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Nomenclature
Cp = drag coefficient
Cp; = induced-drag coefficient
Cpy = zero-lift drag coefficient
C, = lift coefficient
Cro. = compressible lift slope, 1/ deg
C,.; = incompressible lift slope, 1/ deg
Cp = pressure coefficient
Cpy = incompressible pressure coefficient
F = force, N
k = induced-drag factor
L = vortex segment direction vector
M = Mach number
Ve = effective velocity at vortex core, m/s
Vi« = velocity induced by rigid-body rotations, m/s
Vr = velocity induced by vorticity, m/s
Vr. = velocity induced by compressible vorticity, m/s
Vo = freestream velocity, m/s
w = aerodynamic influence matrix
r = vortex strength, m?/s
A = aspect ratio

Introduction

HIS Note covers the implementation of the Prandtl-Glauert
(PG) rule for compressibility corrections at high subsonic Mach
numbers in the subset of panel methods known as vortex-lattice
methods (VLM). The PG compressibility correction is based on
the Prandtl-Glauert rule, the similarity rule between flows in the
incompressible and the compressible plane. The flowfield in the

Received 27 November 2009; revision received 1 March 2010; accepted
for publication 1 March 2010. Copyright © 2010 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0021-8669/10 and $10.00 in
correspondence with the CCC.

*Research Associate, Division of Fluid and Mechanical Engineering,
Department of Management and Engineering; tomas.melin @liu.se.

Senior Lecturer, Department of Aerospace Engineering, Queens
Building, University Walk; askin.t.isikveren @bristol.ac.uk. Member AIAA.

*Professor, Aerospace Structures School of Engineering, Singleton Park;
m.i.friswell @swansea.ac.uk.

1458

-

P
brought to you by . CORE

provided by CiteSeerX

VLM is resolved in the incompressible plane and the results are
transformed to the compressible plane. While the PG rule is an exact
relation for inviscid flow, the term correction is more appropriate
when comparing computed data with experimental results.

Panel methods used in conceptual design of aircraft calls for a
correction to be applied to the basic incompressible results in order to
be more accurate, and comparable to experimental results, at high
subsonic Mach numbers. Several different corrections are available
for this purpose. These corrections are applicable in the speed region
before onset of transonic effects (M = 0 to ~0.5), such as wave drag
created by local supersonic flow. The most common compressibility
correction is the PG transformation [1] shown in Eqgs. (1a) and (1b).

1
Cp :ECPO (1a)
p=vVi= (1b)

The PG correction is simple to implement but will underestimate
the pressure coefficient at velocities just below the transonic region.
High-end two-dimensional panel methods, such as XFOIL [2], use
the more complex Karman-Tsien relationship [3,4], which is more
accurate but will slightly overestimate the pressure coefficient. The
higher-order methods model the nonlinear aspect of the flow, needed
for an accurate representation of the compressible flowfield.

Both of these methods and several of the other compressibility
corrections available (such as the Kiichemann—Weber, Wilby, or
Laitone rules [3,6]) were developed for two-dimensional flows.
Hence, they require special treatment to be applicable to three-
dimensional flows. The induced drag, which is not present in the two-
dimensional flow, requires special consideration.

The higher-order methods require direct access to the pressure
coefficient Cp, which is not available in a thin-airfoil vortex-lattice
method. VLMs typically produce a delta pressure coefficient,
describing the difference in pressure on the top and bottom airfoil
surfaces. This makes the high-order corrections nonapplicable.
Therefore, the best choice of compressibility correction for a VLM
would be the PG rule. However, comparative investigations of the
accuracy of different compressibility corrections, such as the one
performed by Nordstrud [7], suggest the PG correction is the least
accurate of the available methods.

The scope of the PG rule is to achieve an accurate description of the
pressure distribution and lift produced. However, applying the PG
correction factor directly to the incompressible pressure coefficient
in a three-dimensional vortex lattice would result in a pressure
distribution that would not accurately describe the induced drag; it
would be severely underpredicted. For most aircraft configurations,
the drag polars do not change in shape for Mach numbers in the range
before the onset of transonic effects. The lift and drag at a specific
angle of attack will increase, but not the drag as a function of lift, as
shown in [8,9].

Lift and drag coefficients are proportional to the pressure
coefficient, as shown in Eq. (2):

C
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As both lift and drag are computed as the surface integral of
pressure projected onto the lift axis system, they keep their
proportionality to the pressure coefficient if the PG correction is used
on the pressure coefficient directly. However, in three-dimensional
flows, the self-induced downwash from the lift will affect the
pressure distribution, causing the proportionality at a given angle of
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attack to break down. Lift and drag coefficients will still be propor-
tional to the local pressure coefficient, but not to the incompressible
pressure distribution. Indeed, such proportionality would violate the
drag polar equation (3), where the induced drag is proportional to the
lift squared:

Cyi = kC% (3)

The PG correction could therefore be used to correct lift directly,
while the induced drag can be corrected using Eq. (3). However, this
approach would leave the other stability and control derivatives
untreated. The method proposed below allows for a more stringent
treatment of the induced drag. Additionally, applying Eq. (3) to
compute the induced drag, as recommended in [10], would be
computationally inefficient. The proposed method computes the
compressible force distribution directly, from which the coefficients
and pressure distribution are evaluated. To transform all coefficients
and the pressure distribution would require more computational
overhead than transforming the vorticity distribution. By trans-
forming the vorticity distribution, all of the secondary derivatives
(such as yaw moment due to aileron deflection) are treated.

Proposed Method

In the compressible-speed region, the following approach may be
used to correct results for the effects of compressibility. The VLM is
initiated as usual, solving for the incompressible vortex strength
distribution I';. Once the incompressible vortex strengths are
computed, the compressible vortex distribution can be computed
through Eq. (4), where the incompressible vortex strength at each
panel is multiplied with the PG correction factor:

r,=—T, o)

The induced velocity at the vortex core is then computed using the
compressible vortex strength as

Vl"c = wF(' (5 )

The compressible vortex induced velocity in three-dimensional
space form is added to the velocity contributions from the freestream
and from the aircraft solid-body rotations to give

chf = Voo + Vrnt + VI‘C (6)

The compressible vorticity and effective velocity at the vortex core
is then used to compute the force vector acting on each panel, i.e., the
Kutta—Joukowski theorem in rewritten form, as

F=pL(L x V) )

The force distribution is integrated to global forces and moments
or projected onto the surface normal to yield a pressure distribution.
All of the aerodynamic coefficients in this method are linear
functions of the global forces and moments.

As for the traditional two-dimensional correction, this three-
dimensional variant is limited to thin airfoils at small angles of attack.
This means that the velocity potential remains the same and all
assumptions connected to the solution of Laplace’s equation still
hold.
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Fig. 1 Simulation geometrys; elliptic plan form with an aspect ratio of 6.
MAC is the mean aerodynamic chord.
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Fig. 2 Comparison of measured and computed lift as a function of
angle of attack for different Mach numbers.

Validation

This method is implemented in the Tornado VLM software
package, version 135 [11] (and later), and the validation results are
presented below. Figure 1 shows the plan form of an elliptical wing
with aspect ratio of 6, and an unswept quarter-chord line. The wing
was modeled with four panels chordwise and 10 panels semi-
spanwise. The appropriate number of panels was found with an
induced-drag grid convergence study, with the drag change between
iterations less than 0.5% as the convergence criterion. The panel
distribution was linear chordwise and cosine spanwise. Figure 2
shows the lift as a function of angle of attack at different Mach
numbers. The drag as a function of lift, both for incompressible and
compressible flow, is shown in Fig. 3.
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Fig. 3 Comparison of experimental and numerical drag as a function
of lift squared. Tornado results are adjusted for zero-lift drag.
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Table 1 Lift slopes for experimental and computed lift
as at different Mach numbers

Lift slope Cy, . M=00 M=03 M=04 M=05

Lifting line (LL) 0.0790  0.0816  0.0838  0.0869
Experiment (Exp) e 0.0816  0.0839 0.0873
Corrected VLM 0.0772  0.0809  0.0841 0.0891
Residual, LL-VLM 0.0018  0.0007 —0.0003 —0.0022
Difference, LL-VLM 2.4% 0.9% —04%  —2.4%
Residual, Exp-VLM 0.0007  0.0002 —0.0018
Difference, Exp-VLM _ 0.9% 0.2% —2%

Table 2 Polar curve fit of experiments and corrected
vortex-lattice results

Induced-drag factork M =00 M =03 M=04 M=0.5

Lifting line 0.053 0.053  0.053 0.053
Experiments e 0.055 0.05585  0.055
Corrected VLM 0.053 0.053  0.05278  0.053
Residual —_— 0.002  0.003 0.002
Difference — —4% —5% —4%

The computed data are compared with theoretical lifting-line
results [Eq. (8)] taken from [10], and experimental results, taken from
[9]. The validation case is an elliptical wing of aspect ratio of 6 is
tested at Mach numbers 0.3 and 0.5 and Reynolds number 2.1 x 10°
in the NASA Langley Research Center wind-tunnel facility:

_ 2 A
VBN + 442

The incompressible vortex-lattice vorticity is corrected as
described above and the results are presented below. The compres-
sible lift slopes at different Mach numbers are shown in Table 1. The
VLM data are adjusted to show the same zero-lift angle of attack as
the wind-tunnel model.

The difference between computed and experimental data is within
the error margin of a vortex-lattice code, which has about 5%
uncertainty based on the internal assumptions and a 0.5% error from
the grid convergence cutoff. Additionally, the residual in the curve fit
of the experimental data is on the order of 1%. In this case, the
comparison suffers most from the fact that the wind-tunnel model is
fairly thick at 16%, which is not optimal for the VLM’s thin-wing
approximation. Figure 3 shows the drag as a function of lift in the
form described by

CLo( (8)

Cp=Cpy+ kC% )

The experimental and numerical data are curve fit to Eq. (9), and
the resulting induced-drag factor k is compared between the
numerical and experimental methods in Table 2. For an elliptically
loaded wing, the induced-drag factor k can also be computed with the
lifting-line theory valid for all Mach numbers, according to

k=— (10)
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Again, a difference of 5% is within the error margin of the VLM. The
proposed correction appears to underpredict the polar curve-fit factor
when compared with the experiments, which could be due to viscous
effects not modeled in the VLM. The agreement with the lifting-line
data is very good, which is expected as the two methods are similar.

Conclusions

The proposed method appears to model the compressible effects
on the induced drag for a three-dimensional vortex-lattice model to
within method assumptions accuracy. The good agreement between
experimental and computational data is particularly noteworthy, as
the thickness of the experimental wing, 16%, is too thick to be
considered thin. A thin wing is one of the assumptions in the VLM, as
is the small-angle-of-attack assumption. Both of these are a part of
the small-disturbance hypothesis. The robustness of the accuracy of
the results at the edges of the envelope of validity is one of the large
benefits of the VLM.

In addition to lift and drag, all stability derivatives may also be
treated by the same model. It has therefore been included in the
vortex-lattice method implementation of Tornado, version 135 [11]
and later. The reader is reminded that the proposed method cannot
predict transonic effects such as drag creep, lift divergence, or shock
formation.
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