the particle

magnetic moment, anisotropy axis and the external field,

respectively; K is the effective anisotropy constant (for

uniaxial anisotropy it is essentially positive), m ¼ IsV is

the magnetic moment of a single-domain particle, Is its

magnetization and V its volume. As Eq. (1) shows,

without external fields the component of the magnetic

moment mðenÞ along the anisotropy axis has two,

energetically equivalent orientations, viz., e8n and e8�
n; thus making a one-dimensional bistable system. The

rate of transition between those potential wells is

controlled by the parameter s ¼ KV=kBT : Assuming
that the barrier height KV is fixed, one may regard 1=s
as the dimensionless temperature, i.e., the noise level. As

soon as one adds to this situation a linearly polarized

AC magnetic field parallel to the particle easy axis, all

the necessary conditions for SR of the longitudinal

component mðenÞ are satisfied. Exactly this situation was
analysed in detail in a number of works, see Refs. [2–9].

Reducing the problem to a one-dimensional equation (as

is typical for the basic SR theory), the authors find that

in the limit o-0 and in the linear response theory

approximation, magnetic stochastic resonance is de-

scribed by some universal curve, SNR0ð1=sÞ: This curve
corresponds to the cross-section b ¼ 0 of the surface in

Fig. 1 and also to the dashed line in Fig. 2. Returning to

the basic framework of the problem, and, in particular,

looking at expression (1), one realizes that for a

magnetic particle the one-dimensional formulation is

valid only as long as the probing AC field is perfectly

parallel to the particle easy axis. Indeed, it is just for h8n
that it suffices to have one angle to characterize a

position of vector e with respect to the other two. As

soon as the parallelism is broken, two angles (and,
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accordingly, two equations of motion) are necessary to

describe the particle magnetic moment e: Concerning
magnetic SR, this simple observation means that all the

existing theory was focused only on just one limiting

case of all the possible situations. Denoting the angle

between vectors h and n as b; one may say that nothing
is known for ba0. Meanwhile, finite angles are of

particular interest especially for particle assemblies

where a statistical spread of the grain axes is always

present.

Recognizing the fact that in general the magnetic

moment of a single-domain particle has two orienta-

tional degrees of freedom, we arrive at the necessity to

solve the problem of SR anew. It becomes rather

complicated for strong probing fields, but simplifies

considerably in the linear response approximation.

There we have to expand the AC magnetic field in two

components, longitudinal and transverse with respect to

n; find independently the responses to each of them, sum
up the results and make the projection on the direction

of h: These data are used then to evaluate the sought for
SNR. Fortunately, a lot of technical details are spared

by the relationship

SNR ¼ ðpH2
1=4kTÞ½ojwðoÞj2=w00ðoÞ� ð2Þ

derived in Ref. [10]. It renders the SNR for a system in

terms of its dynamic susceptibility; here the formula is

specified for the magnetic case with H1 being the

amplitude of the exciting field.

Calculation of the dynamic susceptibilities of a single-

domain particle is based on a numeric solution of the

micromagnetic Fokker-Planck equation for the orienta-

tional distribution function of the particle magnetic

moment. Nowadays it is a standard technique, see Refs.

[7,11], for example. In the oblique probing field the

particle susceptibility is obtained in the form

w ¼ w8ðs;oÞ cos
2bþ w>ðs;oÞ sin 2b; ð3Þ

where w8 and w> are the dynamic susceptibilities along

and across the particle easy axis. These functions cannot

be written down analytically, but their general beha-

viour is well known and the numeric procedures for

them are well established [11]. In Eq. (3) the longitudinal

term reflects the effect of spontaneous and induced flips

of the magnetic moment over the potential barrier of

internal anisotropy. These motions are called interwell

transitions and they are the direct cause of the super-

paramagnetic behaviour of fine particles. The transverse

susceptibility refers to a magnetic moment confined in

one and the same potential well, i.e., describes the

intrawell motion.

The enhancement of SR in the oblique field may be

found (and we have done that) directly from a consistent

realization of the above-outlined numeric procedures.

The results are given in Fig. 1, where SNR is plotted as

the function of 1=spT and b: However, to understand

the origin of the effect it suffices to consider a simple

scheme. Let us denote

w ¼ w0½f8ð1þ iotÞ�1 þ f>ð1þ iot0Þ
�1�;

f8 ¼ 1
3
ð1þ 2S2Þcos2b; f> ¼ 1

3
ð1� S2Þsin

2b; ð4Þ

where t ¼ t0 expðsÞ is the N!eel superparamagnetic

relaxation time, t0B1021021029 s is the reference

intrawell time, and w0 is the static susceptibility for

isotropic particles. At s > 1 all the other response times

are much shorter than t; and thus the transverse

susceptibility may be taken in its equilibrium form.

The function S2 is the internal order parameter of the

Fig. 1. Signal-to-noise ratio (arb. units) as a function of the

dimensionless temperature and the angle between the field and

the particle anisotropy axis; the plotted part of the surface ends

at b ¼ 871; further behaviour follows from the cross-sections

given in Fig. 2.
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Fig. 2. Signal-to-noise ratio vs. dimensionless temperature for

varying value of the tilt angle; the transverse case (901) is shown

by dash-dots, the longitudinal case (01) by dashes, marks at the

solid lines show the respective values of b:
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particle, which is zero at low s and tends to unity at

sb1. Substituting expressions (3) in Eq. (2), one finds

SNRps2
ðf8 þ f>Þ2 þ o2t20f

2
>e2s

t0f8es þ t0f>ð1þ o2t20e2sÞ
: ð5Þ

Note that we had to keep the imaginary part of the

transverse term in w00 since it is divided by o in Eq. (2).

Let us compare formula (5) with the pure longitudinal

(conventional) case

SNR0 ¼ s2e�sf =t0

that follows from the same equation at f> ¼ 0: One then
sees that at ba0 the SR behaviour (SNR being a non-

monotonic function of s) requires the condition so�
lnðot0Þ which ensures that the last terms in the

numerator and denominator do not dominate. Other-

wise—with the leading terms e2s—SNR (5) becomes

proportional to s that is a monotonic function inherent

to the purely transverse case. If, however, the frequency

range is appropriate (oo1=t0es; i.e., s is not too large)

from Eq. (5) one gets

SNRps2
ðf8 þ f>Þ2

t0ðf8es þ f>Þ
: ð6Þ

Let b be close to 901. Moving in formula (6) from the

high-temperature end, i.e., increasing s; we see that at

first SNR closely resembles that of the transverse case

since the term f8es contains a small coefficient cos2 b and
is insignificant. In Fig. 2 this behaviour is well visible as

a coincidence of the right-hand wings of the curves

corresponding to b ¼ 872901: But as the temperature

diminishes (s grows), the exponent in the denominator

overtakes causing a drastic reduction in SNR and, by

this, the SR peak. Consequently, at b-901 the

stochastic resonance is considerably enhanced in com-

parison to the conventional one, see Fig. 2.

Quantification of SNR, as already mentioned, is

possible only with numeric calculations. The surface

presented in Fig. 1 is obtained in this way and it gives an

overview of the behaviour of the SNR function with

respect to its two main governing parameters. However,

in a 3D plot some important details are difficult to

discern. For them, in Fig. 2 we present cross-sections

b=const of the surface of Fig. 1. These projections

reveal that the angular dependence of SNR in a single-

domain particle happens to be non-monotonic. Namely,

as b increases from zero, SNR first goes down making

SR even less sharp than it is in the longitudinal case.

This suppression lasts until bE601 and only then the

enhancement effect of the transverse modes begins to

work.

The evidence rendered by the qualitative considera-

tions and confirmed by the numerical analysis can be

summarized as follows:

* magnetic SR in single-domain particles is the

phenomenon, which in a general case results from

the joint contribution of interwell and intrawell

relaxation processes;
* magnetic SR in the longitudinal configuration is well

known, in the transverse case it does not exist at all

whilst in the intermediate situation, quite surpris-

ingly, SR displays considerable enhancement with

respect to the longitudinal case;
* this enhancement is the greater the closer the

situation is to the transverse one, but at any angle

the crucial condition for the existence of SR is ot51;
this means that the longitudinal projection of the

magnetic moment oscillates in a quasi-equilibrium

regime;
* the SNR maximum under an oblique field has as its

limiting value the SNR level inherent to the same

particle at the same temperature in the purely

transverse geometry.

We acknowledge partial financial support from the

International Association for the Promotion of Co-

operation with Scientists from the New Independent

States of the Former Soviet Union (INTAS) under

Grant 01-2341 and from the Award PE-009-0 of the US

Civilian Research & Development Foundation for the

Independent States of the Former Soviet Union

(CRDF).

P.C.F. and Yu.L.R. gratefully acknowledge support

from Enterprise Ireland under their International

Collaboration Programme, 2001.

References

[1] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev.

Mod. Phys. 70 (1998) 223.

[2] A.N. Grigorenko, V.I. Konov, P.I. Nikitin, Sov. Phys.

JETP Lett. 52 (1990) 593.

[3] E.K. Sadykov, J. Phys.: Condens. Matter 4 (1992) 3295.

[4] L.B. Kiss, Z. Gingl, Z. M!arton, J. Kert!esz, F. Moss, G.

Schmera, A. Bulsara, J. Stat. Phys. 70 (1993) 451.

[5] Yu.L. Raikher, V.I. Stepanov, J. Phys.: Condens. Matter 6

(1994) 4137.

[6] A. Perez-Madrid, J.M. Rub!ı, Phys. Rev. E 51 (1995) 4159.

[7] Yu.L. Raikher, V.I. Stepanov, Phys. Rev. B 52 (1995)

3493.

[8] T.F. Ricci, C. Scherer, J. Stat. Phys. 86 (1997) 803.

[9] P.C. Fannin, Yu.L. Raikher, J. Phys. D 34 (2001) 1612.

[10] M.I. Dykman, R. Mannella, P.V.E. McClintock, N.G.

Stocks, Phys. Rev. Lett. 65 (1990) 2606.

[11] Yu.L. Raikher, V.I. Stepanov, Phys. Rev. B. 55 (1997)

15005.

Y.L. Raikher et al. / Journal of Magnetism and Magnetic Materials 258–259 (2003) 369–371 371


	Stochastic resonance in a superparamagnetic particle
	References


