Instability Analysis of Pressure-

T.Q. Ye'

Northwestern Polytechnical University,
Xi’an, Shaanxi, China

Shape
R. H. Gallagher

Dean,

College of Engineering,
University of Arizona,
Tucson, Ariz, 85721
Fellow ASME

Loaded Thin Arches of Arbitrary

The governing differential equations and the virtual work expressions for the large
displacement analysis of thin arches of arbitrary shape, subjected to pressure loads,
are derived. The virtual work expressions are employed as the basis for formulation
of finite element stiffness equations. Classical solutions are obtained, from the
differential equations, for the buckling of circular rings under uniform ‘‘follower’’

(hydrostatic) and ‘‘dead’’ (constant direction) pressure loadings. Finite element
solutions are calculated for elliptical rings for a wide range of axis ratios.

Introduction

Although basic theoretical principles for the inclusion of
pressure-load effects in finite element, elastic instability
analysis have been established for some time now [1], there is
considerable interest in and need for relationships for specific
cases of interest and for the study of the basic properties of
these relationships. Thus, Hibbitt [2], Loganathan, et al. [3],
and Mang [4] have examined the algebraic form and per-
missible approximations for finite element stiffness
relationships that arise when the effects of follower forces are
taken into account. Batoz [5, 6] has studied the formulation
of such relationships for the particular case of circular arch
finite elements.

Because the finite element method owes its significance to
its potentiality for the treatment of structures of rather ar-
bitrary geometry, it is desirable to have available the
theoretical basis for formulation of arch elements of any
shape. Thus, the purpose of this paper is to derive
geometrically nonlinear formulations for arches of arbitrary
shape acted on by pressure loads. Both the governing dif-
ferential equations and the associated virtual work ex-
pressions are presented. Generalized stress vectors are defined
which are consistent with the definitions of the strains. The
interaction of membrane and bending deformations is taken
into account.

The governing differential equations derived herein are
more general than those that have appeared previously.
Frisch-Fay [7] gives basic nonlinear equations for arches of
arbitrary shape, but neglects the interaction of bending and
membrane deformations. Wang [8] presents a linear static
analysis for a class of ring segments. The equilibrium
equations, however, are established for the undeformed
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configuration. The theory can only be used for cycloidal,
circular, catenary, and parabolic rings. If the radius of ring
segments cannot be expressed by R = a sec”"¢, it is inap-
plicable.

In this paper, following the derivation of the equations for
general shapes, various aspects of circular arches are studied.
Using the hypothesis of small middle-surface strain and
moderately small rotation, the governing differential
equations for circular rings are obtained from the more
general equations. These equations are solved for the
eigenvalues for the cases of ‘“‘follower’’ (hydrostatic) and
““‘dead” (constant direction) pressures, yielding solutions in
accordance with previously derived results. Certain aspects of
Batoz’s formulations for circular arches are also verified.
Finally, the finite element method is used to calculate the
critical loads for the elliptical rings of different geometric
parameters under two kinds of pressures. In case of
“follower’’ load, symmetrized load stiffness matrices are
employed.

Strain-Displacement Relations

The middle surface of an undeformed thin arch of arbitrary
shape can be expressed by the parametric equations (see Fig.

1)

Fig. 1
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x=yi(t), i=1,2 1)

The displacement of a point on the middle surface, referred
to the undeformed shape, is

dyf

=2 0 i, i=1,2 2
u'=—-ltniw, i 2

where v° is the tangent component of displacement, w is the
normal component, and »’ is the unit normal to the un-
deformed middle surface. Lowercase letteis are used here to
denote the displacements measured from the undeformed
state. Subsequently, we will use capital letters to denote
displacements referred to the deformed state.

For the deformed middle surface, the expressions for the
metric A and the coefficient of the second fundamental form
F can be written as follows

A=a[(1 +e)? + ¢?] (3)
and
a J
\/j[(l v ffure+ Loan]vao (L - L))
C))
where
_ d\//l 2 dwz 2
=) (&) )
is the metric of the undeformed middle surface, and
dZ l,[/l d2 ‘//2
— ! 2
I=r T e ©

is the coefficient of the second fundamental form.

Also, in equations (3) and (4), e represents the membrane
deformation and ¢ is the rotation of a normal to the middle
surface of the arch. These are, in terms of the displacements

v’ f

=— — 2 7
¢ dt a v M

1 dw
= 4+ — 8
= ) 0

The strain of the middle surface of the arch is defined as
1 @s)—@d): 1, 1,

m—z—“W——e*'Ee +§¢ &)

where ds and ds are the length of the element of the un-
deformed and deformed middle surface, respectively.
The strain at a point with coordinate z is

_ 1 (ds;)?—(ds;)?
T2 (dsy)? N2 [(A‘”)
2(1-*;2) a

e (5 L)2]

where ds, and d§z are the length of the element of a fiber that
is parallel to and at a distance z from the middle surface.

(10)

Virtual Work Equations

In the following, the virtual work equations are derived
from which the nonlinear finite element analysis of arches of
arbitrary shape under hydrostatic and constant direction
pressure can be established on the basis of a consistent theory.

First, the equilibrium equations of the deformed arch (see
for example, reference [9]) are

316/ Vol. 50, JUNE 1983

L(08)- L vamo
MurLdQ

VA dt
1 dM

VA dr

+p=0 r 1

+Q=0

J

where N, is the axial force, Q is the shear force, g, is the
frictional drag, p is the pressure, and R is the radius of cur-
vature. From (A4.8), R = A/F. According to the principle of
virtual work, we can construct the following integral

A5 (5) - & vaovs (3 + fz 2 ) ow
(\/% ZM+Q)50} ds= (12)

6V, and W are the tangent and normal virtual displacements,
respectively, referred to the deformed configuration, 66 is the
virtual rotation, and ds = Va dt. L is the length of the middle
surface of the arch with boundaries /, and /,.

Integration by parts of equation (12) yields

[% (Ny 6V, +Q6W+M60)]/j? + SL (qo 8Vo +p §) ds
=SL [(%a(‘%’) —é6W>N0+ ( Loy, + \/i_qa(dW>

1 do
ao) ( )M] d
2+ ’
After deformation of the arch, a point on the undeformed

middle surface wtih coordinates x’ moves to a new position
(14)

(13)

X=x+u

where »' is given by equation (2). Let /4’ be the unit normal to
the deformed middle surface. The virtual displacements can
be expressed as follows

dl ‘pl

Sul = o VO + 4 ’6W—~—-t v +ni 6w (15)
where
Vi v
po=.90 d =22,
VA and v Va

Differentiating (15) and using (A42), (43), (46), (47), (7), and

(8), we obtain
(G )~ % ow] G +[rove ()] 7

dx! .
=7);6e+n‘\/56¢

(16)

Multiplying both sides of (16) by dx'/dt and A’ respec-
tively, and taking account of expressions (9), (49), and (A45),
the following equations are obtained

ave F 1
6(_dt )- = o= = o a7
1 1 aw a
I_Q(SVO+—\/;1 6<—dt >=-—;1 [pde—(1+e) 6] (18)

In (13) the coefficient of Q is the virtual shear deformation
for the arch. This effect is small and setting it equal to zero we
have
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6V+ a( ) 50=0
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By using (18), (19), and (A. 6)—(A 9), it can be shown that

1 de 1 d /1

at(ar)= gl spear G () 4] eo
In (13) the coefficient of M is 1/VA 6(d8/dt), which is the
variation of the bending curvature. In expression (20) the last
term in the square brackets therefore represents the influence
of the shear strain on the bending curvature, and can be
neglected according to the Love-Kirchoff hypothesis. Thus,
equation (20) can be written as

1 do 1 1
()= (7524
VA '\ dt A oF 2R6A

By using (17), (19), and (21), the internal virtual work in
expression (13) can be reduced to

51—S [N" 6A+M<6F 16A>]d
=) 12 A 2R s

(19)

@1

=SL (NSE+M8K) ds (22)

where E and K are defined as the generalized normal and
bending strains, respectively. In consideration of (9) and (10)

E= % (A—a)=aE,, (23a)

K=F-f 230)

and N and M are the corresponding generalized normal stress
vector and bending moment:

N= }1 (N - % ) (24a)
= (24b)
A
The stress-strain relations can be written in the form
=(EQAYE (25a)
M= (EI/AY) K (25b)

where E {2 is membrane rigidity and EI is bending rigidity.
Thus, in view of (25a,b) equation (22) can be written as

61,-=S[<i9>E6E+ (j—ﬁ)k&f{] ds

Substituting equations (3), (4), (7), and (8) into (23a) and

(23b), we obtain
b - L (- L) (0 %)
(27a)

dt a dt a
w>2 +(1+ v —LW>[i(fv°)
t a dt

k=500 -4

d
P )5 4 ()L

a dt —@f}

Substitution of (27a) and (27b) into equation (26) gives the
virtual work in terms of the displacements v°, w, and the
metric a, and the coefficient of the second fundamental form

S

(26)

S dw Q7b)
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The external virtual work is

T

+(1+d”0 S )6](1 28
a P w}) owl ds (28)
for the hydrostatic pressure, and
6IC=SLp6wds, (29)
for the constant direction pressure.
The principle of virtual work then can be expressed as
6(l;—1,)=0 (30)

where 6/, is the external virtual work, for the hydrostatic
pressure 6/, = 6, and, for the constant direction pressure 87,
= 6l..

In accordance with the small middle-surface strain and
moderately small rotation hypothesis, i.e.,

e<<l,¢?< <l and Zd—(b<<1
ds
the virtual work expressions (26) and (28) become
EQ dv 1 da
61,«=6§ —[ —_— - —— —U—
L 2q? \th Wa dt "’ b=t
1 2
E( v+—> ] ds
EIT dv af f a’a) d*w1?
= i+ "% @ Vi | as 6
and
1 7 f aw
=, o[- s o Yoo
n=|, P 7a \/51)4- 7 ov+ow| d. (32)
where

Formulation of Governing Differential Equations

The internal virtual work of (26) can be written in the
alternative form

], [a[s () - ] 2 (v

R Ca R PR

For the hydrostatic pressure, the external virtual work is

61,,=SLp6 Wds (34)
and, for the constant direction pressure
6IC=SLp[\/5¢6V°+Jg(I+e)6W]ds (35)
The external virtual work for the frictional drag g is
6Id=SL qoVA 8 V0 ds (36)

Integrating (33) by parts and then combining with (34) and
(36) we obtain the following form of the equilibrium
equations
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Elimination of N from these two equations gives a single
general nonlinear equation for arches of arbitrary form under
hydrostatic pressure and frictional drag, with force
parameters as unknowns:

aM M M - dp
-+ —5 e —— +ceM+Dy, — +D; p+Dy gy =0
an %) ar Cy ar 0 2 1P 0 do
(38)
where
31 dA lch_leA
2T 4a Fai’"'T A ar
ldA(ldA 1dF>+F
24 dt \A dt  Fad/ R
1 A ldA[leA_ 1 (ﬁé 2]
547 " A di LA df 242\t
R dF[dZA
2FA dt L dr?
*l(d_A)Z] 1dF F dR ldAD—ID
A\ dr Rdt R di 2R gt % 771
1dF 1 dA F

“Fa Aa DTV
Substituting (256) into (38) gives the general nonlinear

equation with displacement parameters as unknowns, for
hydrostatic pressure and frictional drag
a* ¢ EI _ d*> s EI _ d s EI _
i (G ) rerge (G ) ve g (55 6)
Er . d,
teg— R+Dy L 4 D,p+Dygy=0 (39)

A? dr
Similar expressions can also be obtained for constant
direction pressure.

Circular Arch

To confirm the foregoing, we derive the equations of thin
circular arches as a special case. The parametric equations of
the middle surface of circular arches are

x'=pcost,x* =psint

The metric and the coefficient of the second fundamental
form are therefore @ = p?, f = —p. Consider a circular ring
under hydrostatic pressure and constant direction pressure.
For the case of uniformly distributed pressure without
frictional drag, ¢o = 0, dp/dt = 0, and p = — p., in ac-
cordance with the small middle-surface strain and moderately
small rotation hypotheses. From equation (39) the following
differential equation for the hydrostatic pressure case can be
derived.

w2 dPw 1 dw pcr,o(d3 + 1 dw
2 ds? ds’ ds

4 AR > 0 (40
ds’>  p? ds p“ds (40)

Similarly for constant direction pressure the equation is
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1 d®w

déw 2 d'w
2 dS2

@ T ae T
pcrp<d4w 2 d*w

T “1)

w
+ 7) = 0
P
where ds = p dt. ;
The buckling mode is assumed as w = w sin ns/p, where n
is the number of waves.

When n = 2, we obtain the well-known critical pressure
(for example see [10]), for the hydrostatic pressure
EI
pcr = 3 3
o
and for the constant direction pressure
EI
pcr = 4 3
o

Finite Element Formulations

The buckling of rings of different dimensions and shapes
under both hydrostatic and constant direction pressures can
be investigated by the finite element method. For this we use
expressions for the virtual work written in terms of
displacements, i.e., equations (29), (31), and (32).

To transform the preceding expressions into algebraic
form, we first choose approximations for the displacements
and virtual displacements as follows:

v=| N | (8}  ov= [N, | {84)

where | N, | is row vector of expressions that approximate
the shape of the displaced state (i.e., ‘‘shape functions’’) and
{ A} is a column vector of displacements (including rotations,
as appropriate) of specified points on the element, and {5A} is
the column vector of joint virtual displacements. After dif-
ferentiation of v, w, év, and éw and insertion of the foregoing
into the left-hand side of the virtual work expression (30), for
an element, we obtain,

6(l;—1,) = | 6A] [IK°]+p (IKG]1 - [KiD] {A) 42)
where [K°] is the elastic stiffness matrix which includes the
membrane stiffness matrix [K%,] and the bending stiffness
matrix [K$],

[K1=| (L] IND"ES (1d,,] INDa=ds

and

k1= (Ldy) INDTET(d, ) D@~ a5
)7

= L (G a (-5 @ i

[K%]is the ‘“‘geometric stiffness matrix”’

1
K51=J, — (LdJ INDT (Ld, ] IND ds

where

et = L0 3

and

where

S

S
dy) = 7
The load stiffness matrix is
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Fig. 2
K= CLdu) INDT ( Ldn ) (M) ds
where
f1d
dy]=110], |dp)=| L =%
Ldn] = [10), L= | 2 22

It should be noted that [K%], in general, is an unsymmetric
matrix.

Summation of the element virtual work of all elements gives
the global virtual work. In accordance with the principle of
virtual work, equation (30), from equation (42), we have for
the structural system

K]+ P (K] - [K. D] {A) =0 (43)

The critical pressures are obtained by solving the algebraic
eigenvalue equation stemming from the foregoing.

Finite Element Solution for Elliptical Rings

The buckling of elliptical rings of different dimensions
under both ‘“‘follower’” and ‘‘dead” pressures is now in-
vestigated by use of the finite element method. For elliptical
arches the middle-surface equations are

x!'=b, cost, x*=b,sint
According to (4) and (5), we have
a=>b? sin’t+ b3 cos?t
and
. ~by by
(b} sin?f + b3 cos?r) 2
The hypotheses of small middle-surface strain and
moderate rotation are used in the formulation. Both
displacement functions, v and w, are approximated by cubic
polynomials. The finite element mesh of a quarter of the ring
(see inset, Fig. 2) consists of 12 elements with a total of 52

degrees of freedom. For the ‘‘follower’ pressure the load
stiffness matrix is symmetrized.

Journal of A%plied Mechanics

Table 1
Py
by=110 b =120 b, =140
Load *b1=b2=100 b2= 920 b2= 80 bZ: 60
‘‘dead”’ 4.0000 3.7724 3.3128 2.1617
“follower”’ 3.0232 2.8140 2.7352 2.0333

*2b; —long diameter of the ellipse
2b, —short diameter of the ellipse

1
Kf1= E([KL]+[KL]T)

where [K;] is the unsymmetric load stiffness matrix. The
thickness of the arch is taken to be t = 1.0, the width & =
12.0, and elastic modulus £ = 10°. The results of the com-
putation are summarized in Table 1 and Fig. 2.

The results show that the 1.33 ratio between ‘‘dead’’ and
“follower’’ instability pressures for circular rings approaches
1.0 as the axis ratio decreases. Comparison of the finite
element and classical solutions for the circular ring discloses a
high degree of accuracy for the former. However, there
appears to be no available comparison solutions for elliptical
rings for the phenomena studied.

Concluding Remarks

The purpose of this paper has been to present the basic
relationships, in the form of both differential equations and
the virtual work expression for pressure-loaded thin arches of
arbitrary shape. Using the virtual work expression and
displacement approximations often employed in the finite
clement representation of circular arches; finite element
stiffness equations are constructed for an elliptic arch
element. These are employed in analyses of pressure-loaded
elliptic arches for the full range of axis ratios.
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APPENDIX

Basic Geometric Relations

For the undeformed middle surface, the relations between
the geometric characteristics are
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n’=ﬁe,j a (A1)

dn’ fody
d ~  a dt (A2)
ey '
2V (43)
r= % (A4)

where e; is the permutation symbol and r is the radius of
curvature of the undeformed middle surface.
Similarly, for the deformed middle surface we have
- 1 dx’/

= ,, ——
n \/746” P (AS5)
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dil  F d¥ 6

dt A drt )

i N

ae (A7)
A

where R is the radius of curvature of the deformed middle
surface.

According to expressions (2), (7), (8), and (14) the tangent
to the middle surface of deformed arches can be written as

d _av

dr —71’—(1+e)+n’\/3¢

(49)
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