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ABSTRACT 
This paper deals with an adaptive refinement technique of 

a B-spline degenerate shell finite element model, for the free 
vibration analysis of curved thin and moderately thick-walled 
structures. The automatic refinement of the solution is based on 
an error functional related to the density of the total potential 
energy. The model refinement is generated by locally 
increasing, in a sub-domain R of a local patch domain, the 
number of shape functions while maintaining constant the 
functions polynomial order. The local refinement strategy is 
described in a companion paper, written by the same authors of 
this paper and presented in this Conference. A two-step iterative 
procedure is proposed. In the first step, one or more sub 
domains to be refined are identified by means of a point-wise 
error functional based on the system total potential energy local 
density. In the second step, the number of shape functions to be 
added is iteratively increased until the difference of the total 
potential energy, calculated on the sub domain between two 
iteration, is below a user defined tolerance. A numerical 
example is presented in order to test the proposed approach. 
Strengths and limits of the approach are critically discussed. 
 
INTRODUCTION 

Finite Element (FE) techniques are widely used for 
modeling the vibration behavior of industrial component and 
structures. Within the FE method, the infinite dimensional 
solution space is approximated with a finite dimensional one, 
consequently the obtained solution is usually approximated. In 
order to reduce the error, the user is usually involved in an 
iterative,time consuming process, in order to improve the 
accuracy of FE analysis results and keep low its computational 
cost. Efficient adaptive procedures can help users improving 
the accuracy of computed eigensolutions, by means of 
automatic, optimal, mesh refinement. 

Literature on FE adaptive methods is very vast [1-10], 
demonstrating the interest of the research community on the 
topic. However, most of it deals with static analysis and less 
attention has been given to kinetic applications [11,12]. 
Nevertheless, adaptive methods are only implemented in a few 
known FE software applications [13-16], such as the ones 
based on the p-refinement technique [16]. Hughes et al. [17], 
[18] and the authors of this paper [30] proposed using NURBS 
functions as the basis for the approximation of a solution field 
in FE analysis.  

An adaptive technique should take into account the 
following three sub-problems: 
- identification of optimal local density error indicator, by 

identifying the subdomains needing a refinement; 
- the definition of a refinement technique. Dofs are added 

on the subdomains without modifying the geometric shape 
of the component under study; 

- the definition of a global error estimator and of a stopping 
criterion to determine the level of refinement needed.  

The local error indicator value, in standard FE techniques, 
is usually associated with each element of the FE mesh: if the 
element error indicator is above a predefined value, then the 
element will be refined. If macroelements are used, this error 
indicator is not suitable to provide the needed local error 
indication. In [19] this local error indicator was associated with 
a partition of the macroelement, defined by means of the 
associated knot-vectors. In this paper a point-wise error, based 
on energy density, is adopted.  

In order to make the local refinement of B-spline FE 
models possible, some limitations inherent in tensorial product 
B-spline representation must be dealt with. To this purpose, 
several researchers [19-25] adopt various generalizations of 
B-spline functions, in which the rectangular form of tensor 
product B-spline manifolds is not used anymore. T-spline 
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functions were introduced by Sederberg [26] for geometric 
modeling applications. In the same paper Sederberg introduced 
PB-spline functions that are a meshless generalization of both 
T-spline and B-spline functions. A local refinement method for 
FE models was proposed by Dorfel et al. [19] and by Bazilevs 
et.al [21] making use of T-spline functions. However, these 
refinement methods can insert more control points (CPs) than 
the user choice, in order to satisfy some constraints resulting 
from the T-spline knot-insertion algorithm [19]. In [22] the 
authors proposed an adaptive local refinement technique by 
means of the hierarchical B-spline approach. This technique 
being based on functions subdivision, is not capable of refining 
the solution on a point inside a knot span without the 
refinement of all the basis functions active on that knot span. 
More recently the LR spline over Box-partition paradigm was 
presented [27]. LR-spline are B-spline meshless functions, as 
PB-spline are, in which each function is augmented with a 
scaling coefficient. The refinement algorithm is based on a 
subdivision technique but scaling coefficients values are 
calculated such that the resulting subdivided functions remain 
polynomial. This is in contrast with both the T-spline and 
PB-spline where a rational scaling is used in order to maintain 
the partition-of-unity property [26]. Since all the proposed 
techniques are based on a function subdivision approach, the 
smallest refinable domain is given by the knot span that defines 
the support of the functions on which the subdivision operation 
is applied.  

In this paper a B2-spline model is adopted.  An automatic 
refinement procedure based on the gradient of the energy 
density function is proposed, and the solution can be improved 
by locally refining on a limited sub-domain. The B2-spline 
model is described in a companion paper written by the same 
authors. The approach is based on the superposition of another 
B-spline (refinement) patch on a small portion of the starting 
(base) patch. This strategy, being not based on function 
subdivision, allow the refinement subdomain to be as small as 
needed. 

The choice of the criterion used to stop the iterative 
procedure is also dealt with. An example is presented in order 
to test the automatic approach. Critical discussion on 
advantages and drawbacks of the proposed approach then 
follows. 
 
B2-SPLINE SHELL MODEL 

The B2-spline FE model, adopted for the automatic 
refinement procedure, is briefly introduced. For further details, 
[31] can be referred to. 

The position vector of the degenerate B2-spline solid shell, 
with respect to a Cartesian fixed, global reference frame 

 , ,x y z , can be expressed as the sum of np standard tensorial 

product of B-spline functions: 
 

 0

( , , )
( , , )

np

k
k

S

  
   

s
s  (1) 

where 
 

 
1 1

1
( , , ) ( ) ( )

2

k km n
k k k k k

k i j ij
i j

N N t     
 

        
 3

ij ijs P v  (2) 

 
and 

 0 1 1

( ) ( )
k km nnp

k k
i j

k i j

S N N 
  

 
  

 
 

 
(3) 

Each ks  is defined on the domain Ωk by means of: 

 a control net of k km n  CPs k
ijP , versors k3

ijv  and 

thickness coefficients k
ijt ; 

 the uni-variate normalized B-spline functions  k
iN  of 

degree p, defined with respect to the curvilinear 
coordinates   by means of the knot vector kU ; 

 the uni-variate normalized B-spline functions  k
jN  of 

degree q, defined with respect to the curvilinear 
coordinates   by means of the knot vector kV . 

 
The versors k

ij

3v  and the thickness values k
ijt  can be calculated 

from the interpolation algorithm proposed in [30] by the 
authors. 
For k=0 the knot-vectors are partition of the parametric interval 
[0,1] as follows: 
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For k>0 the knot-vectors Uk and Vk are partition of the 
knot-span of U0 and V0. 

The displacement field can be defined by following the 
isoparametric approach and enforcing the fiber inextensibility 
in the thickness direction [29]: 
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where: 
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and  k k k
ij ij ij
1 2 3v , v , v  is an orthonormal set defined on the k

ijP  

CPs starting from the vector k
ij
3v  [29], , ,k k k

ij ij iju v w  are the three 

translational dofs, k
ij  and k

ij  are two rotational dofs for each 

CP. b
kδ  are the dofs on the boundary of the domain on which 

kd is defined, i
kδ  are the dofs on the interior of the domain. 

In order to assure C0 continuity of the displacement field 
Eq.4, some of the dofs in dk (with k>0) are expressed as linear 
function of dofs in d0 by means of the transformation explained 
in [31], so that the displacement field can be expressed in 
matrix form as: 
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The equation of motion for harmonic forced vibration analysis 
can be obtained by means of the principle of minimum total 
potential energy as shown in [15]: 
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The expressions of the elasticity, inertia matrices and 

surface tractions are: 
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where B is the strain-displacement matrix, E  is the plane stress 
constitutive matrix obtained according to the Mindlin theory 
[29],   is the mass density, N  is the matrix of basis functions, 

Φ  the surface tractions, P  being the solid geometry structure 
under analysis and P  the surface where loads are prescribed. 

As already reported on the companion paper [31], the 
numerical integration of vector and matrices in Eq.7 is a major 
problem when dealing with the B2-spline shell model. 
Therefore the correct evaluation of the matrices (Eq.8,9) are 

needed at each iteration step. In this example, all the integrals 
on 0  are numerically evaluated by means of (p+1)x(q+1) 
Gauss rule in  ,  for each knot-span given by the 

knot-vectors U and V. Lower order Gauss rules were adopted in 
evaluating the integrals on k  (with k>1) on subdomains 
defined partitioning the knot span in Uk and Vk. Two-points 
Gauss rule is adopted along the thickness coordinate  . 

 

 
ADAPTIVE REFINEMENT STRATEGY 

The automatic refinement strategy is based on the gradient 
of the density of total potential energy. The potential energy, of 
internal and inertia forces, of a system modeled by means of the 
FE method is: 
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By integrating only along the thickness, by adopting a 
Gauss rule with two points: 
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Introducing the solution: 
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in Eq.(12), the following equation holds: 
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As a consequence, the surface density of the total potential 

energy is: 
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The local indicator  ,LI    is defined: 
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where only a few modes,  min max,r r r , are generally taken 

into account. 
A grid of LI  values can be evaluated with a predefined 

uniform resolution on the patch to be refined: n n  evaluation 
points on the  ,   parametric space result. Each calculated LI 

value is compared with the following value: 
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Each value LI GI  identifies a point where a refinement 
could be needed. Contiguous values are grouped so that they 
identifies a subdomain where the refinement procedure will be 
applied. If a point is marked as to be refined, while the 
contiguous points LI  value are below the GI value, it is 
disregarded. This allow geometric singularity to be dealt with; 
as a matter of fact, in presence of a geometric singularity, while 
refining the model, the energy usually grows only on the 
singularity point. 

The refinement algorithm proposed in [31] is then applied 
on the identified subdomains. The number of added dofs are 
iteratively increased until, for more than one point, on the 
refining subdomain at the k-th step, the following condition 
holds: 
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k k
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where kGI  is the GI  value calculated at the k-th step of the 

iterative procedure, and   is a user defined value used to stop 

the iteration if the percent change of the GI  indicator, between 
two successive steps, is below the   value. 

 

NUMERICAL TEST 
An example case is considered for testing the approach. 

The example concerns a curved roof with a circular section and 
a small cutout (Fig.1). The roof is fully constrained on one edge 
(y=1) and loaded with a constant pressure on a subdomain 
delimited by the red lines in Fig.1. A stress singularity is 
expected near the corner C (green circle in Fig.2). 

The B-spline shell model is made by means of four 
B-spline patches, connected as shown in Fig.2. Each patch is 
defined by means of 7x7 CPs and sixth degree B-spline 
functions defined on the knot-vectors


7 7

0,...,0 ,1,...,1
     
  

U V . 

The CPs (black dot in Figs.1-2) defining the shell position 
vector are included in the appendix. The geometry position 

vector and the displacement field are 0C on the boundary 
connecting the patches. Moreover, the following parameters are 
used: 

 
Young’s modulus 9 22.3 10 / ;E N m   

Poisson’s ratio ν=0.35; 
Density ρ= 1000 Kg/m3; 
Thickness 0.005t m . 

 
The automatic refinement strategy is adopted in a forced 
vibration problem. A uniform pressure p=1000 N/m2, directed 
along the negative z axis, is applied inside the domain ΩF 
delimited by the red lines (Fig.2), corresponding to half the 
domain of the upper-left patch. The forcing function Φ  is: 
 

0

0 j te

p



 
   
  

Φ  

 
with ω=16Hz. With this forcing frequency, given the starting 
eigensolutions in Tab.1, an approximated solution can be 
obtained by considering only the fourth mode in Eqs.18-20, so 
that γ4=6.8121e-4 results. The plot of the fourth mode shape is  
 

Figure 1. Cantilevered shell roof with a distributed pressure. 

4 Copyright © 2013 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

Figure 2. Top view of the shell roof: the forcing pressure is 
applied on ΩF (bounded by red lines) and a singularity is 

expected near the point C (green circle). 
 
reported in Fig.3. Figure 4 shows the energy density of the 4th 
mode shape and its gradient is reported in Fig.5. The model 
damping is not considered in the example. Real modal damping 
can be easily included. 

The adaptive refinement procedure is started using α=20, 
nξ=nη=40 and β=0.05 (Eqs.19-20). With these values the 
subdomains to be refined near the point C are identified (Fig.6) 
so that the iterative part of the procedure, in which the dofs are 
added at each step, can be started. 

The procedure added the dofs on four subdomains (Fig.7) 
near the point C whose parametric coordinates are: 

 Patch 1 [0.8,1]x[0.8,1] 
 Patch 2 [0,0.3]x[0.575,1] 
 Patch 3 [0.8,1]x[0,0.2] 
 Patch 4 [0,0.3]x[0,0.425] 

The eigensolutions after the refinement are reported in Tab.2: 
the fourth mode shows a good improvement. 
 

Mode index B-spline 
unrefined 
(875 dofs) 

B2-spline 
refined (3315 
dofs) 

1 6.7310  6.4986
2 6.7581  6.7339
3 9.8154  9.8531
4 15.603  14.451
5 20.140  19.691
6 20.193  20.130
7 33.487  30.418
8 35.185  32.593
9 35.777  35.603
10 39.979  39.904
Tab2. Numerical frequencies results (Hz) for 
the shell roof model. 

 

Figure 3. shell roof: fourth modeshape. In green the 
undeformed model. 

 
 
 

Figure 4. Plot of the energy density: a peak is shown near the 
point C. 

 
 
 

Figure 5. Plot of the local indicator LI. 
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Figure 6. In red the subdomain to be refined. 
 
 

Figure 7. Black dots represents the CPs: the dofs added on the 
subdomains are clearly visible. 

 
 

CONCLUSION  
In the present study an automatic procedure for refining the 

eigensolution obtained by means of B-spline shell FE is 
proposed. The refinement algorithm adopted is shown in a 
companion paper written by the same authors. The indicator 
used for locating the subdomains to be refined is based on the 
gradient of the total energy density function. With respect to 
other known techniques, an advantage of the present approach 
is the ability to refine a very small zone, within a knot-span, 
with a minimum number of added dofs. The refinement 
approach does not need that dofs are inserted outside the 
subdomain to be refined. The automatc choice of the starting 
solution accuracy was not taken into account in this paper. If a 

small number of dofs are used in the unrefined model, high 
gradients can not be modeled with sufficient accuracy and the 
LI functional is not expected to perform correctly. Optimal 
numerical integration of model parameters is critical with B2 
FE modeling, and requires further study.  In this paper low 
order Gauss rules were adopted. The correct choice of the 
optimal integration order in the reported example was obtained 
by a trial and error iterative procedure.  

A proposed numerical example showed the validity of the 
approach for the selected tested model, but more case studies 
are needed in order to test the approach. Future studies will 
address towards investigating the outlined drawbacks and 
towards the optimal choice of the α and β values. 

 

APPENDIX 
The CPs coordinates of the shell roof used in the numerical 

example are: 
 

CP x y z 
1 -0.347296355300000 1 1.96961550600000 
2 -0.232714925000000 1 1.98986257560000 
3 -0.116697472200000 1 2.00196063190000 
4 -1.564540000000e-05 1 2.00608974120000 
5 0.116724799200000 1 2.00211999290000 
6 0.232701595500000 1 1.98976406760000 
7 0.347296355300000 1 1.96961550600000 
8 -0.347296355300000 0.866089372400000 1.96961550600000 
9 -0.232714925000000 0.866089370600000 1.98986257560000 
10 -0.116697472200000 0.866089368700000 2.00196063190000 
11 -1.564540000000e-05 0.866089366800000 2.00608974120000 
12 0.116724799200000 0.866089365000000 2.00211999290000 
13 0.232701595500000 0.866089363100000 1.98976406760000 
14 0.347296355300000 0.866089361300000 1.96961550600000 
15 -0.347296355300000 0.732178528600000 1.96961550600000 
16 -0.232714925000000 0.732178527000000 1.98986257560000 
17 -0.116697472200000 0.732178525200000 2.00196063190000 
18 -1.564540000000e-05 0.732178523500000 2.00608974120000 
19 0.116724799200000 0.732178521800000 2.00211999290000 
20 0.232701595500000 0.732178520100000 1.98976406760000 
21 0.347296355300000 0.732178518400000 1.96961550600000 
22 -0.347296355300000 0.598268103200000 1.96961550600000 
23 -0.232714925000000 0.598268102700000 1.98986257560000 
24 -0.116697472200000 0.598268102200000 2.00196063190000 
25 -1.564540000000e-05 0.598268101700000 2.00608974120000 
26 0.116724799200000 0.598268101200000 2.00211999290000 
27 0.232701595500000 0.598268100700000 1.98976406760000 
28 0.347296355300000 0.598268100200000 1.96961550600000 
29 -0.347296355300000 0.464357165500000 1.96961550600000 
30 -0.232714925000000 0.464357166300000 1.98986257560000 
31 -0.116697472200000 0.464357167100000 2.00196063190000 
32 -1.564540000000e-05 0.464357167900000 2.00608974120000 
33 0.116724799200000 0.464357168800000 2.00211999290000 
34 0.232701595500000 0.464357169600000 1.98976406760000 
35 0.347296355300000 0.464357170400000 1.96961550600000 
36 -0.347296355300000 0.330446630900000 1.96961550600000 
37 -0.232714925000000 0.330446632200000 1.98986257560000 
38 -0.116697472200000 0.330446633500000 2.00196063190000 
39 -1.564540000000e-05 0.330446634800000 2.00608974120000 
40 0.116724799200000 0.330446636200000 2.00211999290000 
41 0.232701595500000 0.330446637500000 1.98976406760000 
42 0.347296355300000 0.330446638800000 1.96961550600000 

1 

2 

3 
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43 -0.347296355300000 0.196535904600000 1.96961550600000 
44 -0.232714925000000 0.196535904600000 1.98986257560000 
45 -0.116697472200000 0.196535904600000 2.00196063190000 
46 -1.564540000000e-05 0.196535904600000 2.00608974120000 
47 0.116724799200000 0.196535904600000 2.00211999290000 
48 0.232701595500000 0.196535904600000 1.98976406760000 
49 0.347296355300000 0.196535904600000 1.96961550600000 
50 -0.347296355300000 0.175296002600000 1.96961550600000 
51 -0.229706720400000 0.167009917800000 1.99001701520000 
52 -0.110753142500000 0.158854561900000 2.00184394340000 
53 0.00867211920000000 0.150876638800000 2.00556958520000 
54 0.128107739800000 0.143110117500000 2.00105714340000 
55 0.246534014500000 0.135641893400000 1.98754547170000 
56 0.327729621700000 0.142258308300000 1.96625336500000 
57 -0.347296355300000 0.0941547212000000 1.96961550600000 
58 -0.243275073400000 0.120353796600000 1.98933012660000 
59 -0.137497952200000 0.141902478700000 2.00188133050000 
60 -0.0307934504000000 0.158955132600000 2.00764646280000 
61 0.0764338766000000 0.171377061000000 2.00650056260000 
62 0.183318404900000 0.178612578100000 1.9977825360000 
63 0.289343363800000 0.181285318900000 1.98250399910000 
64 -0.347296355300000 0.116703429500000 1.96961550600000 
65 -0.258996263700000 0.102906911300000 1.98986201500000 
66 -0.169539663800000 0.0931748476000000 2.00326442210000 
67 -0.0796059994000000 0.0873107869000000 2.01017371430000 
68 0.0104591650000000 0.0853960681000000 2.01046486100000 
69 0.0998988874000000 0.0878304358000000 2.00349291930000 
70 0.188323931100000 0.0940463557000000 1.99022092800000 
71 -0.347296355300000 0.0561123765000000 1.96961550600000 
72 -0.232378578700000 0.0625036994000000 1.98964676940000 
73 -0.115842741500000 0.0681127450000000 2.00164570500000 
74 0.00141884710000000 0.0729520649000000 2.00604945670000 
75 0.118957181000000 0.0769910682000000 2.00272620030000 
76 0.235794629200000 0.0801175465000000 1.99095423920000 
77 0.313098505800000 0.0813419595000000 1.97187302070000 
78 -0.347296355300000 0.0299820101000000 1.96961550600000 
79 -0.247891531600000 0.0311887017000000 1.98973300080000 
80 -0.147071868600000 0.0318635332000000 2.00255703010000 
81 -0.0456103051000000 0.0320362592000000 2.00847148560000 
82 0.0561048632000000 0.0316986293000000 2.00734895810000 
83 0.157228985300000 0.0308039864000000 1.99851592710000 
84 0.257307164300000 0.0294280743000000 1.98300226350000 
85 -0.347296355300000 0 1.96961550600000 
86 -0.2442025258000 -0.0007764283000000 1.98968461660000 
87 -0.139650738200000 -0.001235430500000 2.00229612720000 
88 -0.0344419463000000 -0.001394384500000 2.00784595690000 
89 0.0710210833000000 -0.001248141500000 2.00620583240000 
90 0.175861731600000 -0.000768324400000 1.9966918072000 
91 0.257307164300000 0 1.9803581661000 
92 0.461891115200000 1 1.9897640676000 
93 0.577867911400000 1 2.0021199929000 
94 0.694608356000000 1 2.0060897412000 
95 0.811290182900000 1 2.0019606319000 
96 0.927307635700000 1 1.9898625756000 
97 1.04188906600000 1 1.9696155060000 
98 0.461891115200000 0.866089363100000 1.9897640676000 
99 0.577867911400000 0.866089365000000 2.0021199929000 
100 0.694608356000000 0.866089366800000 2.0060897412000 
101 0.811290182900000 0.866089368700000 2.00196063190000 
102 0.927307635700000 0.866089370600000 1.98986257560000 
103 1.04188906600000 0.866089372400000 1.96961550600000 
104 0.461891115200000 0.732178520100000 1.98976406760000 
105 0.577867911400000 0.732178521800000 2.00211999290000 
106 0.694608356000000 0.732178523500000 2.00608974120000 
107 0.811290182900000 0.732178525200000 2.00196063190000 
108 0.927307635700000 0.732178527000000 1.98986257560000 

109 1.04188906600000 0.732178528600000 1.96961550600000 
110 0.461891115200000 0.598268100700000 1.98976406760000 
111 0.577867911400000 0.598268101200000 2.00211999290000 
112 0.694608356000000 0.598268101700000 2.00608974120000 
113 0.811290182900000 0.598268102200000 2.00196063190000 
114 0.927307635700000 0.598268102700000 1.98986257560000 
115 1.04188906600000 0.598268103200000 1.96961550600000 
116 0.461891115200000 0.464357169600000 1.98976406760000 
117 0.577867911400000 0.464357168800000 2.00211999290000 
118 0.694608356000000 0.464357167900000 2.00608974120000 
119 0.811290182900000 0.464357167100000 2.00196063190000 
120 0.927307635700000 0.464357166300000 1.98986257560000 
121 1.04188906600000 0.464357165500000 1.96961550600000 
122 0.461891115200000 0.330446637500000 1.98976406760000 
123 0.577867911400000 0.330446636200000 2.00211999290000 
124 0.694608356000000 0.330446634800000 2.00608974120000 
125 0.811290182900000 0.330446633500000 2.00196063190000 
126 0.927307635700000 0.330446632200000 1.98986257560000 
127 1.04188906600000 0.330446630900000 1.96961550600000 
128 0.461891115200000 0.196535904600000 1.98976406760000 
129 0.577867911400000 0.196535904600000 2.00211999290000 
130 0.694608356000000 0.196535904600000 2.00608974120000 
131 0.811290182900000 0.196535904600000 2.00196063190000 
132 0.927307635700000 0.196535904600000 1.98986257560000 
133 1.04188906600000 0.196535904600000 1.96961550600000 
134 0.366863089000000 0.142258308300000 1.96625336500000 
135 0.448058696200000 0.135641893400000 1.98754547170000 
136 0.566484970800000 0.143110117500000 2.00105714340000 
137 0.685920591500000 0.150876638800000 2.00556958520000 
138 0.805345853100000 0.158854561900000 2.00184394340000 
139 0.924299431100000 0.167009917800000 1.99001701520000 
140 1.04188906600000 0.175296002600000 1.96961550600000 
141 0.405249346900000 0.181285318900000 1.98250399910000 
142 0.511274305800000 0.178612578100000 1.99778253600000 
143 0.618158834000000 0.171377061000000 2.00650056260000 
144 0.725386161100000 0.158955132600000 2.00764646280000 
145 0.832090662900000 0.141902478700000 2.00188133050000 
146 0.937867784100000 0.120353796600000 1.98933012660000 
147 1.04188906600000 0.0941547212000000 1.96961550600000 
148 0.506268779500000 0.0940463557000000 1.99022092800000 
149 0.594693823200000 0.0878304358000000 2.00349291930000 
150 0.684133545700000 0.0853960681000000 2.01046486100000 
151 0.774198710100000 0.0873107869000000 2.01017371430000 
152 0.864132374500000 0.0931748476000000 2.00326442210000 
153 0.953588974400000 0.102906911300000 1.98986201500000 
154 1.04188906600000 0.116703429500000 1.96961550600000 
155 0.381494204800000 0.0813419595000000 1.97187302070000 
156 0.458798081500000 0.0801175465000000 1.99095423920000 
157 0.575635529700000 0.0769910682000000 2.00272620030000 
158 0.693173863600000 0.0729520649000000 2.00604945670000 
159 0.810435452100000 0.0681127450000000 2.00164570500000 
160 0.926971289300000 0.0625036994000000 1.98964676940000 
161 1.04188906600000 0.0561123765000000 1.96961550600000 
162 0.437285546400000 0.0294280743000000 1.98300226350000 
163 0.537363725400000 0.0308039864000000 1.99851592710000 
164 0.638487847400000 0.0316986293000000 2.00734895810000 
165 0.740203015700000 0.0320362592000000 2.00847148560000 
166 0.841664579300000 0.0318635332000000 2.00255703010000 
167 0.942484242300000 0.0311887017000000 1.98973300080000 
168 1.04188906600000 0.0299820101000000 1.96961550600000 
169 0.437285546400000 0 1.98035816610000 
170 0.518730979000000 -0.000768324400000 1.99669180720000 
171 0.623571627300000 -0.001248141500000 2.00620583240000 
172 0.729034657000000 -0.001394384500000 2.00784595690000 
173 0.834243448800000 -0.001235430500000 2.00229612720000 
174 0.938795236500000 -0.000776428300000 1.98968461660000 
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175 1.04188906600000 0 1.96961550600000 

 
The CPs number of each patch are: 
Patch1: 

1  2  3  4 5  6 7

8  9  10  11 12  13 14

15  16  17  18 19  20 21

22  23  24  25 26  27 28

29  30  31  32 33  34 35

36  37  38  39 40  41 42

43  44  45  46 47  48 49

 
Patch2: 

43 44 45 46 47 48 49 

50 51 52 53 54 55 56 

57 58 59 60 61 62 63 

64 65 66 67 68 69 70 

71 72 73 74 75 76 77 

78 79 80 81 82 83 84 

85 86 87 88 89 90 91 

 
Patch3: 

7 92 93 94 95 96 97 

14 98 99 100 101 102 103 

21 104 105 106 107 108 109 

28 110 111 112 113 114 115 

35 116 117 118 119 120 121 

42 122 123 124 125 126 127 

49 128 129 130 131 132 133 

 
Patch4: 

49 128 129 130 131 132 133 

134 135 136 137 138 139 140 

141 142 143 144 145 146 147 

148 149 150 151 152 153 154 

155 156 157 158 159 160 161 

162 163 164 165 166 167 168 

169 170 171 172 173 174 175 
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