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Abstract. In this paper we present the initial results in our developingé Distributional DSMC (DDSMC) methods. By
modifying Nanbu’s method to allow distributed velocitiag have shown that DSMC methods are not limited to convermenc
in probability measure alone, but can achieve strong cgevere for.! solutions of the Boltzmann equation and pointwise
convergence for bounded solutions. We also present aalinitiempt at a general distributional method and applyethes
methods to the Bobylev, Krook, and Wu space homogeneout@ohf the Boltzmann equation.
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INTRODUCTION

The Direct Simulation Monte Carlo (DSMC) method representzrobabilistic simulation of the interactions of a
fraction of the number of actual particles in a gas. An imaotrparameter in such simulations is the statistical gartic
weightW = N/N, which represents the total number of actual particles thah esimulated particle represents. In
practice W may be on the order of £@r greater. In traditional DSMC methods, particles may pss®nly a single
velocity, energy state, and position at any point in the than. This gives rise to a singular or discrete probapilit
density function
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Nanbu [1] developed an approximation to the solution of {ece homogeneous Boltmann equation with the above
expression as the initial condition. Utilizing this sotrti Nanbu developed a DSMC scheme. Babovsky and lliner
later proved that Nanbu’s scheme converged in probabilégsare to the solution of the Boltzmann equation [2, 3].

Although mathematically convenient, the representatifcthe distribution function in Equation (1) is nonphysical
in any case wherBl, < N. The assumption of singular velocities has significant iogions on the results obtained
by such a scheme. Specifically, we suggest that this assomiptiesponsible for a significant portion of the variance
associated with DSMC methods. This is evident when one dersihe implications for the evolution of the velocity
distribution function. When two simulated particles haeit velocities altered by a collision, we presume that the
millions of acutal particles these particles representiejart on the same velocity vector, resulting in a significan
change to the distribution function. In reality, these ioilk of particles cannot possess the same exact velocity, an
the collision interaction is more aptly described as anwimh of the distribution function by collisional effects.

From this premise, we have undertaken a study to exploreatue and complications of incorporating distributed
particle velocities in the DSMC framework [4, 5]. We propdbat if a scheme can be developed which allows a
particle’s velocity to be distributed, improved convergeand variance reduction should be achievable.

Toward this end, we have developed two methods for attegppidistribute a particle’s velocity. The first, applies
kernel density estimation (KDE) to the DSMC method and afl@ach particle’s velocity to be distributed according
to a Gaussian. The second, more general method we have geglédaermed Distributional DSMC. In this construct,
kernel density estimation methods are applied at the patggel to allow each particle’s velocity to be distributed
arbitrarily.



DSMC-KDE
As we have already presented results relating to the dewedopof the DSMC-KDE method [4, 5], we present

only a brief overview of the key features here. The basic gemelies on the replacement of the distribution function
described by Equation ( 1) with the following kernel dengsgimator
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HereK is the kernel function, which we choose to be a Gaussian. Name

K(®) = <2n>3/2exp<—@) @)

h is termed the collision bandwidth, and should be chosendh suway as to minimize the error between the actual
distribution and the estimator. Based on the results of Weaddnes [6] we choosk as follows
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Whereg is an estimate of the standard deviationfofThe key feature here is thhtis choosen to depend d, in
such a way that lim, . h(Np) = 0. It can be shown that becomes a delta family &g, — .

We have shown [4] that this interpretation results in ideadtcollision selection and modeling rules for the center
points of the Maxwellians in the limit abl, — c and that the stochastic rules governing the evolution of the
simulation can be chosen to be identical to Nanbu’s methqdivalently, Equation (2) may simply be interpreted as
a kernel density estimator which utilizes the particle eéles obtained via Nanbu's method as samples of the overall
distribution function. In this case, the stochastic sirtiataremains the same as Nanbu’s method and the distribution
function may be calculated from Equation (2) post-simolatilt should be noted that Nanbu’s model was selected
for this effort because of its traceability to the Boltzmaquation but it is not necessarily the most desirable model
for implementing this method for practical applicationstiker, we utilize Nanbu’s method to identify the potential
benefits of the Distributional DSMC Concept which should pplizable to any existing method.

Utilizing this interpretation, we have proven [4] that thisethod maintains the convergence demonstrated for
existing methods, achieves strong convergenckefpand pointwise convergence bounded solutions, niethehaftw
is possible with the original method. Such solutions ariggjdiently and are of greater practical interest than the
general! case. As the main thrust of this paper is not a detailed matieah proof of convergence, these results are
summarized here in the following theorems.

Theorem 1. If the Boltzmann equation with initial data fo has a non-negative solution f < L1, then the solution f of
the DSMIC-KDE method convergesweakly in L1 to f such that for any bounded and continuoustest function ¢ on R3,
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Corollary 1. If the Boltzmann equation with initial data fo has a non-negative solution f L, then the solution f of
the DSMC-KDE method converges strongly in L® to f. That is,
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Corollary 2. If the Boltzmann equation with initial data fo has a non-negative bounded solution f, then the solution
f of the DSMC-KDE method converges pointwise to f.

The DSMC-KDE method was developed to serve as a stepping atwehbuilding block of a more comprehensive
method. Although not a fully distributional method, we hakown [4, 5] that stronger forms of convergence than
acheivable by traditional DSMC are possible.



DISTRIBUTIONAL DSMC

We next sought to develop a fully distributional method, ethivould allow for particle velocities to be distributed
arbitrarily. Development of a fully distributional metheogquires a full re-derivation of the DSMC algorithm. We have
developed a simplified scheme that allows reuse of the pgistllision selection rules while modelling intermoleaul
collisions in a fully distributional sense.

The basic premise is to apply kernel density estimationeptuticle level distribution functions instead of at the
overall distribution function level. This allows a part&d velocity to be distributed arbitrarily, limited only ke
number of velocity samples per partichg,. In this case, thé" particle’s distribution function is given by
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whereg;; is the jt" velocity sample in thé" particle’s distributionK is given by Equation (3) andis now given by
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The overall distribution function may therefore be writeesn
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Developing a collision selection criteria based on Equmafit) is a non-trivial excercise. To simplify the process, we
assume (only for the purpose of collision selection) thaadigle’s velocity distribution is in some sense “close’ao
Gaussian centered at its mean velocity. Under this assamjikie selection criteria can be chosen to be the same as
Nanbu’s method (or the DSMC-KDE method) based upon the me#itie velocities.

Once a collision pair has been identified, we seek to evoletmbined velocity distribution of the pair through
the time step\t. The combined distribution of a collision pair is given by

Ny . .

The process by which the combined distribution is evolvadugh At is a topic to be explored in future work.
Conceptually, any method which is consistent with the Bolimn equation should be useable. Such a method might
be a moment method, model equation, or even DSMC itself. Baoindtial development we utilized the BGK equation,
however as the BGK equation is not consistent with the Batamequation we utilized this model only for testing
purposes. The method we have currently implemented em@&@MC-KDE to evolve the combined distribution
function. In the limit asN, becomes large, the method becomes fully consistent wittD®8C-KDE model with

2Ny simulated particles, and the method may be reapplied to ateripteractions between these samples. This has
an interesting side effect in that it allows any particle ebhis selected for collision to self interact. This would be
impossible if each simulated particle represented onebparticle, but as each simulated particle representga lar
collection of particles this is perfectly acceptable, améhict desirable.

NUMERICAL IMPLEMENTATION

To explore the DDSMC method currently proposed we appliedsitheme to the space homogeneous solution of
Bobolev, Krook, and Wu [7]. To further simplify, we assumes thlaxwellian molecular model. The distribution
function is spherically symmetric and in this case the iiation of molecular speed is given by [1]

F(c,7) = 4mt(ma) 2 (01 + o) exp(—%z) 9)



where,
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The results of this analysis are shown in Figure 1. Figure &vshthe mean steady statté error for a 100 run
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FIGURE 1. DDSMC Solution for x-velocity Distribution of the Krook-W&roblem.Np = 20, Ny = 16, Negmp = 100, AT =
1.4E — 3, Total Computational Time = 46.27 sec

ensemble as a function df, andN,. Here we see significantly improved results over the origiembu method, as
well as DSMC-KDE. Finally in Figure 3 we have the computatitime per sample as a functiondf andN,. Note
that although the computational time per sample is incitbgehe additional complexity of the method, the increase
in accuracy over the DSMC-KDE method far outweighs the diskb. This is evident in Figures 4 and 5 where the
values are plotted against the total number of parametesapaple NpN, .

CONCLUSIONSAND FUTURE WORK

Our current results would seem to indicate that there ismistiéy significant benefits to be gained by distributing
particle velocities in DSMC simulations. Future work witidus on formally analyzing the convergence and computa-
tional complexity of the Distributional DSMC method. Althgh the current work is limited to the space homogenous
case, it is conjectured that the method should be fairlyegsineralized to multiple dimensions. The variance reduc-
tion properties of these methods are yet to be addressedykowe believe significant benefits may be otained. The
effect of a particle carrying its distribution function thugh the flowfield may have a similar effect as Information
Preservation DSMC.
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FIGURE 5. Computational Time per Sample versus Total Number of Paiensie



